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Abstract

Prediction of side-chain conformations is an important component of several biological modeling
applications. In this work, we have developed and tested an advanced Monte Carlo sampling strategy for
predicting side-chain conformations. Our method is based on a cooperative rearrangement of atoms that
belong to a group of neighboring side-chains. This rearrangement is accomplished by deleting groups of
atoms from the side-chains in a particular region, and regrowing them with the generation of trial
positions that depends on both a rotamer library and a molecular mechanics potential function. This
method allows us to incorporate flexibility about the rotamers in the library and explore phase space in
a continuous fashion about the primary rotamers. We have tested our algorithm on a set of 76 proteins
using the all-atom AMBER99 force field and electrostatics that are governed by a distance-dependent
dielectric function. When the tolerance for correct prediction of the dihedral angles is a <20° deviation
from the native state, our prediction accuracies for x1 are 83.3% and for x1 and x2 are 65.4%. The
accuracies of our predictions are comparable to the best results in the literature that often used
Hamiltonians that have been specifically optimized for side-chain packing. We believe that the
continuous exploration of phase space enables our method to overcome limitations inherent with using
discrete rotamers as trials.
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Accurate prediction of side-chain conformations is an
important undertaking in a variety of biomolecular
simulations (Vasquez 1996). Correct positioning of the
amino acid side-chains is an important refinement step in
investigating protein–protein interactions (Gray et al.
2003; Zacharias 2003; Wang et al. 2005) for protein
docking applications. A rational drug design protocol
involves side-chain packing of the active site to investi-
gate potential ligand–protein interactions (Claussen et al.
2001). Design problems that involve introducing muta-

tions in proteins to modify their stability or selection of se-
quence to achieve a specific fold require optimization of
the identity and conformations of side-chains (Desjarlais
and Handel 1995; Dahiyat and Mayo 1997; Gordon et al.
2003; Havranek and Harbury 2003; Kraemer-Pecore et al.
2003; Kuhlman et al. 2003; Looger et al. 2003). Investiga-
tion of protein folding using homology modeling or ab
initio methods requires repacking the side-chains to obtain
optimal low-energy structures (Holm and Sander 1992;
Bower et al. 1997; Huang et al. 1998).

The topic of accurate prediction of side-chain confor-
mations in proteins has been addressed in a number of
detailed investigations (Holm and Sander 1992, Mendes
et al. 1999; Xiang and Honig 2001; Jacobson et al. 2002a;
Liang and Grishin 2002; Canutescu et al. 2003; Peterson
et al. 2004). From the point of view of methodology,
these investigations have focused on the development of
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sampling techniques as well as on adaptation of force
fields to enhance their ability to discriminate between
native and non-native conformations. Combinatorial sam-
pling techniques such as dead-end elimination (Desmet
et al. 1992; Lasters et al. 1995; De Maeyer et al. 1997;
Gordon and Mayo 1998; Looger and Hellinga 2001),
Branch-and-Terminate (Gordon and Mayo 1999), and
graph theory-based methods (Canutescu et al. 2003) are
guaranteed to find the global energy minimum on con-
vergence. However, they require Hamiltonians that are of
a pairwise additive nature between side-chains. Sampling
methods based on a Monte Carlo–type algorithm do not
have such a restriction on the nature of the potential
function, but they are not guaranteed to converge to the
global energy minimum. However, a careful implementa-
tion of Monte Carlo methods can be expected to reach
conformations that are close to the global energy mini-
mum. Examples of Monte Carlo–type techniques include
simulated-annealing algorithms (Hwang and Liao 1995;
Liang and Grishin 2002), Monte Carlo moves in dihedral
space (Dunbrack and Karplus 1993), and rotamer sub-
stitution protocols (Xiang and Honig 2001; Jacobson
et al. 2002a; Gray et al. 2003). Self-consistent mean-field
theory (Mendes et al. 1999) with flexible rotamers has
also been used successfully for predicting side-chain
conformations. These studies have also contributed to
our understanding of whether commonly used force fields
are applicable for the more restricted problem of side-
chain placement given a fixed backbone conformation
(Petrella et al. 1998; Xiang and Honig 2001; Jacobson
et al. 2002b; Liang and Grishin 2002). As a result, several
modifications have been suggested to existing force fields
to make them amenable to the above task. These mod-
ifications include addition of hydrogen-bonding poten-
tials (Peterson et al. 2004; Gray et al. 2003), surface- and
volume-overlap terms (Liang and Grishin 2002; Peterson
et al. 2004), and knowledge-based terms (Liang and
Grishin 2002; Gray et al. 2003; Peterson et al. 2004)
derived from a statistical analysis of the Protein Data
Bank (PDB). Additionally, the relative contributions of
nonbonded interactions such as van der Waals (vdW) and
electrostatics have been reweighted (Fernandez-Recio
et al. 2002; Liang and Grishin 2002; Gray et al. 2003;
Peterson et al. 2004) in order to obtain predictions closer
to the native state. It has often been argued that the
unmodified Hamiltonians may not be suitable for side-
chain predictions due to their inability to accurately
account for solvation effects, electrostatics, and hydrogen
bonding. Even in the case of Hamiltonians, which contain
potential functions to account for the above-mentioned
effects, the contributions from the different terms may not
be weighted correctly to obtain accurate results. Nearly
all modern-day prediction algorithms rely on rotamer
libraries (Tuffery et al. 1991; Dunbrack and Cohen 1997;

Xiang and Honig 2001) to reduce the expanse of confor-
mational space that needs to be explored for side-chain
placement. Rotamer libraries list the primary side-chain
dihedral angles by residue type based on a statistical
analysis of the Protein Data Bank. Hamiltonians in
several investigations (Liang and Grishin 2002; Gray
et al. 2003; Peterson et al. 2004) employ a potential
energy term based on the backbone-dependent frequency
of occurrence of a rotamer. An important conclusion from
those studies (Liang and Grishin 2002; Peterson et al.
2004) is that significant overall improvement in the
prediction quality for the surface residues results from
the inclusion of this term. Such a result is not surprising
since the frequency of occurrence of a rotamer can be
viewed as a free-energy term that incorporates both the
energetic and entropic terms arising from dispersion
interactions and electrostatic and solvation effects. The
latter two are expected to play an increasingly important
role in the prediction of surface residues. Thus, the
inclusion of this term can alleviate some of the short-
comings of the Hamiltonian in accounting for these
effects. In addition to the Hamiltonian used for the
prediction, it is imperative for the sampling methodology
to be sophisticated in order to reliably sample the
resulting energy landscape. A simplistic sampling tech-
nique will be unable to surmount the energy barriers in
a reasonable span of time, thereby possibly trapping the
system in a local minimum far from the global minimum
for the potential function. Rotamer libraries seek to
alleviate the sampling problem by guiding the sampling
technique to a region of conformational space that is
likely to be populated. However, since the rotamer
libraries are discrete in nature, whereas the side-chains
conformations are not, researchers are increasingly mov-
ing toward incorporating flexibility in the rotamer librar-
ies by minimization in torsional space (Wang et al. 2005),
addition of rotamers around primary rotamers (Gray et al.
2003; Peterson et al. 2004), introduction of flexibility in
the angles for a side-chain, and incorporation of rotamer
ensembles using continuous flexibility about dihedral
angles (Mendes et al. 1999).

There are certain shortcomings with using discrete
libraries of rotamer conformations and knowledge-based
Hamiltonians when the goal is to rigorously sample an
ensemble average property of the system. For example,
the presence of a conformation that deviates significantly
from a primary rotamer, though rare, is a possible con-
formation during a molecular dynamics simulation.
Monte Carlo searches based on discrete rotamer libraries,
however finely and widely they may be discretized
around the primary rotamers, cannot be employed to
supplement the sampling in conjunction with a molecular
dynamics method, since the detailed balance condition
(Frenkel and Smit 1996) cannot be satisfied. Briefly, this
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condition states that in order for a Monte Carlo algorithm
to rigorously sample the distribution in the ensemble of
interest, the rates of forward and reverse transition between
every pair of linked states must be equal. While the primary
goal of side-chain prediction methods is to obtain a probable
low-energy conformer, we believe that advanced Monte
Carlo methods have the potential to effectively supplement
molecular dynamics methods. In this paper, we formulate and
test an advanced Monte Carlo sampling protocol based on
configurational-bias sampling methods. This type of sam-
pling methodology has been used successfully to equilibrate
dense polymer melts (Siepmann and Frenkel 1992; Escobedo
and de Pablo 1994; Jain and de Pablo 2002b) and liquids
(Cracknell et al. 1990), calculate chemical potentials (Kumar
et al. 1991), estimate free energies (Jain and de Pablo 2002a),
simulate peptides (Wu and Deem 1999), and study protein–
protein association (Fernandez-Recio et al. 2002). Our
implementation of this scheme for the purpose of side-chain
placement involves performing successive patch refinements
on neighboring groups of residues. By performing coopera-
tive moves on groups of side-chains as opposed to individual
side-chains, we attempt to achieve rapid exploration of the
relevant conformational space. We develop an adaptive
methodology that relies on introducing variations in the
existing primary rotamers as dictated by the surroundings
of a residue in the protein. This is achieved by an approach
where a side-chain is built unit by unit starting from the
backbone, with conformations that are biased toward, but not
restricted to, the angles in the rotamer library. In this work,
we restrict ourselves to the search for low-energy conformers,
though with additional book-keeping this approach can be
extended to perform rigorous sampling in the canonical
ensemble at a temperature of interest. We test our algorithm
on a set of 76 high-resolution protein structures using the
AMBER99 all-atom force field (Cornell et al. 1995) with
a simple distance-dependent dielectric function for the
electrostatic interactions. When the tolerance for correct
prediction is 20° within the native dihedral angle values,
our results indicate that our method is able to correctly
predict the side-chain conformations with an accuracy that is
comparable to the existing methods in the literature that often
use Hamiltonians that have been specifically optimized for
this problem. For a tolerance of 40°, the results from our
method are slightly worse than the best prediction accuracies
in the literature (Peterson et al. 2004), and this loss of
accuracy can be largely attributed to the absence of a knowl-
edge-based rotamer frequency term in the Hamiltonian.

Results and Discussion

Simulation methodology

In this work, configurational-bias sampling methodology
was utilized for incorporating flexibility into existing

rotamer libraries. Our protocol for implementing this
method is inspired by the configurational-bias method
used for polymers. In the case for polymers, several
repeat units from one or several chains in a particular
region are deleted. The deleted units are then grown suc-
cessively, by biasing their new positions with respect to a
potential function and topological constraints (Escobedo
and Chen 2000; Siepmann and Wick 2000). While the
complete Hamiltonian can be used, it is often computa-
tionally more feasible to use a cheaper Hamiltonian for
the growth step (Frenkel and Smit 1996; Escobedo and
Chen 2000). After all the deleted units are regrown, the
move is accepted or rejected on the basis of the detailed
balance condition (Frenkel and Smit 1996) using the
target Hamiltonian. This ensures correct sampling in the
ensemble of choice. This method is able to successfully
equilibrate dense systems due to the cooperative rear-
rangements that are proposed during each step. These
drastic rearrangements enable the system to escape local
minima that could not otherwise be easily overcome using
simpler moves. We extend this method to side-chain
packing using the Dunbrack rotamer library (Dunbrack
and Cohen 1997). A brief overview of the procedure is
given below. A pseudocode for the protocol can be found
in Materials and Methods. For each patch refinement,
a flexible residue is selected along with N � 1 neighbor-
ing residues, for a patch size of N residues. The regrowth
process for each residue in the patch is started from either
x1 or x2 (except for valine, which due to the flexible polar
hydrogens on serine and threonine, is the only residue
without a x2). Trial moves are generated by rotating the
residue about the flexible dihedrals according to the
dihedral angle values in the rotamer library with addi-
tional continuous flexibility about these values. For each
trial move, a cheap Hamiltonian is evaluated for the group
of atoms whose positions are affected only by rotation
about that particular dihedral. For example, for phenyl-
alanine, for the choice of x1, the unit comprises Cg and
the hydrogens on Cb, since the positions of these atoms
are not influenced by subsequent dihedrals. For x2, the
unit comprises the phenyl ring except for Cg. The
insertion of the group is biased on the basis of the
nonbonded Lennard-Jones energy and the torsional en-
ergy about the rotatable bonds associated with the group.
A trial, i, is picked out from several proposals, using the
following probability distribution,

pmi ¼
exp �bpropðUlj þ UtorsÞi

� �

+k exp �bpropðUlj þ UtorsÞk
� � (1)

where k denotes the index over the trials, m denotes the
unit being grown, bprop corresponds to the temperature
used for move proposal, and pmi is the probability of
selecting trial i for unit m. This process is repeated until
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all the deleted units are regrown. The correct acceptance
probability, pacc, for the above move is

pacc ¼ min 1,

Q
m2½1N� p

m
i

� �R

Q
m2½1N� p

m
i

� �F exp �baccDUfull

� �
2
64

3
75 (2)

where bacc corresponds to the temperature used for the
acceptance of moves, DUfull is the change in the potential
energy of the system using the Hamiltonian of interest,
m 2 [1 N] represents all the units being grown during the
patch refinement, and superscripts F and R represent the
probabilities in the forward and the reverse moves,
respectively. Thus, to use the rigorous acceptance crite-
rion, the reverse move must be performed to generate the
original patch and determine the corresponding probabil-
ities. As mentioned earlier, in this work our primary goal
is to test whether the sampling methodology detailed
above performs successfully in the context of the side-
chain prediction problem by identifying a low-energy
conformer that is close to the energy minimum of the
prescribed Hamiltonian. Therefore, for reasons of com-
putational efficiency, we do not implement the above
acceptance criterion but instead employ the usual Me-
tropolis criterion (Metropolis et al. 1953) that would
result from setting the probabilities in Equation 2 to
one. At the end of the move, a comparison is made
between the rotamers of the newly generated patch and
those belonging to the patch before the deletion of units.
If the rotamers are the same for every residue in the patch,
a counter called the ‘‘persistence counter’’ is incremented
for the residues that comprise this patch. If the move is
accepted and the new patch has different rotamers from
the previous configuration, the persistence counter is
reset to zero for all the residues in the patch. As long as
the persistence counter for a residue is below predeter-
mined value lp, that residue can be the central or the first
residue for a patch refinement. If the counter exceeds or
equals that value, the patch size is set to 1; i.e., only that
particular residue is regrown. We label this sampling
technique SPRUCE (Successive Patch Refinement Using
Configurational-Bias Exploration). The method discussed
above was applied to 76 high-resolution proteins from the
PDB. In all cases, alanine, glycine, proline, and the
residues involved in disulfide bridges were kept rigid.
Proline was not predicted since its cyclic nature does not
lend itself to a regrowth process as explained above. The
temperature for the growth process was set to a high value
in order to propose a diverse set of configurations during
the generation of trial moves. However, since the overall
goal of this study is to generate a structure close to the
energy minimum for the system, the acceptance temperature
was set to a low value. The values of the various parameters
are listed in Materials and Methods. The AMBER99 force

field (Cornell et al. 1995) and charge set used were used
along with the modifications suggested by Okur et al. (2003).
A simple distance-dependent dielectric (DDD) was used to
account for the solvent-screened electrostatic interactions.
The nonbonded Lennard-Jones interactions were truncated
at 10 Å. No truncation was employed for the electrostatic
interactions. Consistent with the AMBER99 force field, the
1–4 interactions were scaled by 0.5 and 0.833 for the
Coulombic and the Lennard-Jones, respectively. A neighbor
list was employed to speed up the nonbonded calculations.

Prediction accuracies and comparisons with literature

The sampling methodology employed in our investigation
differs significantly from that used in other studies. Our
algorithm incorporates flexibility into the placement of
a side-chain by sampling the surrounding dihedral space
of the primary rotameric angles in a continuous fashion,
as opposed to the discrete conformations from the
rotamer library. Additionally, we stress that no modifica-
tions to the AMBER99 force field or atomistic parameters
were made during the conformational search process.

Stated prediction accuracies use the convention [X
Y]tol, where tol is the maximum deviation from the native
value of any ‘‘correctly’’ predicted dihedral, X is pre-
diction accuracy for x1, and Y is the prediction accuracy
for x1 and x2, i.e., x1+2. Predictions for x1+2 are
considered correct only when both x1 and x2 are pre-
dicted correctly. Statistics were calculated for three
different subsets of the 76 proteins, in order to aid com-
parison with other detailed investigations in the literature.
Table 1 lists the PDB codes for the three sets. Overall
prediction accuracies of [86.7 74.0]40 and [83.3 65.8]20

were obtained over the 65-protein test set with an overall
root mean square deviation (RMSD) value of 1.39 Å.
Compared with the results from the NCN algorithm
(Peterson et al. 2004) using vdW interactions and uniform
electrostatics with a dielectric of 80 (row 2 in Table 2 in
Peterson et al. 2004), they represent an improvement of
1.5% in the accuracy of x1+2 and 0.04 Å in the overall
RMSD. However, the accuracy for x1 was lower by 0.3%.
It should be noted, however, that Peterson et al. (2004)
employed a vdW contribution that was averaged over the
heavy atoms in the side-chain. This resulted in an
increase in the prediction accuracy compared with the
full vdW potential, although the precise magnitude of the
improvement was not stated. Using the optimized
Hamiltonian with hydrogen bonding, rotamer overlap, and
knowledge-based rotamer frequency terms, the predictions
from the NCN algorithm are better than our predictions
by 2.7% and 3.7% for x1 and x1+2, respectively. The overall
RMSD is also better by 0.12 Å. The test set also includes
the seven proteins that were used to optimize the coef-
ficients for the rotamer frequency term in the Hamiltonian
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used by Peterson et al. (2004). Furthermore, the size of
their rotamer library was nearly 50,000 rotamers. Without
the rotamer frequency term, the accuracies obtained are
[87.4 73.2]40 with an overall RMSD of 1.42 Å, which is
comparable with our predictions. The same study also
evaluated the Liang and Grishin (2002) simulated annealing
approach (LGA) and the SCAP algorithm (Xiang and
Honig 2001) on the 65-protein test set. In terms of overall
accuracy, the NCN algorithm performed better than both
LGA and SCAP. Using a tolerance of 20°, the best results
from the NCN method are [83.2 64.9]20. These accuracies
are almost similar to our prediction, which surprisingly
indicates that our simpler Hamiltonian with SPRUCE
performs at par compared with the optimized Hamiltonian.
The study of Xiang and Honig (2001) used a vdW potential
and distance-dependent dielectric term. Their test set
comprised 33 proteins, of which 31 are in our current test
set. Prediction accuracies of [84 67]20 were obtained for
these proteins compared with [81 62]20 (Table 3, row b,
using CHARMM library bond lengths and angles, in Xiang
and Honig 2001). The overall RMSD value of 1.35 Å is
also better by 0.32 Å. The self-consistent mean-field
(SCFMT) method of Mendes et al. (1999) incorporated
a flexible ensemble of states around the principal rotamer.
However, the ligands were constrained to their original
positions along with the backbone, which increases the
prediction accuracies for these structures (Liang and
Grishin 2002). Liang and Grishin evaluated the SCMFT
method on 15 proteins in the absence of the prosthetic
groups and obtained accuracies of [83.9 65.4]40 with an
overall RMSD of 1.48 Å. The accuracy of their own LGA
algorithm was [87.6 71.5]40 with an overall RMSD of 1.36
Å. Our results for the same 15 proteins are [86.3 72.0]40

with an RMSD of 1.39 Å. Thus, our results compare
favorably with those obtained using LGA and SCFMT,
for configurations without any constrained ligands. The
accuracies using LGA over a set of 30 proteins (Liang and

Grishin 2002) is higher than those reported in the previous
comparison. However, 15 of those proteins also comprised
the training set used for optimizing the Hamiltonian, which
can skew the results toward higher prediction accuracies.
The prediction accuracy from SPRUCE over the entire set
of 76 proteins is [86.7 73.6]40 and [83.3 65.4]20 with an
overall RMSD of 1.40 Å. Table 2 lists the results obtained
for each protein investigated using SPRUCE.

Incorporation of the knowledge-based backbone-dependent
rotamer frequency term leads to the greatest improvement in
the overall RMSD and prediction accuracy of the dihedrals.
Interestingly, most of the improvement is concentrated in the
prediction of the x1+2 term for the surface residues. The NCN
algorithm shows an improvement of 7.8% for x1+2 for the
surface residues on the inclusion of a rotamer frequency term,
as opposed to an improvement of 0.9% for the core x1+2

(Table 2, rows 1 and 7, in Peterson et al. 2004). For LGA,
adding a backbone dependency to a surface and volume term
increases the accuracy by 6.7% and 10.3% for x1 and x1+2,
respectively (Table 2, rows 2 and 4, in Liang and Grishin
2002). There is considerable discussion regarding the in-
fluence of the neighboring environment on the dihedral angles
for surface residues (Gelin and Karplus 1979; van Gunsteren
and Berendsen 1984; Kossiakoff et al. 1992). In a study of the
influence of the crystal environment (Jacobson et al. 2002a),
it was found that when the same proteins crystallized with
different unit-cell geometries, ;75% of the x1 values for
surface side-chains were in the same dihedral bin, i.e., within
40° of each other. The corresponding value for x1+2 was
;60%. Thus, the crystal packing and environment can have
a significant influence on the values of the dihedral angles,
especially for surface residues. An important conclusion
from the study was that the target for prediction accuracies
for x1 for core residues was >95.0%; for surface residues
forming crystal contacts, >80.0%; and for surface residues
not involved in crystal contacts, 60%–80%. In this work, as
in the majority of studies investigating side-chain placement,

Table 1. Test sets used and corresponding computation times for assessing prediction accuracies with SPRUCE
and for comparison with literature studies

Test set PDB codes Time (h)a

Peterson et al. (2004)

65 proteins

153l 7rsa 5pti 5p21 3lzt 2rn2 2pth 2hvm 2end 2cpl 2baa 1whi 1vjs 1vfy

1thx 1thv 1rcf 1qu9 1qtw 1qtn 1qq4 1qnj 1qlw 1ql0 qj4 1plc 1npk 1noa

1nls 1nar 1mml 1mla 1koe 1ixh 1igd 1ifc 1ic6 1hcl 1gci 1edg 1eca 1dhn

1d4t 1czp 1czb 1cz9 1ctj 1cku 1chd 1cex 1cem 1cc7 1cbn 1c9o 1c5e

1byi 1bj7 1bd8 1b9o 1arb 1amm 1ako 1agy 1a8q 1a7s 20.0

Xiang and Honig (2001)

31 proteins

1cbn 1cex 5pti 1ixh 2pth 5p21 3lzt 1ctj 1igd 7rsa 1aac 1eca 1plc 1rcf

1b9o 1c5e 1c9o 1cc7 1cku 1cz9 1czp 1d4t 1qj4 1qnj 1ql0 1qlw 1qtn

1qtw 1qu9 1vfy 1qq4 9.0

Liang and Grishin (2002) 2erl 1cbn 5rxn 1bpi 1igd 1ptx 1ctj 1plc 9rnt 1aac 256b 1isu 2ihl 2hbg 1xnb 1.5

15 proteins

a Times shown are for a single run over one Intel Xeon 3.2-GHz processor.
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a neglect of the crystal environment implies that no surface
chains are involved in crystal contacts. Our prediction
accuracy for x1 for the surface residues is 80%. Thus, the
quality of our predictions is consistent with the variations
that can be expected on account of the neglect of the crystal
environment.

Effect of burial

Core residues were defined on the basis of the percentage
of the solvent-accessible surface area in the protein
compared with the isolated amino acid in its native state.
If this percentage was below a cutoff value, PB, the
residues were designated as core residues. Increasing the
value of PB leads to a larger fraction of residues being
labeled as core residues. In order to study the influence of
residue burial on the prediction accuracies of x1 and x1+2,
we carried out post-processing at several different values
of PB. Table 3 summarizes the prediction accuracies for
the above-mentioned analysis. As expected, this analysis
reveals a systematic decrease in the prediction accuracy
as the fraction of residues considered as core residues
increases. These accuracies are very similar to those
reported in other investigations. In particular, for the
fraction of core residues equaling 53.8%, our predictions
are [93.6 86.7]40. The results compare favorably with the
accuracies of [94.1 87.4]40, [93.7 84.6]40, and [91.4

Table 2. Prediction accuracies for the 76 proteins investigated

PDB code

RMSD Overall Corea

Core Overall x1 x1+2 x1 x1+2

153l 0.44 1.19 92.2 74.8 100.0 97.7

1a7s 0.97 1.65 84.6 73.9 88.6 88.1

1a8q 0.99 1.32 92.5 75.9 96.0 91.0

1aac 0.24 1.01 94.9 81.5 100.0 100.0

1agy 0.53 1.38 85.8 78.6 96.6 95.5

1ako 0.90 1.57 87.2 71.5 93.9 91.9

1amm 0.36 1.22 92.0 77.3 98.3 97.4

1arb 0.61 1.10 92.9 86.0 97.8 93.3

1b9o 0.69 1.49 79.4 64.7 94.6 89.3

1bd8 0.75 1.69 77.4 61.2 92.5 75.0

1bj7 0.50 1.23 87.9 73.5 97.9 92.1

1bpi 2.00 2.09 77.8 61.3 71.4 71.4

1byi 0.72 1.37 88.3 77.0 97.3 90.9

1c5e 0.75 1.10 88.9 72.6 94.6 88.7

1c9o 0.44 1.90 80.8 63.8 92.6 100.0

1cbn 0.13 0.52 96.2 100.0 100.0 100.0

1cc7 0.22 1.43 90.3 72.7 100.0 100.0

1cem 0.53 1.27 87.9 80.3 96.5 95.1

1cex 0.54 1.22 87.2 79.4 94.7 93.0

1chd 0.82 1.70 84.6 62.5 93.5 73.0

1cku 0.65 1.12 90.0 74.4 95.5 86.2

1ctj 0.49 1.21 89.8 82.4 100.0 100.0

1cz9 0.82 1.46 82.1 77.0 90.0 89.7

1czb 0.49 1.27 89.6 76.0 95.3 93.8

1czp 0.83 1.38 85.0 66.7 90.4 89.3

1d4t 0.65 1.29 85.1 69.7 100.0 75.0

1dhn 0.47 1.59 87.3 73.8 96.9 95.2

1eca 0.94 1.23 88.3 75.0 95.1 87.1

1edg 0.82 1.46 85.4 70.8 92.8 83.0

1gci 0.50 1.23 91.2 79.0 96.3 90.9

1hcl 1.17 1.75 79.2 60.3 89.5 74.7

1ic6 1.09 1.36 85.0 81.1 93.8 92.6

1ifc 0.75 1.48 78.8 67.0 94.6 83.9

1igd 0.58 1.71 75.5 70.0 87.5 100.0

1isu 0.32 1.41 88.5 70.4 100.0 100.0

1ixh 0.89 1.16 91.6 81.1 95.5 92.2

1koe 0.87 1.55 84.8 78.5 88.7 88.9

1mla 0.68 1.35 90.5 76.6 96.1 85.5

1mml 0.69 1.45 84.3 67.3 90.2 85.7

1nar 0.88 1.49 82.9 69.7 94.7 85.2

1nls 0.68 1.50 82.8 66.4 97.4 82.4

1noa 0.34 1.06 86.1 75.0 100.0 91.7

1npk 0.69 1.62 79.6 69.1 95.0 88.5

1plc 0.39 1.14 80.5 75.5 93.1 100.0

1ptx 0.41 1.24 93.0 79.4 100.0 100.0

1qj4 0.98 1.35 87.6 80.0 96.2 93.5

1ql0 0.52 1.07 91.1 77.9 97.9 91.1

1qlw 0.78 1.33 89.5 77.8 95.9 89.6

1qnj 0.97 1.46 87.4 73.9 97.4 92.7

1qq4 0.45 0.92 91.7 90.7 94.7 97.0

1qtn 1.01 1.45 89.4 71.1 96.7 81.5

1qtw 0.62 1.43 88.2 73.6 97.1 89.3

1qu9 1.04 1.35 86.4 77.2 95.3 84.0

1rcf 0.49 1.17 87.2 74.3 96.6 90.5

1thv 0.67 1.68 78.4 65.3 89.1 91.9

1thx 0.89 1.29 86.5 76.2 96.8 90.5

1vfy 0.66 1.35 81.7 67.5 92.9 100.0

1vjs 0.91 1.43 83.0 70.6 91.8 85.5

(continued)

Table 2. Continued

PDB code

RMSD Overall Corea

Core Overall x1 x1+2 x1 x1+2

1whi 0.50 1.68 82.3 68.2 100.0 92.9

1xnb 0.58 1.19 89.0 76.1 98.5 95.2

256b 0.45 1.66 82.3 65.5 94.7 96.7

2baa 0.65 1.34 87.3 75.9 91.7 90.7

2cpl 0.50 1.18 95.2 85.1 98.2 94.1

2end 0.89 1.49 87.6 76.3 90.7 74.3

2erl 0.29 1.56 80.8 63.2 100.0 100.0

2hbg 0.80 1.71 79.8 56.9 97.1 76.9

2hvm 0.57 1.01 91.5 82.8 96.8 93.1

2ihl 0.32 1.54 91.7 76.4 100.0 95.7

2pth 0.62 1.33 90.1 75.2 98.3 85.7

2rn2 1.42 1.95 82.0 60.4 95.5 80.6

3lzt 0.37 1.40 92.6 80.6 100.0 95.7

5p21 1.23 1.66 77.3 65.4 90.9 85.3

5pti 1.80 2.10 75.0 67.7 85.7 85.7

5rxn 0.34 1.38 83.7 58.1 100.0 100.0

7rsa 0.49 1.68 80.4 69.8 96.4 94.1

9rnt 1.02 1.46 85.7 72.9 91.7 83.3

Average 0.70b 1.40c 86.7c 73.6c 95.2c 89.0c

Percentage of predictions within 40° of the native dihedral value.
a Core residues were defined using PB ¼ 12.5%.
b Average over the RMSD values for individual proteins.
c Average over the residues in the proteins.
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84.0]40 reported by Peterson et al. (2004) using the NCN,
LGA, and SCAP algorithms, respectively, with a fraction
of core residues equaling 54.3%.

Accuracy by residue type

Table 4 lists the overall prediction accuracy and the
prediction accuracy for core residues as a function of
residue type. The fraction of residues of a particular type
in the core is also listed. As expected, there is a clear
preference for the polar residues at the surface of the
protein, accompanied by a corresponding decrease in the
overall prediction accuracy for these residues. In these cases,
it is not surprising that the rotamer frequency terms enable
the LGA (Liang and Grishin 2002; Peterson et al. 2004) and
NCN (Peterson et al. 2004) algorithms to predict the dihedral
angles for these residues to a higher accuracy (Table 7 in
Peterson et al. 2004) than SPRUCE. However, in a compar-
ison with the SCAP (Xiang and Honig 2001) investigation
that employs only a DDD, we find that the predictions from
SPRUCE are overall superior to those from SCAP over the
65-protein test set (Table 7 in Peterson et al. 2004). For the
SCFMT study that also uses a DDD, we similarly find our
results (data not shown) are superior over the 20-protein test
set used by Mendes et al. (1999), except for tryptophan
where SCFMT performs better. A significant contribution to
the increased accuracy in the prediction of tryptophan by
SCFMT can be attributed to the inclusion of flexible angles
in generation of the ensemble of rotamers (Mendes et al.
1999). Proline was not predicted in this study. In studies
conducted by Liang and Grishin (2002) and Peterson et al.
(2004), it was seen that the prediction accuracy for proline
was close to the overall prediction accuracies averaged over
all residue types. Hence, subtracting the contributions of
proline from the overall prediction quality in these studies
changes the overall accuracies negligibly.

Conclusions

We have demonstrated the applicability of a novel sam-
pling method SPRUCE for the prediction of side-chain
conformations in proteins. In conjunction with the all-

atom AMBER99 force field, we have shown that this
sampling method is able to achieve high accuracies that
are comparable with the other detailed investigations in
the literature. This method can essentially sample a con-
tinuous range of dihedral angles around the primary
rotameric angles. The continuous sampling has the
advantage that it can adaptively admit conformations
around rotamers that would otherwise result in clashes
with the remainder of the protein. Significant deviations
from the primary rotamers can occur at protein–protein
interfaces where the use of discrete rotamers can lead to
steric clashes, and thereby a rejection of near-native states
(Wang et al. 2005). Such problems are often tackled by
introducing additional rotamers around primary rotamers
(Gray et al. 2003; Peterson et al. 2004), development of
more detailed rotamer libraries (Xiang and Honig 2001),
or scaling of vdW radii (Liang and Grishin 2002; Gray
et al. 2003; Peterson et al. 2004). No scaling of the vdW
radii or modifications to the Lennard-Jones potentials was
found necessary for the tests carried out with SPRUCE.
However, since continuous flexibility demands an in-
creasing amount of conformational space to be sampled
and eliminates possibility of pretabulation of residue
energies, the computational time required for SPRUCE
is modest and on the order of a day for a single run over
the entire test set using one processor. This time is of the
same order as in other investigations using Monte Carlo–
based methods (Table 6 in Peterson et al. 2004). Note,
however, that all calculations were done with the all-atom
AMBER force field. Use of a united-atom force field as in
other studies (Mendes et al. 1999; Xiang and Honig 2001;

Table 3. Prediction accuracies with SPRUCE as a function
of PB

PB Core % RMSD x1 x1+2

10.0 41.5 0.69 95.1 89.1

12.5 44.0 0.71 95.2 89.0

15.0 46.5 0.73 94.9 88.4

17.5 48.8 0.77 94.5 88.0

20.0 51.4 0.80 94.1 87.4

22.5 53.8 0.83 93.9 87.1

Percentage of predictions within 40° of the native dihedral value.

Table 4. Prediction accuracies as a function of residue type

Residue Core %

Overall Corea

RMSD x1 x1+2 RMSD x1 x1+2

ARG 15.8 1.71 86.4 73.1 0.79 98.0 89.0

ASN 26.2 0.87 83.5 66.0 0.49 95.0 83.9

ASP 21.8 0.92 81.9 55.6 0.48 95.1 78.1

CYS 86.1 0.30 94.3 — 0.27 96.2 —

GLN 25.3 1.23 83.8 68.0 0.66 95.6 89.1

GLU 13.2 1.41 73.5 59.6 0.78 89.0 81.3

HIS 37.2 0.99 89.4 63.5 0.52 98.2 83.5

ILE 75.5 0.33 96.8 86.0 0.26 98.3 90.1

LEU 72.4 0.50 94.2 84.0 0.45 96.1 86.0

LYS 7.20 1.55 81.7 63.8 0.61 96.4 87.3

MET 65.3 0.85 88.9 79.5 0.57 94.9 88.6

PHE 74.3 0.48 95.9 94.8 0.40 97.1 96.6

SER 34.7 0.58 72.6 — 0.37 85.0 —

THR 38.6 0.36 88.7 — 0.21 96.1 —

TRP 68.1 0.88 92.7 85.8 0.54 96.8 92.4

TYR 52.4 0.73 92.7 91.2 0.46 97.2 96.0

VAL 74.0 0.29 91.9 — 0.25 93.3 —

Percentage of predictions within 40° of the native dihedral value.
a Core was defined using PB ¼ 12.5%.
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Peterson et al. 2004) would reduce the system size by
;40% resulting in a speed up by a factor of ;3. The ex-
ecution times of SCWRL (Bower et al. 1997; Canutescu
et al. 2003) are typically 2 orders of magnitude less than
those of Monte Carlo–based methods, though the overall
prediction accuracies are also lower (Mendes et al.
1999; Xiang and Honig 2001; Liang and Grishin 2002).
Though we have used the AMBER99 force field in this
study, we stress that this method is not restricted to
Hamiltonians with particular types of interaction poten-
tials. Indeed, the separation of the Hamiltonian into
a move proposal and move acceptance part can enable
the use of the aforementioned tuned Hamiltonians with
this method. While such a study is outside the present
scope of this work, we are currently working to in-
corporate other force fields in order to present a thorough
comparison of their applicability for side-chain packing.
The Hamiltonian in this work employs a simplistic DDD
for electrostatic interactions. Despite the fact that DDD
does not accurately account for solvation effects, we find
that our prediction accuracies rival those from studies that
incorporate such effects. It would indeed be worthwhile
to incorporate more accurate solvation models such as
Generalized Born (GB) within the framework of SPRUCE
to study the resulting changes in prediction accuracies.
Jacobson et al. (2002a) report that the use of GB models
(Hawkins et al. 1996; Gallicchio et al. 2002; Onufriev
et al. 2004) in conjunction with the OPLS united-atom
force field performs significantly better than a DDD. A
primary motivation for the development of SPRUCE was
to enable Monte Carlo methods based on rotamer libraries
to supplement sampling from molecular dynamics simu-
lations where a continuous range of conformations is
accessible. SPRUCE can also be used to construct trial
moves as a part of a larger Monte Carlo procedure such as
the Biased Probability Monte Carlo Conformational
search (Abagyan and Totrov 1994). We believe that
SPRUCE offers an elegant methodology to introduce
continuous sampling in the conformational space acces-
sible to amino acid side-chains.

Materials and methods

Force field

The AMBER force field (Cornell et al. 1995) and charge set
with modifications suggested by Okur et al. (2003) was used
throughout this work. No attempt was made to include potential
terms to account for the effects of hydrogen bonding, surface-
area burial, rotamer frequency, or steric overlap. No lineariza-
tion of the Lennard-Jones potential function or scaling of vdW
radii was performed. In this sense, our work can be considered
to use an ab initio force field with no additional terms that are
trained to the problem at hand. This is similar to the in-
vestigation of Xiang and Honig (2001) that assessed the

applicability of the united-atom CHARMM and AMBER force
fields for the side-chain packing problem. To account for the
electrostatics, we have used a DDD of 2.0rij where rij is the
distance between the atoms i and j.

Protein test set

The test set used in this study comprises 76 high-resolution
crystal structures obtained from the PDB (Berman et al. 2000).
These proteins were selected based on the test sets used in other
investigations (Xiang and Honig 2001; Liang and Grishin 2002;
Peterson et al. 2004). This set includes the 65 proteins used by
Peterson et al. (2004), 31 out of 33 structures used by Xiang and
Honig (2001), and 15 structures used by Liang and Grishin
(2002) that were not used to train their potential functions. The
PDB codes for all the proteins used in this study are listed in
Table 1. All prosthetic groups and nonprotein inclusions were
stripped from the PDB files. The structures were optimized
using REDUCE (Word et al. 1999). REDUCE optimizes the
x3 dihedral for glutamine and the x2 dihedral for asparagine and
histidine, in cases where the current dihedral x + 180° leads to
clearly better hydrogen bonding. Subsequent to this optimiza-
tion, the protonation states for the histidines were decided using
the GROMACS pdb2gmx module (Berendsen et al. 1995). Two
cysteine residues were considered to form a disulfide bridge if
the distance between their sulfur atoms was <2.5 Å. The
resulting PDB files protonated and converted to the AMBER
naming conventions, using AMBER (Pearlman et al. 1995).
Generation of the topology files was done using an in-house
program, GRAPPLE. No preminimization of the native structure
was carried out. It has been shown that preminimization of the
native structures can lead to improvements in the accuracy of
the prediction (Xiang and Honig 2001).

Rotamer library

The backbone-independent version of the Dunbrack rotamer
library was used in this study. This library was derived from
a statistical analysis of 850 proteins. The total number of
rotamers in the original library is 341 (Dunbrack and Cohen
1997). Using only the dihedral angles from the above rotamer
library, the rotamers were generated using bond lengths and
angles from the AMBER library files. The bond lengths and
angles used to generate the rotamer configurations were not
changed during the course of the SPRUCE iterations. However,
all degrees of freedom associated with the flexible side-chains
were allowed to change during the final minimization. In order
to overlay the rotameric coordinates onto the fixed backbone
of the proteins in the test set, a quaternion alignment was per-
formed using the backbone N � Ca � C as the basis. The
position of Cb can change from the one in the crystal structure,
though the change is usually very small. The rotamer library was
enhanced to include flexibility in the x5 dihedral for arginine.
The dihedrals involving the polar hydrogens on serine, threo-
nine, and tyrosine were also made flexible by adding four
rotamer populations at 0°, 90°, 180°, and �90°. Three additional
rotamers were added for histidine at x2 ¼ 0, for each of the three
x1 populations. The rotamers were read into the program along
with the indices that indicate the population number for the
dihedrals. For each population of a dihedral, a list was con-
structed that consisted of the rotamers that belong to that pop-
ulation. Finally, the bounds [l h]xp , on the dihedral values of
the rotamers that comprise part of the same population were
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determined. For example, the rotamer library for asparagine
consists of three populations for x1 and six populations for x2.
The bounds on the dihedral angles are [50.3 69.3]1

1, [�176.0
�160.3]1

2, [�64.7 �79.5]1
3 for x1. The bounds for x2 are [�137.6

�114.6]2
1, [�66.3 �53.9]2

2, [�23.2 1.5]2
3, [24.3 57.0]2

4, [60.6
101.9]2

5 and [121.5 175.1]2
6.

Algorithm

The SPRUCE grows the side-chains for the flexible residues one
unit at a time. The protocol employed for SPRUCE is shown
below in the form of a pseudocode.

%————————– Begin pseudocode —————–———%
% Initialization
for each flexible residue r

persist[r] ¼ 0
Select and substitute a random rotamer for r

end
% Begin iterations for side-chain packing
for each iteration i,

% Determine the patch to be regrown
R ¼ random from list of flexible residues
if persist[R] > ¼ lp

patch ¼ {R}
else

patch ¼ {R + N�1 flexible residue neighbors of R}
end
Energy_old ¼ Energy of residues in patch
% Determine whether growth is from x1 or x2

for each residue r in patch,
current_x [r] ¼ 1 or 2

end
% Start the growth process
while any residue in patch incomplete

for each residue r in patch,
trial_count ¼ 0
if residue r incomplete

for each population p of current_x[r]
% Trials over range [l h]p

x for population p
for trials over range of p in increments of d

trial_dihedral ¼ l + trial_count*dx + rand(�0.5,0.5)*dx
crds[trial_count] ¼ generate coordinates for unit at

trial_dihedral
energy[trial_count] ¼ energy for unit
increment trial_count by 1

end
% Trials over the flexibility range
for Df random dihedral trials in the range [l-f l]

crds[trial_count] ¼ generate coordinates for unit
energy[trial_count] ¼ energy for unit
increment trial_count by 1

end
for Df random dihedral trials in the range [h h+f]

crds[trial_count] ¼ generate coordinates for unit
energy[trial_count] ¼ energy for unit
increment trial_count by 1

end
end
pick one trial i, based on Equation 1
substitute crds[i] into system

end
% Goto next dihedral in subsequent iteration
increment current_chi[r] by 1

end
end
Compare old patch with new patch
if patch is the same

for each residue r, in patch
increment persist[r] by 1

end
end
Energy_new ¼ (Energy of residues in patch)
Accept or Reject based on Tacc, DUfull

if Accept and patch change
for each residue r, in patch

persist[r] ¼ 0
end

end
end
%————————— End pseudocode—————————%

After the completion of the above iterations, a conjugate-
gradient (Press et al. 1988) energy minimization was performed
using the full Hamiltonian, keeping the backbone rigid. Tprop
and Tacc were set to 1000 K and 20 K, respectively. The extent of
variability surrounding the primary rotameric angles was 645°
for all residues. No attempt was made to optimize this value for
specific dihedrals or residue types. The number of iterations
used was 200 per flexible residue. N, lp, Df, and dx were set to 6,
4, 3.0, and 5.0°, respectively. The extent of variability, limit for
the persistence counter, patch size, and number of trial moves
can be changed to alter the execution time for this algorithm.
For the above choice of parameters, ;22 h are required for
a single run over the entire test set using one processor. The
calculations were performed on a 3.2-GHz Intel Xeon processor.
A unit in the above algorithm refers to a group of atoms that are
used during the selection of a trial for a side-chain dihedral. For
example, for the selection of x1 for aspartate, the unit comprises
the following atoms: hydrogens on Cb and Cg. For the selection
of x2, the corresponding unit consists of Od1 and Od2. At the
stage where the final dihedral for a side-chain is being selected,
all the side-chain atoms have formed part of one or more unit.
Detailed topology files for each residue type that incorporate
information regarding these units were compiled and used for
this algorithm. The SPRUCE algorithm was implemented in an
in-house program. In the current implementation, we intend to
use SPRUCE as a sampling technique for generating side-chain
configurations, hence, the detailed balance condition is not
satisfied for the moves. However, the method can be extended
to perform rigorous Monte Carlo sampling in the canonical
ensemble, by including the total probabilities of the forward and
reverse moves in the acceptance criterion. Tests were conducted
to ensure that the energy calculations were in agreement with
the AMBER program (Pearlman et al. 1995). We carried out five
independent runs on the test set. The results from these runs
were combined to give a final predicted structure that was used
to calculate the statistics regarding the accuracy of placement of
x1 and x1+2, and the RMSD. The procedure used for generating
the final conformation is similar to the one used in Peterson
et al. (2004). For each residue in a protein, the value of the
dihedral is compared with the dihedral angle at the correspond-
ing position in the rotamer library. Since the amount of
flexibility is 645°, the current conformation could only have
resulted from rotamers that have the values of their dihedrals
within 645° of the angle in the conformation. These rotamers
then have their counter incremented by one. This procedure is
repeated for all the conformations in the different runs. The
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rotamer with the highest value of its counter is then selected as
the rotamer in the final conformation. The precise value of the
dihedral is obtained by averaging over the runs that led to an
increment of the selected rotamer. Furthermore, these runs are
labeled as active. For the subsequent dihedral along the side-
chain, the procedure is repeated using only the active runs. In
cases where a simple majority is absent within the active runs,
an average is performed over the dihedrals in the runs that
contribute to the highest valued rotamer counters. The pre-
diction accuracies resulting from generating the combined
structure are approximately better by [1.0 2.0]40 than those
resulting from a simple average over the five independent runs.

Performance measures

Two widely implemented performance measures were used to judge
the accuracy of the results from our method. They are the percentage
of correctly predicted x1 and x1+2, and mass-weighted side-chain
heavy-atom overall RMSD deviation. Backbone coordinates were
not allowed to change during the SPRUCE protocol. A side-chain
dihedral angle was said to be correctly predicted if it was within
a certain absolute deviation from the angle in the native structure.
Deviations of 40° and 20° were considered, since these are the
tolerances that have been used in the literature. Due consideration
was given to the symmetry of aspartate, glutamate, tyrosine,
phenylalanine, and arginine, while calculating the dihedral angle
values and the overall RMSD. In the cases where alternate positions
were specified in the PDB files, the predicted configuration was
considered correct if it satisfied the criteria for either of the alternate
structures. Alternate structures were also used by Peterson et al.
(2004) for calculating their prediction accuracies. However, Liang
and Grishin (2002) excluded residues with alternate conformations
during the calculation of prediction accuracies with their method.

Definition of core residues

There have been several different conventions for designating
residues as core versus surface. In this study, the surface area was
calculated for each residue in its native conformation both in the
absence (i.e., exposed) and presence of the rest of the native protein.
The surface area was calculated using a solvent probe radius of
1.4 Å. If the surface area in the presence of the protein was less than
a certain percentage PB of the exposed surface area, the residue was
designated as buried or core. For a value of PB ¼ 12.5%, we find
that ;44% of the residues are buried. This number is close to the
range of 40%–45% buried residues from other studies (Holm and
Sander 1992; Xiang and Honig 2001; Liang and Grishin 2002).
Table 3 lists the fraction of core residues as a function of PB and the
corresponding prediction accuracies.

Program availability

The executable, topology, and input files required for SPRUCE can
be obtained from the authors. SPRUCE has been programmed in C.
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