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Abstract

Automated function prediction (AFP) methods increasingly use knowledge discovery algorithms to map
sequence, structure, literature, and/or pathway information about proteins whose functions are unknown
into functional ontologies, typically (a portion of) the Gene Ontology (GO). While there are a growing
number of methods within this paradigm, the general problem of assessing the accuracy of such
prediction algorithms has not been seriously addressed. We present first an application for function
prediction from protein sequences using the POSet Ontology Categorizer (POSOC) to produce new
annotations by analyzing collections of GO nodes derived from annotations of protein BLAST
neighborhoods. We then also present hierarchical precision and hierarchical recall as new evaluation
metrics for assessing the accuracy of any predictions in hierarchical ontologies, and discuss results on
a test set of protein sequences. We show that our method provides substantially improved hierarchical
precision (measure of predictions made that are correct) when applied to the nearest BLAST neighbors
of target proteins, as compared with simply imputing that neighborhood’s annotations to the target.
Moreover, when our method is applied to a broader BLAST neighborhood, hierarchical precision is
enhanced even further. In all cases, such increased hierarchical precision performance is purchased at
a modest expense of hierarchical recall (measure of all annotations that get predicted at all).
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Recent advances in genome sequencing are creating an
increasing volume of data, leading to more urgent interest
in methods for automated function prediction (AFP).
These methods increasingly use knowledge discovery
algorithms to map sequence, structure, literature, and/or
pathway information about proteins with unknown func-
tion into ontologies, such as the Gene Ontology (GO)
(Gene Ontology Consortium 2000; http://www.geneontology.
org), representing protein functions. We present an approach
to AFP that combines knowledge of the structure of GO

with BLAST e-values. While our method assumes that
proteins that are similar in sequence or structure are more
likely to share a function, we do not simply transfer the
annotations of a similar protein to the target protein.
Rather, we search for annotations that are representative
of the annotations of similar proteins, based on the
distribution of those annotations within the ontological
structure of GO. Specifically, we use a novel knowledge
discovery technique, which we call ‘‘categorization,’’ to
automatically identify those GO nodes that most accurately
represent another group of GO nodes, in this case those
that are annotated to proteins similar in some respect to a
target protein.

The system we have developed is an application within
our POSet Ontology Laboratory Environment (POSOLE),
which consists of a set of modules supporting ontology
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representation, mathematical analysis of those structures,
categorization of nodes in an ontology, and evaluation of
the predicted categorization with respect to a given set
of expected answers. The system defines QueryBuilders
specific to an application for mapping its relevant input
to a set of ontology nodes, in this case by identifying the
sequence neighborhood of the protein and associating
those neighbors to GO nodes (other QueryBuilders might
use bibliometric data [Verspoor et al. 2005] or structural
data). The POSet Ontology Categorizer (POSOC; http://
www.c3.lanl.gov/posoc)1 then categorizes this set of GO
nodes to identify the most representative nodes as
putative functions of the input protein.
Essential to any AFP method is the ability to measure

the quality of predictions. We are keenly aware that the
nature of GO as a hierarchically structured database
makes traditional evaluation measures inadequate. We
therefore conclude with the presentation of new evalua-
tion metrics called ‘‘hierarchical precision’’ and ‘‘hierar-
chical recall,’’ which we are developing for the general
task of evaluating methods for AFP into the GO.

Results

POSOC was designed to take a large set of GO nodes and
identify clusters with a richer concentration of relevant
information. This results directly in an increase in hier-
archical precision (an extension of the standard precision
measure, to be defined below). Generally in knowledge
discovery algorithms, increased precision comes at the
expense of decreased recall, and vice versa, as is true here.
Figure 1 shows the results of applying our method to

our test data set, both of which are described in detail in
Materials and Methods. Note the improvement in hierar-

chical precision (HP) when POSOC is included in the
processing, especially on the full BLAST neighborhood
as opposed to the BestBLAST neighborhood (both also
described below). This comes at a modest expense of
hierarchical recall (HR), resulting in relatively little
variation in the hierarchical F-score.

We have explored the behavior of our system at differ-
ent values of the POSOC parameter called specificity s,
which controls whether POSOC favors annotations that
are shallow or deep in the GO (see below). We have found
that the increase in hierarchical precision over the base-
line scenarios is most marked at the relatively low value s
¼ 2 (data not shown). This follows from the observation
that higher precision using the hierarchical measures
occurs when more predictions are more general than the
correct answers, and the fact that lower specificity favors
more general results. However, it is not the case that
simply returning the top node in each branch would give
us the best results, as this would result in a large decrease
in recall. Our results at s ¼ 2 show a drop in hierarchical
recall over BaselineBestBLAST, but not an unacceptable
drop as evidenced by the lack of substantial change in the
balanced hierarchical F-score as seen in Figure 1.

We believe that, in general, users of AFP systems
would tend to value precision over recall, or false nega-
tives over false positives. Said another way, they would
prefer that annotations be accurate at the risk of not all
annotations being provided. As such, the POSOC results
indicate that our system provides an important boost over
the alternative baseline scenarios at achieving the results
in which these users are interested.

Materials and methods

A simple formulation for generic AFP into the GO can be
described as follows. Assume a collection of genes or proteins
and a set of GO nodes (perhaps for a particular GO branch).
Then ‘‘annotation’’ can be regarded as assigning to each protein

Figure 1. Accuracy of the top-ranked annotation predictions on the test data using only Non-IEA annotations across the three GO branches, comparing the

POSOC method with specificity parameter s ¼ 2 against the baseline. (BaseBB) BestBLAST neighborhood without POSOC; (BaseFN) full neighborhood

without POSOC; (PosocBB) BestBLAST neighborhood with POSOC; (PosocFN) full neighborhood with POSOC; (HP) average hierarchical precision;

(HR) average hierarchical recall; (HF) average hierarchical F-score.

1POSOC was originally (Joslyn et al. 2004) called the Gene
Ontology Categorizer, but then was generalized for use with any
partially ordered ontology.
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some collection of GO nodes. Where a known protein may have
a known set of annotations, a new protein will not, and we wish
to build some method that returns a predicted set of GO nodes
for that target protein. Typically, we have some information
about the target protein such as sequence, structure, interactions,
pathways, or literature citations, and we exploit knowledge of
the proteins that are ‘‘near’’ to it, in one or more of these ways,
which do have known functions. The annotation method
presented here exploits the BLAST sequence neighborhoods
of target proteins, coupled with the POSOC categorizer.
In a testing situation, we start with a known protein with

known annotations, and compare these against the annotations
predicted by the method as if they were not known. So, while
our focus below is our particular POSOC methodology, our
general formulation of AFP is motivating our introduction of our
novel evaluation measures, which are intended to be applicable
to any AFP architecture.

POSOC method within POSOLE

Our particular architecture for AFP using sequence data, within
our general POSOLE environment, is shown in Figure 2. At its
heart are a QueryBuilder module associating an input query
sequence with a weighted collection of GO nodes, and the
POSOC module for identifying proper categorizations of that
collection as GO annotation predictions. In the testing context,
this process is carried on with knowledge of the known GO
annotations of the sequence.
The current query builder uses a ‘‘nearest-neighbor’’ approach to

identify annotations of close neighbors of the input sequence
in sequence space. We perform a PSI-BLAST (Position-Specific
Iterated BLAST) (Altschul et al. 1997) search on the target
against the NCBI nonredundant sequence database, nr (http://www.
ncbi.nlm.nih.gov/BLAST/blastcgihelp.shtml#protein_databases),
with five iterations, using the default e-value threshold of 10.
Once the nearest neighbors have been identified, we collect GO
nodes associated with these sequences using the UniProt SWISS-
PROT to GO mappings. Finally, we build a weighted collection
of GO nodes, where each node in the collection is weighted
according to the PSI-BLAST e-value. Several near neighbors of
the original target sequence may map to the same nodes, in which
case each occurrence will be weighted individually according to
its source.
This collection of weighted GO nodes becomes the input

query to POSOC (Joslyn et al. 2004), which returns a ranked list

of nodes that best ‘‘summarize’’ or ‘‘categorize’’ that collection.
Note that in one extreme, returning only the top-most node of
the GO branch in question is certainly an accurate categoriza-
tion, covering the entire input query, but hardly precise enough
to be useful. Conversely, just returning all the particular nodes in
the query again is certainly as precise as is possible, but hardly
does any work toward summarizing or grouping the nodes
together. POSOC balances these conflicting tendencies of
‘‘specificity’’ and ‘‘coverage’’ by providing a tunable parameter
‘‘specificity’’ s, which for low values (s ; 1) returns fewer,
more general categories, and for high values (s > 4) a larger
collection of deep nodes.

Data sets

We evaluate our AFP performance on a ‘‘gold standard’’ test set
of proteins comprised of a subset of SWISS-PROT proteins with
both known GO mappings and PDB structures (http://
www.rcsb.org/pdb). This test set was selected to enable us to
compare our results with algorithms integrating structural data.
Other groups have used a variety of test sets; for example, Pal
and Eisenberg (2005) use a set of protein sequences from the
FSSP structure library (http://www.chem.admu.edu.ph/;nina/
rosby/fssp.htm) to evaluate their ProKnow system, and Martin
et al. (2004) use sequence data from seven complete genomes
to test GOtcha.
The value of any gold standard depends on the accuracy of

its known annotations. We use the GOA (http://www.ebi.ac.uk/
GOA) UniProt (http://www.ebi.ac.uk/uniprot/index.html) anno-
tation set augmented with a ranking for the evidence codes
included in GO annotation files (e.g., IC ¼ inferred by curator,
IEA ¼ inferred from electronic annotation), following Pal and
Eisenberg (2005). For testing, we use a ‘‘Non-IEA’’ subset of the
annotations excluding all annotations of rank 4 or below, i.e.,
evidence codes NAS (nontraceable author statement), IEA, and
NR (no record). The purpose of this subset is to avoid the
circularity of making an automated prediction using sequence
similarity based on other automated predictions derived from
sequence similarity, as these annotations are more likely to
contain errors than the curated annotations (Gilks et al. 2002)
and already incorporate the assumption we test. We then filter
our gold standard set of proteins to exclude any proteins without
annotations in the Non-IEA set. A total of 1282 proteins remain
for testing in a leave-one-out strategy in which the protein itself
is excluded from the PSI-BLAST matches.

Evaluation scenarios

We compare the behavior of our POSOC-based function pre-
diction with two baseline scenarios. In the BaselineBestBLAST
scenario, we identify the protein with the highest PSI-BLAST
match value to our input protein (the ‘‘BestBLAST’’ protein),
and simply return the annotations associated with that protein,
assigning them all a rank of 1. This corresponds to the standard
strategy that a biologist would use, following the assumption
that two proteins close in sequence (BLAST) space will share
the same functions. In the BaselineFullNeighborhood scenario,
we return all annotations associated with any protein matched
by PSI-BLAST within the e-value threshold, ranked by match
probability e�(e-value). Due to a loss of numerical precision in the
conversion to probability, we find many neighbors matching at
rank 1 and see correspondingly lower (hierarchical) precision
and higher (hierarchical) recall with respect to the desired
answers, even at the top ranks.

Figure 2. Architecture of the POSOC automated ontological annotation

method within the POSOLE environment.
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POSOC itself is run in two parallel scenarios. PosocFull-
Neighborhood is the standard way it would be used for AFP: the
annotations of each PSI-BLAST, weighted according to match
probability, are submitted to POSOC for categorization. In
PosocBestBLAST, only the annotations of the ‘‘BestBLAST’’
protein are categorized by POSOC. In each case, we expect
POSOC to filter out any noise in the annotation sets to arrive at
the nodes most representative of the inputs.

Evaluation measures

Let N be the set of GO nodes, either as a whole or in any
particular branch or portion. Then for a given target protein x,
POSOC will return a ranked list of cluster heads G(x) 4 N
indicative of the function of the query sequence, which thereby
must be compared against the set of known annotations F(x) 4
N. Standard evaluation measures are provided from information
retrieval, including precision P, measuring the percentage of
predictions which are correct; recall R, measuring the portion of
annotations which we have predicted; and F-score F, combining
both and reflecting their tradeoff:

P ¼ jFðxÞ \ GðxÞj
jGðxÞj ; R ¼ jFðxÞ \ GðxÞj

jFðxÞj ; F ¼ 2PR

Pþ R
(1)

Each number varies between 0 and 1, where P ¼ 0 4 R ¼
0 4F ¼ 0, but P ¼ 1 only when all predictions are correct, and
R ¼ 1 only when all correct annotations are predicted.
However, the results G(x) produced by POSOC do not form

a simple set, but rather a ranked list of effectively indefinite
length. Alternative measures to handle ranked lists are available
(Voorhees and Tice 2000), but the measures must apply in the
context where near misses are accounted for, and annotations
occur into a hierarchically structured ontology. We introduce
Hierarchical Precision (HP), Hierarchical Recall (HR), and
Hierarchical F-score (HF) as:

HP ¼ 1

jGðxÞj +
q2GðxÞ

max
p2FðxÞ

j[p \ [qj
j[qj

HR ¼ 1

jFðxÞj +
p2FðxÞ

max
q2GðxÞ

j[p \ [qj
j[pj

HF ¼ 2ðHPÞðHRÞ
HPþ HR

(2)

where [p indicates the set of ancestors of the GO node p 2 P.
Figure 3 shows an illustration of a situation with GO nodes
GO:1–GO:7, where a single annotation F(x) ¼ {GO:4} is
compared against a single prediction G(x) ¼ {GO:6}, so that
[p ¼ {1,2,4} (using just the node numbers here) and [q ¼
{1,2,3,5,6}, yielding HP ¼ 2/5 and HR ¼ 2/3.

Ranked evaluation results

For each test protein, we must compare an unranked set of
correct annotations to the ranked list returned by POSOC. We
therefore calculated HP and HR separately, although cumula-
tively, at each rank, considering only the predictions up to
a given rank against the full set of correct annotations. This
allows us to assess the impact of rank on our predictions: how
steeply does hierarchical precision drop off and hierarchical

recall increase as we move down the ranks? To assess this across
the full set of test proteins, we average HP and HR at each rank.

Space limitations preclude showing results for all ranks.
Moreover, the number of test proteins that have predictions
drops sharply and unevenly at lower ranks, and so these
averaged values become less reliable as we move down to ranks
generally >4. Thus results for rank ¼ 1 only are provided in
Figure 1, but this allows us to most directly compare Base-
lineBestBLASTwith the other scenarios, since that baseline only
has predictions at rank 1.

Discussion

There are several methodological limitations of current
AFP methods that our hierarchical evaluations measures
are trying to address. First, AFP should deal fundamen-
tally with the need to accommodate and measure not just
‘‘exact matches’’ but also ‘‘near misses’’ of different sorts.
If a particular annotation is wrong, can we say more about
how far off it is? Thus, there is a first need to generalize
classical precision and recall measures to accommodate a
sense of distance among annotations.

In the particular context of the GO, errors are intro-
duced if it is considered to be a simple list of functional
categories. The hierarchical structure of the GO repre-
sents the interaction between specific and general cate-
gories that are either low or high in the structure,
respectively. Moreover, annotations to low nodes are con-
sidered as annotations to high nodes as well, what Eisner
et al. (2005) describe as the ‘‘true path rule.’’ This results
in a mathematical structure of an ordered set (Joslyn et al.
2004), which must be taken into account when measuring
how well an AFP method performs. In particular, an
annotation to a parent, grandparent, or other ancestor of
a true annotation must also be considered as a true, albeit
less than ideally specific, annotation.

Moreover, in many cases predicting a parent, grand-
parent, or sibling of a correct annotation may be accept-
able, or even preferable to an exact match. In the example
in Figure 3, if exact matches were required, traditional

Figure 3. Illustration of hierarchical precision and recall calculations.
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precision and recall from Equation 1 would both be 0,
despite the fact that GO:1 and GO:2 are both correct,
albeit more general, annotations on which both GO:6 and
GO:4 agree.

This issue has been attended to only very little in the
literature. Kiritchenko et al. (2005) and Eisner et al.
(2005) have proposed an explicitly hierarchical extension
of precision and recall with respect to the subgraph con-
taining the predicted node and all of its ancestors (the
‘‘node subgraph’’) and the node subgraph of the correct
node. Pal and Eisenberg (2005) consider precision at
various ontology depths, hierarchically matching nodes
in the node subgraph of the predicted node and nodes in
the node subgraph of the correct node. Both solutions,
however, require methodological completion, and neither
explicitly addresses the primary case of comparing a set
of node predictions with a set of answers.

In prior work (Joslyn et al. 2004; Verspoor et al. 2005),
we have measured performance with respect to direct hits,
‘‘nuclear family’’ (parent, child, sibling) and ‘‘extended
family’’ (grandparent, uncle, cousin, etc.) relations be-
tween nodes. Our approach now aims to extend these
ideas by placing precision and recall in a metric space
context to generally account for near misses (Pekalska
2005), and adopting metrics specifically appropriate for
hierarchical structures cast as partially ordered sets
(Monjardet 1981). While this work is ongoing, we have
immediately here extended Kiritchenko et al.’s (2005)
approach from single-node comparisons to sets of nodes,
producing Equation 2, an approach that is similar to that
of Eisner et al. (2005).

HP captures the property that errors at higher levels of
the hierarchy are punished more severely, and more dis-
tant errors are punished more heavily than a near miss.
The use of the sum of maxima in Equation 2 captures the
intuition that for each prediction, we must find the closest
match to any of the possible answers as defined by the
gold standard. This is easiest to understand by consider-
ing the most extreme case of exact matches: if all pre-
dictions exactly match an element of the expected answer
set, this results in HP ¼ 1. These predictions are no less
correct simply because there are other possible answers
(which would be the case, for instance, if hierarchical
precision were averaged across the elements of the set).

In combination with ranked assessments, it is possible
for hierarchical precision to increase as we go down the
ranks. In particular, a new prediction at a lower rank
might be closer to one of the correct answers than any
prediction up to that point. In this case, when we use the
sum of maxima in Equation 2, we will find that hierar-
chical precision increases.

The need for an evaluation measure including some
form of ‘‘partial credit’’ for near misses is demonstrated
by Table 1, which shows the case when the BestBLAST

neighborhood of non-IEA annotations is used, without
POSOC, to induce predictions that are then compared to
exact matches into GO using the standard precision and
recall measures. This is the most straightforward AFP
process, and shows very poor performance because of the
lack of consideration of near neighbors in the evaluation.
Note that the inclusion of near misses in the measure
means that HP and HR will always be higher than the cor-
responding P and R values for a given test set (cf. Table 1
and Fig. 1, BaselineBestBLAST results), thus they are not
directly comparable measures.

The hierarchical measures are able to give credit for
predicted answers even when they are not exact. In the
case of considering a single prediction against a single
correct answer, when the prediction is a successor of the
actual answer, then HR ¼ 1, while HP < 1, with HP larger
in deeper parts of the ontology, and decreasing with
distance between the two nodes. When a prediction is an
ancestor of the actual answer, then HP ¼ 1, while HR < 1,
with HR larger for more specific nodes, and again
decreasing with distance between the two nodes. An
overall high hierarchical precision is indicative of most
predictions being ancestors of the actual answers and
more general. Higher hierarchical recall indicates that
more predictions are successors of the actual and are
more specific. We note that similar observations have
been advanced by Eisner et al. (2005).

Given that hierarchical precision is enhanced for
matches higher in the hierarchy, our increased hierarchi-
cal precision could indicate that the gold standard
answers are actually distributed at a moderately high
level in GO. Similarly, the relatively low precision value
s ¼ 2 used here will tend to produce higher predictions,
thus explaining part of the HP/HR tradeoff shown in
Figure 1. Deeper consideration of these issues, including
independent measurement of the depth of sets of pre-
dictions and correct answers, awaits future work.
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