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Abstract

The major aim of tertiary structure prediction is to obtain protein models with the highest possible
accuracy. Fold recognition, homology modeling, and de novo prediction methods typically use predicted
secondary structures as input, and all of these methods may significantly benefit from more accurate
secondary structure predictions. Although there are many different secondary structure prediction
methods available in the literature, their cross-validated prediction accuracy is generally <80%. In order
to increase the prediction accuracy, we developed a novel hybrid algorithm called Consensus Data
Mining (CDM) that combines our two previous successful methods: (1) Fragment Database Mining
(FDM), which exploits the Protein Data Bank structures, and (2) GOR V, which is based on information
theory, Bayesian statistics, and multiple sequence alignments (MSA). In CDM, the target sequence is
dissected into smaller fragments that are compared with fragments obtained from related sequences in
the PDB. For fragments with a sequence identity above a certain sequence identity threshold, the FDM
method is applied for the prediction. The remainder of the fragments are predicted by GOR V. The
results of the CDM are provided as a function of the upper sequence identities of aligned fragments and
the sequence identity threshold. We observe that the value 50% is the optimum sequence identity
threshold, and that the accuracy of the CDM method measured by Q3 ranges from 67.5% to 93.2%,
depending on the availability of known structural fragments with sufficiently high sequence identity. As
the Protein Data Bank grows, it is anticipated that this consensus method will improve because it will
rely more upon the structural fragments.

Keywords: secondary structure prediction; GOR; Fragment Database Mining; structural fragments;
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Protein function is inherently correlated with structure.
Most computational problems in protein science, such as
protein docking (Camacho and Vajda 2002; Halperin et al.
2002; Smith and Sternberg 2002; Tovchigrechko et al.
2002), protein design (Mendes et al. 2002; Park et al. 2004;

Vizcarra and Mayo 2005), binding/active site determination
(Sen et al. 2004; Keskin et al. 2005; Szilagyi et al. 2005),
and protein–protein interaction networks (Chaudhuri and
Chant 2005), all rely on protein structure information of
various types. In principle, combining most diverse in-
formation should yield the best results. The rapidly growing
number of experimentally determined structures serves as
a primary source of information. The number of known
protein structures deposited in the Protein Data Bank
(PDB) (Berman et al. 2000) is currently (August 2006)
;38,000 (counting all, even highly homologous structures),
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a number that is significantly below the 233,000 or so
protein sequences available in UniProtKB/Swiss-Prot data-
base, and the 3,050,000 translations of EMBL nucleotide
sequences collected in UniProtKB/TrEMBL database. Ad-
ditionally, due to completion of many large-scale genome-
sequencing projects, the number of known sequences grows
continuously at an incredible rate.

Protein tertiary structure prediction from sequence is
one of the most important problems in molecular biology.
Recent significant advances in protein tertiary structure
prediction using computational methods, measured by the
Critical Assessment of Techniques for Protein Structure
Prediction (CASP) experiments, may help reduce this large
gap. These structure prediction methods can be broadly
grouped into three categories: homology/comparative mod-
eling, fold recognition/threading, and de novo (ab initio)
modeling. Among these methods, homology modeling
requires the highest sequence similarity to known structures
from the PDB, while de novo modeling relies to a lesser
extent on information from the sequences and from the
structures of proteins in the PDB. Many tertiary structure
prediction methods incorporate secondary structure pre-
diction for improvement of the accuracy of their modeling,
or to significantly reduce the sampling of conformational
space that is required (Kolinski 2004; Solis and Rackovsky
2004; Kolinski and Bujnicki 2005).

Currently no secondary structure prediction techniques
yield >80% accuracy in cross-validated predictions,
measured by Q3 prediction accuracy (Rost 2001). For
example, the most successful techniques based on neural
networks, such as PHD (Rost 1996) and PSIPRED (Jones
1999), reported accuracies ;76%. This limitation in pre-
diction accuracy of secondary structures is subsequently
transferred into many tertiary structure prediction methods,
limiting their performance whenever such secondary struc-
ture predictions are used as the input to the structure
prediction algorithm.

Secondary structure prediction is an active research
area. Recently, support vector machines (Hua and Sun
2001; Nguyen and Rajapakse 2005), sequence-based two-
level (Huang et al. 2005), and dihedral angle-based
(Wood and Hirst 2005) neural network algorithms were
successfully used with accuracies <80%. Neural networks
were also applied for the cases where secondary struc-
tures are combined not only into three categories (helix,
sheet, and coil), but also into seven categories in a more
detailed representation (Lin et al. 2005).

Despite the variety of these prediction methods, the
barrier of cross-validated 80% accuracy is still present
and has not yet been overcome. Is there a structural
explanation for this limit? In a recent, interesting work,
Kihara (2005) pointed out the importance of long-range
interactions on the formation of secondary structure. He
argued that as long as secondary structure predictions are

based on a sliding sequence window, the long-range ef-
fects, not only for b-sheets but even for helices, will be
treated to a limited extent. A comparison of accuracies as
a function of residue contact order (sequence separation
between contacts) supports this argument, at least for
some helical and coil fragments, and provides interesting
implications for protein folding (Tsai and Nussinov
2005). However, the accuracies for some other helices
with high-contact order were also low, suggesting that
there might be other effects not taken into account in the
present secondary structure prediction algorithms. Note
that the incorporation of multiple sequence alignments
into predictions implicitly introduces long-range effects
since sequence conservation is guided by structural con-
straints; GOR V and now the present novel hybrid method
both benefit from this inclusion.

In order to improve the accuracy of secondary structure
predictions, we propose a new hybrid method, Consensus
Data Mining (CDM), which combines our two previous
successful secondary structure prediction methods: the
recently developed Fragment Database Mining (FDM)
(Cheng et al. 2005) and the latest version of the well
known GOR algorithm, GORV (Kloczkowski et al. 2002;
Sen et al. 2005). The basic premise of CDM is that the
combination of these two complementary methods can
enhance the performance of secondary structure predic-
tion by harnessing the distinct advantages that both
methods offer. FDM exploits the availability of sequen-
tially similar fragments in the PDB, which leads to the
highly accurate (much better than GOR V) prediction of
structure for such fragments, but such fragments are not
available for many cases. On the other hand, GOR V
predicts the secondary structure of less similar fragments
fairly accurately, where usually the FDM method cannot
find suitable structures.

Results

CDM exploits the strengths of two complementary
methods, FDM and GOR V. As explained in detail in
the Materials and Methods section, the CDM algorithm
relies upon a single parameter (sequence identity thresh-
old) to specify whether to apply FDM or GOR V pre-
diction at a given site. The representation of the CDM
method is shown in Figure 1, where the first row is a part
of the query sequence, and the second and the third rows
are the FDM and GOR V predictions. In order to decide
which method is used for CDM, first an identity score
map is generated for the fragment data. Depending on the
sequence identity score, either FDM (if the site has
a score higher than the sequence identity threshold) or
GOR V is used for the CDM. The highlighted portions of
Figure 1 specify which predictions are used in CDM.

Sen et al.
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The success of FDM depends largely upon the avail-
ability of similar fragments to the target sequence. In
practice, however, the availability of similar sequences
can vary significantly. In order to analyze the relationship
between the performance of CDM and the sequence
similarity of fragments, we have methodically excluded
fragment alignments with sequence identities above
a certain limit, and have called this limit the ‘‘upper
sequence identity limit.’’ The upper sequence identity
limit is not an additional parameter in the CDM method;
these results demonstrate what the expected results would
be in the absence of structural fragments having similar-
ities above the sequence identity limit.
The performance of GOR V can also be improved with

multiple sequence alignments: The GOR V method tested
with the full jack-knife methodology yields an accuracy
of 73.5%, when multiple sequence alignments (MSA) are
included; otherwise, its accuracy is 67.5%.
One of the significant advantages of FDM is its

applicability to various evolutionary problems because
the algorithm does not rely exclusively on the sequences
with the highest sequence similarity, but assigns weights
to BLAST-aligned sequences that apparently capture
divergent evolutionary relationships. As a result, CDM,
which incorporates FDM, can be successfully used, even
when there is a significant range of sequence similarities
among the BLAST identified sequences.
Although the availability of sequences with high similar-

ity in the PDB essentially depends upon the target sequence,
the question remains as to what the optimum value of the
sequence identity threshold should be. To identify this
optimal threshold, we applied the CDM algorithm to our
data set with a wide range of identity thresholds ranging
from 30% to 95%; some results are shown in Figure 2,
where a distinct dependence of CDM on the upper sequence
identity limit can be seen. We observe a 10% drop in the
prediction accuracy when the upper sequence identity limit

drops from 100% to 99%. Our results show that the 50%
sequence identity threshold gives the best performance of
the CDM method for the upper sequence identity limit
(Fig. 2). This optimum value increases to 55% when mul-
tiple sequence alignments are incorporated in GOR V (data
not shown). Note that the upper sequence identity limit also
affects GORV results because, for some positions within the
sequence, only fragments with high sequence identity are
available. When the upper sequence identity limit is de-
creased, those regions that were previously predicted by
FDM are now predicted by GOR V.

Figure 3 illustrates the dependence of accuracy on the
upper sequence identity limit as a function of the se-
quence identity threshold and shows that the sequence
identity threshold of 50% gives the highest prediction
accuracy Q3 of CDM. It also displays the strong de-
pendence of the performance of CDM on the upper
sequence identity limit. The sharp drop in the accuracy
of prediction when almost identical sequences are re-
moved clearly demonstrates the importance of the avail-
ability of highly homologous sequences for successful
secondary structure prediction. This strong dependence
explains why secondary structure predictions fail to reach
high accuracies, signifying the limitation of short-range
treatments in prediction algorithms.

We have also analyzed the length of the fragments pre-
dicted by FDM in the final consensus predictions (Fig. 4).
The results are shown as a function of the limit to upper
sequence identities. When the upper sequence identity
limit is 100%, the fragment lengths are distributed almost
evenly, showing only two small peaks around 21 and 36.
The rest of the plots show similar curves peaking around
14, 16, 18, and 20. With decreasing upper sequence
identity limit, more FDM predicted fragments are utilized

Figure 1. The graphical representation of the CDM method. For a given

sequence fragment, the FDM and GOR V three-state predictions are

calculated. Then, according to a sequence identity threshold (shown as

a straight horizontal line), the regions with higher identity scores (above

the line) predicted by FDM are selected, and the rest by GOR V. The final

predictions are highlighted in black background.

Figure 2. Effect of the sequence identity threshold on the accuracy of

prediction Q3 with the Consensus Data Mining method. The upper

sequence identity limit has been varied from 100% to 50%. The box

around the value at 50% for the sequence identity threshold contains

consistently most of the maxima for the individual curves.

The Consensus Data Mining prediction
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in CDM: The numbers of fragments are 510, 716, 974,
1046, 1097, and 1153 for the upper sequence identity
limits of 100, 99, 90, 80, 70, and 60, respectively. Lower
values of the upper sequence identity limit, however,
decrease the average length of fragments.

Table 1 shows the prediction accuracies of the indi-
vidual FDM; FDM and GORV methods for the sequence
regions they are applied to; and the consensus (CDM)
method, for a range of upper sequence identities. The
coverage of the FDM method is also shown (coverage of
a specific method is defined as the fraction of residues
predicted by this method used in the consensus pre-
diction). The average cross-validated (by the jack-knife
methodology) accuracy of individual GORV prediction is
73.5% when MSA and heuristic rules (see below) are
used. In the absence of MSA, the jack-knifed accuracy
drops to 67.5%. Note that the accuracy of individual GOR
IV predictions (previous version) was 64.4%. The 2.9%
difference arises as a result of the heuristic rules based
on the length of helix and b-sheet predictions: If their
lengths are too short (e.g., helices shorter than five
residues or sheets shorter than three residues), these
predictions are converted to coil.

The identification of ranges of parameters where CDM
gives better performance than individual methods is
crucial. The data in Table 1 clearly demonstrate that,
when the upper sequence identity limit is $90%, CDM
confers a higher accuracy than individual GOR V, with or
without MSA. Additionally, on average CDM is always
better for the entire sequence than individual FDM
regardless of the upper sequence identity limit.

For the cases of 100% and 99% sequence identities,
only a small portion of sequences are predicted by GORV

(1% and 12%, respectively). At these upper sequence
identity limits, GOR V without MSA performs better than
GOR V with MSA for this small number of cases. Only
when the upper sequence identity limit falls to #90%
does GOR V with MSA then perform better. Although
it is generally assumed that adding multiple sequence
alignments to predictions increases the accuracy, the data
in Table 1 clearly demonstrate that MSA is not effective
for low sequence identities, rather the inclusion of MSA
increases noise in the data.

Another interesting feature shown in Table 1 is the
coverage by the FDM method, i.e., the fraction of FDM
predictions in the consensus CDM method. When the
upper sequence identity limit drops from 100% to 90%,
the FDM coverage plummets from 99% to 65%, illustrat-
ing the lack of aligned sequences with high identity.
Compare this value with the 12% coverage lost when
the upper sequence identity limit drops further from 90%
to 60%.

Another measure of prediction accuracy besides Q3 is
the Matthews correlation coefficient. The correlation coef-
ficients for three secondary structure elements, a-helices
(H), b-sheets (E), and coil (C), are shown in Figure 5. The
eight-letter DSSP alphabet has been reduced to the three-
letter code as described in the Materials and Methods
section. The plots in Figure 5 were obtained at the sequence
identity threshold of 50% for a varying upper sequence
identity. Similar to the majority of secondary structure
algorithms, the correlation coefficients are highest for
a-helices (H), followed by those for b-sheets (E), and
lastly for coils (C). The correlation coefficients obtained by
CDM show a consistent and smoother monotonic decrease
with a decrease in the upper sequence identity limit.

Figure 4. The length distribution of fragments predicted by FDM in CDM

as a function of upper sequence identity limit. The sequence identity

threshold is 50%. The upper sequence identity limit values are identified

for the individual curves

Figure 3. Accuracy of prediction Q3 of the Consensus Data Mining

method as a function of the upper sequence identity limit. The different

curves were obtained by varying the sequence identity thresholds. The

sequence identity threshold of 50% gives the best results. At 50%

threshold, CDM always performs better than individual FDM applied to

the whole sequence (full coverage).
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Replacing GOR V with PSIPRED in the
Consensus Data Mining

To compare the performance of our Consensus Data Mining
method based on GOR V with other popular secondary
structure prediction algorithms, we have chosen the
PSIPRED algorithm (Jones 1999) for detailed studies. First,
we have computed the accuracy of prediction by PSIPRED
on the Cuff and Barton (1999, 2000) data set of 513 se-
quences (CB513) used with the GORVand CDM methods.
The accuracy of prediction of the secondary structure with
PSIPRED for the Cuff and Barton data set reaches Q3

;80%, i.e., it significantly exceeds the original accuracy of
prediction of GOR V (73.5%). We should note, however,
that the result of 80% is an overprediction of PSIPRED
because the result is non-cross-validated. The PSIPRED
database that is used for the Neural Network training con-
tains some sequences similar to sequences in the CB513
data set. The most accurate comparison between GOR V
and PSIPRED should be made by applying the CB513
database (used in GORV) for the training of PSIPRED and
full jack-knife for the prediction for the CB513 data set.
Such an approach would likely decrease the accuracy of
prediction of PSIPRED to ;76%, i.e., to the currently
cross-validated accuracy of prediction of the PSIPRED
method. The advantage of the original CDM method with
GORV is that we have developed the codes of both GORV
and Fragments Data Mining programs that comprise the
CDM algorithm, and we are able to run and fully control
the CDM performance. Because of this, the computations
using the original CDM method based on GOR V are much
faster than similar computations using the CDM variant
with PSIPRED, and it is easier for us to implement cross-
validation.
We have also developed a variant of the Consensus

Data Mining method that uses PSIPRED instead of GOR
V for the prediction when fragments with sufficiently
high identities cannot be found in the database. These

results are shown in Figure 6. We repeated the calcula-
tions for a set of sequence identity cutoff values ranging
from 30% to 95%. We obtained the best performance with a
70% sequence identity cutoff for combining FDM
with PSIPRED. The performance of the CDM method with
PSIPRED exceeds the original CDM method based on
GOR V, but, as we have discussed previously, we were not
able to cross-validate these results.

Discussion

The accuracy of the secondary structure prediction is
important for modeling the three-dimensional structures
of proteins. In this work, we combined two previous
successful methods, Fragment Database Mining (FDM)
and GOR V, to develop the highly accurate Consensus

Figure 5. The Matthews correlation coefficients for CDM predictions for

individual secondary structure elements as a function of the upper

sequence identity limit. The eight-letter DSSP alphabet is reduced to three

secondary structure elements as explained in the Materials and Methods

section: a-helices (H), b-sheets (E), and coil (C). The results are obtained

for the 50% sequence identity threshold. GOR V is used without MSA.

Table 1. The prediction performance of the FDM, GOR V, and CDM methods with the applied sequence identity threshold 50% for
varying upper sequence identity limit

Upper sequence
identity limit

FDM Q3

(individual)
FDM coverage in

CDM
FDM Q3 in

CDM

GOR V Q3 in
CDM CDM Q3

GOR V Q3 in
CDM CDM Q3

(without GOR V MSA) (with GOR V MSA)

100 0.931 0.99 0.940 0.577 0.932 0.500 0.931

99 0.827 0.88 0.889 0.639 0.833 0.688 0.843

90 0.742 0.65 0.804 0.638 0.752 0.692 0.769

80 0.713 0.60 0.772 0.639 0.725 0.696 0.745

70 0.694 0.56 0.753 0.636 0.706 0.691 0.728

60 0.680 0.53 0.736 0.636 0.693 0.693 0.717

The table shows Q3 for individual FDM, for FDM and GORV methods for the part of the sequence they are applied to, and for CDM for the cases in which
GOR V is used with and without MSA. The third column shows the coverage of the FDM method, i.e., the fraction of residues for which the FDM
prediction was used in CDM. Results are averages over all 513 sequences.

The Consensus Data Mining prediction
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Data Mining (CDM) method, based on the availability of
aligned sequences of high similarity. The CDM method is
an alternative to other currently available secondary struc-
ture prediction algorithms, especially when the multiple
sequence alignments of high similarities are included
in the predictions. Our results show that, on average, the
accuracy of the method ranges from 67.5% to 93.2%
depending on the sequence similarity of the target se-
quence to sequences in the PDB. This represents a signif-
icant improvement over the original GOR V method
(accuracy with multiple sequence alignment, 73.5%) and,
when a similar structure fragment is present, about a 1%
gain––a slight, yet consistent, increase over the FDM
method. Our hybrid method is adoptable to include addi-
tional structural information as the PDB grows. The results
here show that it is preferable to include the structural infor-
mation directly as structural fragments when they are
available, and consequently this approach will ultimately
supersede the entirely statistically based methods, such as
GOR. Our consensus method shows that hybrid methods
have the potential of improving secondary structure pre-
diction performance of individual methods consistently.
The improvement of secondary structure prediction accu-
racy will enhance tertiary structure prediction methods that
employ secondary structure prediction as an input. Among
those, homology modeling algorithms, such as MODELLER
or SWISS-MODEL, have a potential for accuracy enhance-
ment by incorporating CDM into their algorithms. For this
purpose, we will implement a CDM server and make stand-
alone software available in the near future.

Materials and methods

Database

The database of Cuff and Barton (1999, 2000) of 513 sequen-
tially nonredundant domains has 84,107 residues and is used to

test the new CDM method. (For details of the data set, see Cuff
and Barton 1999, 2000.)

DSSP alphabet reduction

The Database of Secondary Structure in Proteins (DSSP) de-
veloped in 1983 by Kabsch and Sander (1983) is a widely used
method for the assignment of the secondary structure based
mostly on identification of hydrogen bonds in the crystallo-
graphic data. (There are, however, other alternative assignment
methods, such as STRIDE [Frishman and Argos 1997] or, most
recently, KAKSI [Martin et al. 2005]). DSPP classifies second-
ary structure elements into eight classes: H (a-helix), E
(extended b-strand), G (310 helix), I (p-helix), B (bridge,
a single residue b-strand), T (b-turn), S (bend), and C (coil).
We follow a standard method of reduction of this eight-letter
alphabet to the regular three-letter secondary structure code in
the following manner: Helix (H) in the three-letter code includes
three DSSP states, H, G, and I; b-strand (E) contains E and B;
and coil (C) consists of T, S, and C.

GOR V (Kloczkowski et al. 2002; Sen et al. 2005)

The GOR method, proposed originally by Garnier, Osguthorpe,
and Robson in 1978 (Garnier et al. 1978), is one of the first,
important methods for prediction of secondary structure from
sequence. The GOR method involves information theory and
Bayesian statistics (Garnier et al. 1978; Gibrat et al. 1987;
Garnier and Robson 1989; Garnier et al. 1996; Kloczkowski
et al. 2002). The information entropy I can be written as
a function of secondary structure S for a given amino acid R:

IðS;RÞ ¼ log½PðSjRÞ=PðSÞ� (1)

However, this function depends only on single-residue statis-
tics. The predictions can be greatly improved by incorporating
the information of flanking residues when a sliding window is
used. For GOR V, a variable size window proved to produce the
best results. Then, using relative informational content gives:

IðDS;R1,R2, . . . ,RnÞ ¼ IðS;R1,R2, . . . ,RnÞ
� Iðn� S;R1,R2, . . . ,RnÞ

(2)

In this equation, Ri represents the ith residue in the sliding
window, S is a secondary structure of the jth residue (Sj), and
n � S are all the conformations different than S. In the case
when secondary structures are abstracted into three classes, S
can be helix, sheet, or coil. n � S represents the other two sec-
ondary structures. Total information content can be expressed as

IðDS;R1,R2, . . . ,RnÞ ¼ IðDS;R1Þ þ IðDS;R2jR1Þ þ . . .
þ IðDS;RnjR1,R2, . . . ,RnÞ (3)

If we keep information on single and pairs of residues,
algebraic manipulation finally leads to

log
PðSÞ

Pðn� SÞ ¼
1� 2d

2d þ 1
+
d

m¼�d

log
PðS;RjþmÞ

Pðn� S;RjþmÞ

þ 2

2d þ 1
+
d

n;m¼�d

log
PðS;Rjþm;RjþnÞ

Pðn� S;Rjþm;RjþnÞ
(4)

Figure 6. The comparison of prediction accuracy when cross-validated

GOR V is replaced by PSIPRED in Consensus Data Mining. Note that the

results obtained by PSIPRED are not cross-validated, and, with a proper

cross-validation, the results may be expected to be;4%–5% less accurate.

Sen et al.
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for the residue site in the middle of the sliding window. In this
equation, d is the number of flanking residues, and 2d + 1 is the
size of the sliding window.
Over decades, the GOR method has been constantly improved

by including larger databases and more detailed statistics, where
these changes were gradually integrated into the first four
versions of GOR. With these improvements, the Q3 accuracy
reached 64% in GOR IV. However, studies by other groups
showed that the accuracy of prediction for secondary structure
prediction methods could be significantly increased by includ-
ing evolutionary information through multiple sequence align-
ments (MSAs) (Zvelebil et al. 1987; Levin and Garnier 1988;
Rost 1996; for a recent review, see Simossis and Heringa 2004).
In the most recent GOR V (Kloczkowski et al. 2002), evo-
lutionary information in the form of MSAs is included using
PSI-BLAST (Altschul et al. 1997) (GOR V Server is available
at http://gor.bb.iastate.edu; Sen et al. 2005). MSA is generated
using PSI-BLAST with the nr database, allowing up to five
iterations. MSA increases the information content and therefore
allows an improved discrimination of secondary structures. In
the last stage, heuristic rules related to the predicted secondary
structure distribution are used to improve predictions. With the
help of evolutionary information, the full jack-knifed prediction
accuracy of GOR V using the Cuff and Barton data set attains
Q3 ¼ 73.5%, an almost 10% increase from the previous GOR IV
performance. The segment overlap (SOV) (Zemla et al. 1999),
an alternative to the Q3 measure of prediction accuracy, is also
high at 70.8%. These results substantiate the reliability of GOR
V algorithm in our consensus method: Although the algorithm
does not provide as much accuracy as the prediction methods
based on neural networks (i.e., PHD [Rost 1996]; PSIPRED
[Jones 1999]), it can definitely be used as a complement to
Fragment Database Mining, which performs poorly with frag-
ments of low sequence similarity. In this work, we use GOR V
without MSA (with Q3 accuracy 67.5%) and with MSA
(accuracy of 73.5%) to test the performance of hybrid methods.

Fragment Database Mining (FDM)

FDM (Cheng et al. 2005) searches for sequences in the PDB
similar to the target sequences and aligns the sequence hits for
the secondary structure prediction. For a given target sequence
the BLAST similarity alignment search is performed first.
Matching segments from BLAST alignments are assigned weights
according to their sequence similarity to fragments of the target
sequence, followed by normalization. Several different parameters
are taken into account in the weight assignment: various sub-
stitution matrices, a range of similarity/identity thresholds, degree
of solvent exposure, and protein classification and sizes. The
secondary structure for each residue in the target sequence is
predicted based on the highest normalized score.
Local sequence alignments are obtained with BLAST on the

Cuff and Barton (1999, 2000) data set CB513 using BLOSUM-45
(the best performance) and several other substitution matrices. We
weighted fragments with a scoring based on their identity scores id
and their powers idx, where x is a positive number. The value x ¼ 3
was found to provide the optimum performance. For each position
in the sequence, the secondary structure is predicted based on the
secondary structures of the matching fragments at that position.

Consensus Data Mining (CDM)

CDM is a three-step algorithm based on the simple idea of
combining two complementary secondary structure prediction

methods, each with distinct strengths. In the first step, FDM
calculations are performed for a given target sequence, and for
each residue in the sequence, the normalized similarity score is
computed. For some sites, the sequence identity could be as high
as 100%. In the second step, the GOR V algorithm is applied to
obtain a second set of secondary structure predictions. In the last
step, a sequence identity threshold is defined to decide whether
the FDM or the GOR V result will be used in the consensus
prediction for a given residue. In the CDM method, the FDM
predictions are used for the residues with an identity score above
the sequence identity threshold, and the GOR V predictions are
used for the residues with an identity score below the sequence
identity threshold.

Prediction performance metrics

We used Q3 for the secondary structure prediction accuracy. In
the accuracy matrix [Aij] of the size 3 3 3, i and j correspond to
the three states H, E, C. The ijth element, Aij, of the accuracy
matrix is defined as the number of residues predicted to be in
state j, which are actually in state i. The diagonal entries of [Aij]
are numbers of correctly predicted residues for each state, and
Q3 is defined as:

Q3 ¼
+
3

i¼1

Aii

N
(1)

Here N is the number of residues in the query sequence.
Matthews correlation coefficient is another measure of pre-
diction accuracy defined for each secondary structure element
separately. For example, the Matthews correlation coefficient
for the helix (H) is:

Ca ¼ TPa � TNa � FNa � FPaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð½TNa þ FNa�½TNa þ FPa�½TPa þ FNa�½TPa þ FPa�Þ

p

(2)

where TP, TN, FN, and FP with subscripts a are the numbers of
true positives, true negatives, false negatives, and false positives
for helices, respectively.
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