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Abstract

We developed a model of macromolecular interfaces based on the Voronoi diagram and the related
alpha-complex, and we tested its properties on a set of 96 protein—protein complexes taken from the
Protein Data Bank. The Voronoi model provides a natural definition of the interfaces, and it yields
values of the number of interface atoms and of the interface area that have excellent correlation
coefficients with those of the classical model based on solvent accessibility. Nevertheless, some atoms
that do not lose solvent accessibility are part of the interface defined by the Voronoi model. The Voronoi
model provides robust definitions of the curvature and of the connectivity of the interfaces, and leads to
estimates of these features that generally agree with other approaches. Our implementation of the model
allows an analysis of protein—water contacts that highlights the role of structural water molecules at

protein—protein interfaces.
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Proteins make noncovalent interactions that are essential
elements of their biological function. The study of such
interactions relies in part on modeling the geometry and
physical chemistry of the interfaces built by interacting
proteins. When atomic coordinates are available, the
Voronoi description of proteins is a useful geometric tool
that has been applied in a variety of settings. The
pioneering work of Richards (1974) used the Euclidean
Voronoi diagram to analyze the atomic packing inside
macromolecules, followed by the work of many other
investigators (Harpaz et al. 1994; Gerstein et al. 1995;
Pontius et al. 1996; Nadassy et al. 2001; McConkey et al.
2002; Tsai and Gerstein 2002). The Voronoi diagram as-
sociates to each atom its Voronoi cell, a convex poly-
hedron that contains all points of space closer to that atom
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than to any other atom. More recently, it has been used to
define contacts in macromolecules without applying
a distance cutoff: Two atoms are in contact if and only
if their Voronoi cells have a facet in common. Similarly,
Voronoi cells can be drawn around amino acid residues
to define residue—residue contacts (Singh et al. 1996;
Munson and Singh 1997; Soyer et al. 2000; Dupuis et al.
2005). Given this definition of a contact, the set of facets
shared by atoms of two macromolecules forming a com-
plex represents their interface. There is, however, a major
difficulty: Atoms on the molecular surface have un-
bounded, or at least poorly defined, Voronoi cells. This
may be circumvented by surrounding the protein with
solvent molecules (Soyer et al. 2000), but their position
must be fixed, which is not physically meaningful. An
alternative is to use the alpha-complex, an extension of the
Voronoi diagram proposed by Edelsbrunner and Mucke
(1994). Applications of the alpha-complex to macromole-
cules, reviewed by Poupon (2004), include the computation
of molecular surfaces (Akkiraju and Edelsbrunner 1996),
and that of interfaces in an implementation in which the
unbounded facets that extend out of the molecular surface
are removed by an iterative process called retraction
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Voronoi description of protein—protein interfaces

(Ban et al. 2004). Cazals and Proust (2006) recently
offered a simpler, and possibly more natural, way to define
the interface between molecules by removing facets based
on purely geometric criteria. Here, we apply their pro-
cedure to a set of 96 protein—protein complexes taken from
the Protein Data Bank (PDB) (Berman et al. 2002), and
compare the results to those of the classical approach where
interfaces are defined by changes in solvent accessibility
(Chothia and Janin 1975; Janin and Chothia 1990; Jones
and Thornton 1995, 1996; Lo Conte et al. 1999; Chakrabarti
and Janin 2002).

Methods and Results

A Voronoi model of macromolecular interfaces based on
the alpha-complex

The Euclidean Voronoi diagram assumes that all atoms
have the same radii, and its application to molecules must
make approximations to fit atoms of different sizes (Richards
1974; Harpaz et al. 1994; Pontius et al. 1996). A closely
related geometric construction provides a mathematically
correct way to accommodate different radii: the ‘“‘power
diagram,” in which the Euclidean distance is replaced by the
power distance with respect to a sphere (Gellatly and Finney
1982; Aurenhammer 1987). The power of a point x relative
to a sphere of radius r centered at point a is:

p(x) = |a—x|* — (1)

Points x that have the same power relative to two
spheres belong to the radical plane of the spheres, which
contains their intersection if it exists. Given two atoms A
and A, represented by two balls (hard spheres) of radii r,
and r, centered at a; and a,, we may also define the
power of A, relative to A,, or A, relative to A;:

p(Ar, Ay) = Jay —a]’ — rn—r 2

When p(A, Ay) = 0, the two balls are orthogonal (they
intersect at a right angle).

The power diagram reduces to the Voronoi diagram when
all the balls have the same radius. Thus, we shall call it also
a Voronoi diagram and associate it with its dual, the
“Delaunay triangulation.” This is built by drawing edges
spanning pairs of atoms that have a Voronoi facet in common,
triangles spanning triplets that have a common Voronoi edge,
and tetrahedra spanning quartets that have a common Voronoi
vertex. In Figure 1A, the Delaunay triangulation includes four
vertices placed at the centers of the four atoms, six edges
linking these atoms, and three triangles. The Voronoi facets
shared by the four atoms are drawn (in two dimensions) as
lines orthogonal to the Delaunay edges; three of them extend
outside the molecular surface and are unbounded.

Figure 1. Delaunay and Voronoi descriptions of a protein—protein inter-
face. Atoms are drawn as balls centered in a; for the red molecule, and a,,
as, and a4 for the blue molecule. The ball radii are group radii augmented
of the water probe radius. (A) Condition a: Delaunay edges are drawn in
blue between the blue atoms and in green between blue and red atoms;
the green edge between A; and A, is dashed to indicate that it is not
part of the alpha-complex for a = 0. Thus, the interface between the
red and the blue molecules comprises only the two Voronoi facets drawn in
a thick green line. (B) Condition B: The dashed circle represents a ball
orthogonal to the balls representing atoms A, A3, and A,. Its radius being m,
the facet between A; and A, (thick green line) will be accepted or discarded
depending on the ratio m/r, where r is the radius of A;.

Noting that the power diagram is invariant if the same
quantity o is added to all the square radii, Edelsbrunner
and Mucke (1994) introduced the ‘“‘alpha-complex.” For
a given a, the alpha-complex is built as the Delaunay
triangulation, except that one restricts each Voronoi cell
to its associated ball and seeks intersections between
these restricted regions. Thus, a Delaunay edge between
two atoms is drawn if and only if the common facet lies
inside the associated balls. This condition, which we shall
call condition «, is satisfied in Figure 1A by the facets
drawn in full line between atoms A; and A, or As. These
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facets are inside the balls representing the atoms, and the
Delaunay edges spanning these atoms are part of the alpha-
complex. In contrast, the facet between A; and A4, drawn in
dashes is entirely outside the balls, and the a,a, edge is not
part of the alpha-complex for this particular value of o. If we
increase «, all the square radii increase and more facets
satisfy condition «, until the alpha-complex reduces to the
standard Delaunay triangulation at large values of a.

In our implementation, the ball radii are atomic or
group radii augmented of the water probe radius, and o = 0.
Under these conditions, the surface of the union of the balls,
represented in two dimensions by arcs of circles drawn in
full lines in Figure 1A, is the solvent-accessible surface as
defined by Lee and Richards (1971). In a complex between
two molecules, we color their atoms in red and in blue,
respectively, and represent the interface by the set of bicolor
Voronoi facets associated with the Delaunay edges linking
atoms of different colors in the alpha-complex. In Figure 1A,
the interface comprises the two facets orthogonal to the a;a,
and a;a3 edges, but not the facet between A; or A4 due to
condition a.. These facets are drawn in green, whereas those
in blue are internal to the blue molecule.

With large molecules such as proteins, condition
o imposes a stringent selection that removes from the
interface nearly all of the facets that stick out of the
molecular surface. Nevertheless, some unbounded or
excessively large facets remain, such as the one between
Ay and A, in Figure 1A. These are discarded based on
“condition B”’:

m/r > M 3)

where r is the radius of the smaller of the two balls, and
m is the radius of the largest ball orthogonal to the balls

Table 1. Protein—protein complexes

representing the two atoms. M is a threshold value that we
set to M = 5 after checking that the number of discarded
facets is very small (0.16%) and that similar results are
obtained for M in the range 2.4-7. Condition {8 is
illustrated by Figure 1B; there, r is the radius of A and
m is that of the ball drawn in dashes. This ball is centered
at the Voronoi vertex x defined by A;, Aj, and Ay, it is
orthogonal to the three balls representing these atoms,
and it is the largest ball orthogonal to A; and A,.
Condition « rejects the facet between A; and Aj, and
condition 3 accepts or rejects the facet between A; and
A4, depending on the value of M.

Computing the Delaunay triangulation of a collection
of balls and, subsequently the alpha-complex, is demand-
ing in terms of efficiency and numerical issues. Our
implementation is based upon the Alpha_shape_3 pack-
age of the CGAL library (http://www.cgal.org), and it is
accessible at http://bombyx.inria.fr/Intervor/intervor.html.

The sample of protein—protein interfaces

The sample used in calculations here comprises protein—
protein interfaces in 96 entries of the Protein Data Bank
listed in Table 1. The calculation deals either with the
proteins alone (AB model) or with the proteins and the
structural water reported into the entry (ABW model). In
the latter case, the sample is restricted to 30 entries
reporting crystal structures at 2 A resolution or better
2 A set), as the water structure is likely to be less reliable
in lower-resolution studies. We call AW-BW the protein—
water interface of the ABW model. The sample is split
in five classes: PI, complexes between proteases and
protein inhibitors; ESI, complexes between enzymes
other than proteases and protein substrates or inhibitors;

PI: Protease—inhibitor complexes (29)

lacb* lavw* 1bre Ibth lcbw
lhia Imct* Ippe* 1ppf* Ispb*
2kai 2ptc* 2sic* 2sni 2tec*
ESI: Other enzyme—substrate or inhibitor complexes (12)
1brs* 1dfj 1dhk* 1fss 1gla
2mta 2pcc
AA: Antigen—antibody complexes (28)
lahw lao7 1bgl 1bvk ldgj*
1kb5 lkxq* Lkxt* Tkxv* Imel
losp* 1qfu 1vib* Iwej* 2jel
ST: Signal transduction, cell cycle (19)
la0o la2k lagr laip lavz
Igg2 1got* lgua* lhwg 1tx4*
MI: Miscellaneous (8)
lak4 latn 1dkg 1fc2 lige

lcgi 1cho* lese* 1dan* 1fle*
1stf Itab Itbq Ttgs* Itoc
3sgb* 3tpi* 4cpa 4htc

1kkl Imah ludi Tugh* lydr
1dvf* leo8 1fbi liai 1jhl
Imlc Inca Infd Inmb Insn
2vir 3hfl 3hfm

lebp lefn lefu 1fin Ifgl
Iwgl lycs 2tre 3hhr

110y Iseb 2btf

PDB entries for the 96 protein—protein complexes. 72 entries were taken from Lo Conte et al. (1999); the other 24 are in italics.
Asterisks mark the 30 entries of the 2 A set used in the ABW model.
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AA, antigen—antibody complexes; ST, complexes in-
volved in signal transduction or the cell cycle; and MI,
miscellaneous complexes. All are nonobligate or transient
assemblies in the sense of Nooren and Thornton (2003):
A and B are proteins that fold separately and remain
independent entities until they associate.

All protein atoms are tagged as A or B and included in
the calculations. Water molecules, ignored in the AB
model, appear in the ABW model if their crystallographic
temperature factor is <80 A? and are considered as part of
the interface if they make at least one contact with atoms
of both A and B. Other nonprotein atoms (HETATM in
PDB entries) are included and tagged as U (unknown).
Group radii are taken from Chothia (1976): C atoms, 1.87
A aliphatic/1.76 A trigonal; N atoms, 1.65 A neutral/1.50
A charged; O atoms, 1.4 IOA; S atoms, 1.85 A; and all other
atoms, 2.0 A. These radii are augmented of the probe
radius (1.4 A) for the Voronoi construction.

Size of the interfaces

In the AB model, interface atoms are all atoms of protein
A (respectively, B) that share a Delaunay edge with an
atom of protein B (respectively, A) in the alpha-complex
for a = 0. The set of the bicolor facets dual of such edges
constitutes the interface. Thus, the size of an interface can
be evaluated in at least three ways: by counting interface
atoms (Nyor), counting facets (Ngyeer), Or computing the
Voronoi interface area VIA as the sum of the individual
facet areas. In the classical approach, interfaces are sets
of atoms that lose solvent accessibility when a complex
forms. Then, the interface size is commonly evaluated as
a buried surface area (BSA), which is the difference be-
tween the solvent-accessible surface area (ASA) of the
protein atoms in isolated A and B and in the complex
(Chothia and Janin 1975). The solvent accessibility
model has no equivalent to N, but the number of

Table 2. Geometric properties of the interfaces

atoms that lose accessibility should correspond to Ny,
and the buried surface area, to the VIA. The data of
Lo Conte et al. (1999) will be used for comparison
with ours.

Counting atoms

Table 2 shows that the AB interfaces in our sample
comprise an average of 239 atoms, but the range of Ny,
is wide (117-581) and the standard deviation is large. AA
interfaces, which are the most regular in size, have an
average of 208 atoms with a small standard deviation. All
but one of the 28 AA interfaces have Ny, in the range
160-260. Antigen—antibody interfaces are described as
“standard size” in Lo Conte et al. (1999). The range
Nyor = 160-260, which corresponds to that standard size,
also comprises a great majority (22 out of 29) of the
PI interfaces, and 70% of the 96 interfaces in the set.
ST interfaces tend to be larger and more heterogeneous
in size than the other classes.

Figure 2A shows that Ny, is linearly correlated to the
number N, of atoms that lose ASA. For the 72 complexes
common to our sample and that of Lo Conte et al. (1999),
the correlation is excellent (R* = 0.992), but Ny,, exceeds
N, by ~13%. This excess is present in similar proportion
in all complexes. Thus, some atoms that share facets with
atoms of the other protein do not lose solvent accessibil-
ity. An examination of individual interfaces indicates that
two-thirds of the atoms that contribute to Ny, but not N
have zero or nearly zero ASA in the isolated A or B
components. Most belong to the protein main chain and
are largely buried by their covalent environment. Figure 3
shows an example of that situation: The red ball is an
atom of A that, when its neighbors in A are removed, is
seen to intersect the blue ball figuring an atom of B; when
the neighbors are present, the red ball is completely
screened and has no solvent-accessible surface. There are
also cases of solvent-accessible atoms that have bicolor

PI ESI AA ST MI All 2 A set ABW model

Type of interface Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
No. of interfaces 29 12 28 19 8 96 30 30
Interface atoms

Number, Ny, 238 80 239 74 208 34 311 136 187 46 239 89 227 62 330 88

Asymmetry ratio, rap 147 024 114 0.12 1.11 0.08 1.08 0.05 1.16 0.16 122 023 130 026 1.25 0.22

Buried fraction, fiu, 042 0.06 030 0.07 031 006 034 004 035 006 035 007 038 008 0.62 0.08
No. of facets, Ngycer 434 141 452 147 362 69 522 250 322 86 423 162 405 109 769 217
No. of neighbors, 7cign 3.7 0.1 34 02 35 02 35 0.1 34 02 353 018 357 0.15 3.63 0.13

Interface area, VIA (A2%) 1219 486 1270 330 1100 203
Connected components, scc 1.1 0.4 1.3 0.6 1.1 0.3
Mean curvature, sy (°) 10.2 32 44 27 45 3.0

1691 701 1019 272 1263 488 1168 368 1526 434
1.5 08 14 07 121 054 1.13 043 1.37 0.6
2.3 1.8 39 3.1 52 42 6.6 4.5

Mean value and standard deviation of geometric parameters in the set of 96 protein—protein interfaces and in subsets corresponding either to the five classes
of Table 1 or to the 30 high-resolution X-ray structures (2 A set). The ABW model applies only to the 2 A set.
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Figure 2. Comparison of the Voronoi and solvent accessibility models of
protein—protein interfaces. Data for the solvent accessibility model are
taken from Lo Conte et al. (1999). (A) Number of interface atoms in the
Voronoi AB model (Ny,,) vs. atoms that lose ASA (N,,). The slope of the
line is 1.13; the correlation coefficient, 0.992. (B) Voronoi interface area
VIA vs. half of the buried surface area. The slope of the line is 1.31; the
correlation coefficient, 0.982.

facets yet do not lose ASA in the complex. In addition,
0.12% of the atoms that lose ASA are not counted in Ny,
because they contribute only to facets that do not pass
condition (3.

Nvor increases in the ABW model due to atoms that
share a facet with an interface water molecule but not
with atoms of the other protein component. These atoms
are part of the protein—water interface but not the AB
interface. On average in the 30 entries of the 2 A set, Nyor
is 45% larger in the ABW than the AB model, the ABW inter-
face comprising 330 protein atoms and 34 water molecules.

2086 Protein Science, vol. 15

To test whether A and B may make equal contributions
Na and Ny to Ny, we evaluated the ratio:

I'AB =max(NB/NA, NA/NB) (4)

rap measures the asymmetry of the contributions. Its
average value, 1.22 in our sample, is larger (1.47) in PI
interfaces. As often noted, protease active sites tend to
have a concave shape and the inhibitors a complementary
convex shape, and the concave surface contributes more
atoms to the interface than the convex one. In the extreme
case of the kallikrein-pancreatic trypsin inhibitor com-
plex (2kai), the protease contributes twice as many atoms
as the inhibitor. In contrast, rag has a low value (1.11) in
the AA class, compatible with the observation that anti-
bodies raised against protein antigens tend to have flat
combining sites (Mariuzza et al. 1987; MacCallum et al.
1996). Table 2 indicates that ST interfaces resemble AA
interfaces from this point of view.

Counting facets

AB interfaces contain Np,..; = 423 bicolor facets on
average, that is, 1.77 facet per interface atom. As each
facet implicates two atoms, the average interface atom
has twice as many neighbors across the interface: 7npeign
has an average of 3.53, a small standard deviation, and

Figure 3. A solvent-inaccessible atom that is part of the Voronoi interface.
Balls representing atoms have radii equal to the group radius plus the water
probe radius (1.4 A). The red ball is an atom of A; the blue ball, an atom of
B. On fop, the two balls are seen to intersect, and both atoms are part of the
AB interface. On bottom, balls representing other atoms of A occlude the red
ball; these atoms were omitted in the fop part of the figure.
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similar values in the five classes of complexes (Table 2).
Thus, the linear correlation between the numbers of facets
Niacer and of interface atoms Ny, is excellent (R> = 0.984).
In the ABW model, the average number of facets between
protein atoms is essentially the same as in the AB model, but
many new facets appear between protein atoms and water:
Of the 769 facets reported in Table 2 for the average
interface in the ABW model, 53% are with water molecules.

The facets vary widely in size. The facet area averages
3.0 Az, but the median is only 1.65 Az, and small facets
with an area <1 A? form 38% of the sample. Condition {3
removes excessively large facets, yet 5% of the facets
retained have areas >10 A2 and up to 113 A2,

Interface area

The Voronoi interface area (VIA) of the 96 interface
ranges averages 1263 A? with a broad range (733-2960
10\2) and a large standard deviation (Table 2). VIA is
linearly related to Nyor (R = 0.964), t0 Npper (R =
0.926) in spite of the variability of the facet size, and also
to BSA, the interface area defined by solvent accessibility.
The correlation to the values of BSA reported by Lo Conte
et al. (1999) is very good (R2 = 0.982). Noting that two
atoms that are in contact at an interface contribute twice to
BSA but only once to VIA, the Voronoi model yields
interface areas that are ~31% larger than BSA/2
(Fig. 2B). In the ABW model, VIA increases by 30% as
new protein atoms and water molecules become part of the
interface.

Topology and shape

Connectivity
The Voronoi model provides a simple definition of
“connected components” (cc) within an AB interface: A cc

Table 3. Patches versus connected components

is a set of facets that have edges in common. On average, the
96 interfaces contain 1.90 cc. Some connected components
were very small, and we removed those that contributed
<7.5% of the VIA. Calling the remainder ‘significant
connected components” (scc), we observe that the interfaces
in our sample contain 1.21 scc on average. A large majority,
81 out of 96, have only one scc; nine have two, and six have
three. All but two of the 29 PI interfaces and all but two
of the 28 AA interfaces have a single scc. In contrast,
multicomponent ST interfaces are common: seven out of 19.

We compared the scc to the patches of interface atoms
defined by the geometric clustering procedure of Chakrabarti
and Janin (2002) with a distance cutoff of 15 A. Of 70
complexes analyzed by these investigators, 50 have an
interface that has a single patch and also a single scc. In
two cases, a single patch interface is split into two scc (Table
3), but the smaller of the two is only just above the 7.5%
VIA cutoff. On the other hand, eight interfaces that form
a single scc are split by the clustering algorithm. When both
procedures split the interface, they do it in very similar ways:
the fraction N on/Ny of the atoms that belong both to the
same patch and the same scc is at least 0.74. The very large
interface of the Escherichia coli EF-Tu/Ts complex (lefu) is
split into three scc and four patches (Fig. 4). The blue and
green patches coincide with two of the scc, and the other
two form a single large scc. In the ribonuclease—ribonuclease
inhibitor complex (1dfj), the interface comprises three
patches and three scc; one of the patches coincides with
a scc, but the remainder of the interface is split in two
different ways, so that the No,/N, fraction is only 0.74.
In total, the two procedures yield identical results on 53
of the 70 interfaces; they disagree on the number of
fragments in 11 cases including lefu; in the remaining
six interfaces, some of the patches do not coincide with
an scc.

1. One patch — one scc (50)

la0o la2k lacb lagr
1dhk ldvf lefn 1fbi
1kb5 Imct Imel Imlc
Istf Itgs Tudi 1vfb
3tpi 4cpa

2. One patch — two scc (2) lao7 2pcc

3. Two patches — one scc (8) Ifin Ifss Itoc 1tx4

4. Two patches — two scc (5)* 1gg2 (0.99) Igot (1.0)

5. Three or four patches — one laip (0.99) Idan (0.85)

to three scc (5)*

lak4 latn lavw Ibrs Ibth Icbw Icho Icse
1fc2 Ifle Igla Igua lhia liai lige 1jhl

Inca Infd Inmb Insn losp Ippf Igfu Iseb
2jel 2kai 2ptc 2sic 2sni 3hfl 3hfm 3sgb
lydr 2btf 2tre 4htc

lhwg (0.85) Itbq (0.95) lycs (0.90)

1dfj (0.74) 1dkg (0.82) lefu (0.99)

Patches are taken from Chakrabarti and Janin (2002), except for the antigen—antibody complexes, which were reported as having two patches (or three
patches in the case of 1kb5) due to the clustering algorithm being run separately on the H and L chains of the antibody. The same clustering algorithm finds
a single patch when the search is done in one step on the two chains.

. . com
“Numbers in parentheses are the fraction

that are entirely contained in an scc. at

, where N, is the total number of atoms that lose ASA, and N, is the number of atoms belonging to patches
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Figure 4. Interface connectivity: patches and scc. The Escherichia coli EF-Tu/Ts interface is split by the geometric clustering
procedure of Chakrabarti and Janin (2002) into four patches, but it contains only three scc. (A) The patches are in different colors on
the molecular surface of EF-Tu. (B) Heavy lines mark the edges of the three scc. EF-Ts is drawn as a red ribbon in both panels.

Water and connectivity

In the ABW model, connected components may be
identified separately in the protein—protein interface AB
and the protein—water interfaces AW-BW. In the 2 A set,
the average number of cc in an AB interface is 2.7; that of
scc is 1.37, taking the same 7.5% VIA cutoff as above to
define an scc (Table 2). Nine interfaces have two scc, and
one interface has three. The AW-BW interface is much
more fragmented and has an average of 6.6 cc. In a second
step, we merge the connected components of the AB
and the AW-BW interfaces that share a common edge.
This reduces the number of cc, and the number of scc
becomes one in all 30 interfaces of the 2 A set. In other
terms, interface water molecules connect the scc in all these
interfaces.

Figure 5 illustrates the merging process in the chymo-
trypsin—eglin (lacb) and the transducin G,—Gg, (1got)
complexes. The chymotrypsin—eglin interface is a stan-
dard-size PP interface. In the AB model, it forms a single
scc with holes that contain water (Fig. 5A). In the ABW
model, water in the larger hole splits the interface into
two scc that the merging procedure fuses into one. In
transducin, an ST archetype, the interface between G, and
Gg, is larger than in lacb and comprises two well-defined
scc lined with water molecules (Fig. 5B). Some of these
waters connect the scc and cause them to fuse during the
merging procedure. In both examples, comparing the
connectivities of the AB and ABW interfaces yields
information on packing defects filled by water molecules.

2088 Protein Science, vol. 15

Curvature
The curvature carried by a Voronoi edge &€ may be
defined as:

h(e) = B(e)l(e) ©)

where [3(¢) is the dihedral angle between the two bicolor
facets sharing that edge, and I(¢) is the length of the edge
(Cohen-Steiner and Morvan 2003). In Figure 6A, the two
facets are shared by the Voronoi cell of an atom of A
centered in a, and the cells of two atoms of B centered in
b, and b,. Alternatively, the facets may belong to an atom
of B and two of A. By convention, 3 is positive in the first
case and negative in the other. In the b;ab, Delaunay
triangle, the ab; and ab, edges represent noncovalent
contacts atom A makes with B; and B,. The b;b, edge
may be a covalent bond or a van der Waals contact. Its
length is ~1.5 A in the first case and >3.5 A in the other
case. Thus, the absolute value of B, equal to the Zbab,
angle, is likely to be smaller when B; and B, are
covalently bonded. This is observed in the distribution
of |B| (Fig. 6B), which is bimodal. The curvature is in the
range of 12°-24° when B, and B, are covalently bonded
and 20°-80° when the bond is noncovalent.

To get a global view of the shape of an interface, we may
calculate a mean curvature angle by averaging h(g) over all
interior edges and normalizing by the total length of the edges:

SH = [ZedgesB (&) 1(€)]/ [Zeages!(8)] (©)
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Figure 5. Water and the connectivity of protein—protein interfaces. (A) Chymotrypsin-eglin (lacb). The facets belong to the AB
interface and form a single scc. In the ABW model, the interface is split into two scc marked by the heavy lines. Water is located
around the interface and in the gap separating the two scc. (B) The transducin G,—Gg, interface (1got). The interface is in two parts,
each lined by water molecules. They form a single scc in the AB model and two in the ABW model. In both lacb and 1got, the two scc

of the ABW model merge into one due to connecting waters.

The average value of sy is 5.2°, but the range is wide:
0°-17°. The smaller values are for AA and ST interfaces.
PI interfaces have larger mean curvatures, the largest
value being for the kallikrein-pancreatic trypsin inhibitor
complex (2kai) (Fig. 6C) as for the asymmetry ratio rap.
In that interface, most pairs of facets are concave toward
the inhibitor, and the local curvatures tend to add up. In
a flat AA or ST interface, the two orientations are equally
frequent, and local curvatures of opposite sign cancel.
Thus, the shape information derived from the mean cur-
vature is similar to that obtained above from the r,p ratio.

Chemical composition, accessibility, and interactions

Chemical groups

The chemical composition of the facets that form the
AB interfaces is given in Table 4: 58% of the facets
involve a nonpolar (carbon-containing) chemical group;
30%, a neutral polar (O-, N-, S-containing) group; and
12%, a charged group from an Asp, a Glu, a Lys, or an
Arg side chain. The nonpolar fraction is similar in the 96
interfaces, but charged groups are highly variable. The
three types of chemical groups contribute, respectively,
56%, 29%, and 15% of the BSA in the sample analyzed
by Lo Conte et al. (1999). Thus, the composition based on
surface areas is similar to that obtained by counting
Voronoi facets. Nevertheless, the composition of the set
of atoms that contribute the facets is different: 65%
nonpolar, 27% neutral polar, and 8% charged, which

implies that the average polar or charged group contrib-
utes more facets than a nonpolar group. In addition, we
noted above that ~13% of the atoms that contribute to
Nyor do not lose ASA. This set of atoms is significantly
enriched in nonpolar groups (73% vs. 65%) and lacks
charged groups (2% vs. 8%), in line with the observation
that a majority have zero ASA to start with, and the
protein main chain contributes 58% of the set.

Even though some interface atoms are already buried in
free A or B, most remain accessible to solvent even in the
complex. The fraction of the Ny, interface atoms that
have zero ASA in the complex is 35% on average, with
a standard deviation of 7% and a wide range (13%—-58%).
This buried fraction is the same as in the solvent
accessibility model (Lo Conte et al. 1999) in spite of
the fact that there are 13% more interface atoms in the
Voronoi model. When water is taken into account, many
more interface atoms are buried, and the buried fraction
increases sharply from 38% to 62% in the 2 A set.

Interactions

A bicolor Voronoi facet indicates an interaction be-
tween an atom of A and one of B. The average number of
interactions per interface atom is the same, n,eion = 3.52,
as the average number of neighbors. In Table 4, we
distribute facets into three types that represent different
types of interactions: nonpolar/nonpolar interactions be-
tween two carbon-containing groups; polar/polar inter-
actions between two O-, N-, or S-containing groups; and
nonpolar/polar interactions. On average, 44% of the
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Angle {degree}

Figure 6. Curvature. (A) An atom of protein A centered in a has common
facets with two atoms of protein B centered in b, and b,, and these facets
share an edge, €. The three atoms form a Delaunay triangle (heavy line).
The discrete curvature at edge ¢ is the product of the length of the edge by
the dihedral angle 3, which is equal to the angle in a of the Delaunay
triangle. (B) Distribution of the values of |3| in the 1udi interface. The peak
near 15° represents triangles where the atoms centered in b, and b, are
covalently linked. (C) The kallikrein—pancreatic trypsin inhibitor (2kai)
interface, which has the largest mean curvature sy = 17° in our sample, is
concave toward the inhibitor drawn as a ribbon. The concavity is
particularly marked around Lys 15 (drawn in van der Waals spheres),
which occupies a well-defined pocket on the protease surface.
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facets are of the nonpolar/nonpolar type; 12%, polar/
polar; and 44%, nonpolar/polar. In these statistics,
charged groups count as polar, and only 1% of the facets
represent a positive/negative charge interaction (salt
bridge). These fractions are close to those expected for
random pairing given the atomic composition of the
interfaces. Statistics based on the contributions to the
VIA rather than the number of facets give the same
nonpolar/polar fraction (44%), a slightly lower nonpolar/
nonpolar fraction (39%), and a larger (17%) polar/polar
fraction that includes 2.9% of charge—charge interactions.
The composition of the Voronoi facets reproduces the
known atomic preferences for interfaces (Tsai et al. 1997;
Lo Conte et al. 1999), but contact preferences at the
atomic level are much less obvious (Robert and Janin
1998; Mintseris and Weng 2003), and their detection
requires a more detailed statistical analysis.

In the ABW model, facets involving water molecules
indicate the interaction of a protein atom with interface
water, which we label water/polar or water/nonpolar,
depending on the type of protein atom. Like Rodier
et al. (2005), we find water-mediated interactions to be
at least as abundant at interfaces as direct protein—protein
interactions. The average number of bicolor facets in the
2 A data set increases from 405 in AB to 769 in the ABW
model. The additional interactions are 64% water/non-
polar and 36% water/polar, the same proportions as for
nonpolar and polar protein atoms in Ny,

Discussion

The Voronoi construction has been extensively used to
measure atomic volumes and describe the atomic packing
inside proteins (Richards 1974; Harpaz et al. 1994,
Gerstein et al. 1995; Pontius et al. 1996). Its first
application to protein—protein interfaces was to show that
they pack as densely as the protein interior by compar-
ing the Voronoi volumes of interface atoms to those of
atoms buried inside proteins (Janin and Chothia 1976; Lo
Conte et al. 1999). Later applications include atomic and
residue contacts (Munson and Singh 1997; McConkey et
al. 2002). We use here an updated and enhanced imple-
mentation of that construction to define interfaces and
examine their properties. Like Ban et al. (2004), we
define a protein—protein interface by the set of facets
shared by atoms of the two proteins after discarding
excessively large facets that extend out of the protein
surface. However, the way we treat the large facets is
more direct, and it leads to significantly different results
when applied to a set of protein—protein complexes taken
from the PDB. In addition, our construction defines
accessibility to solvent and handles water molecules,
which were not considered by Ban et al. (2004).
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Table 4. Chemical properties of the interfaces

All 2 A set ABW model
Composition® Mean SD Mean SD  Mean SD
Atom types
Nonpolar (C) 58 2 58 1
Neutral polar (N, O, S) 30 3 31 3
Charged (N, O) 12 3 11 3
Main chain 39 3
Pairwise interactions”
Nonpolar/nonpolar 44 4 44 4 47 4
Polar/polar 12 2 12 2 11 2
Nonpolar/polar® 44 3 44 3 43 3
Water/polar® 36 2
Water/nonpolar® 64 2

“Percent of Npyeer-
®<«Polar” includes charged groups.
“Percent of AW-BW facets.

Geometric and chemical features of protein—protein
interfaces that have been examined in studies based on
solvent accessibility are easily retrieved in our model.
The Voronoi and solvent accessibility models are in good
agreement concerning the size of the interfaces,
expressed either as the number of atoms or a surface
area. The observed correlation between the numbers Ny,
and N, of interface atoms is very high, as well as the
correlation between the areas VIA and BSA. Ban et al.
(2004) cite values of a surface area similar to the VIA for
70 complexes analyzed by Chakrabarti and Janin (2002)
and included in this study. They report a correlation with
BSA values of 0.85, whereas we obtain 0.982. As both
constructions apply the alpha-complex to atomic protein
models, the better fit to the solvent accessibility model
must be attributed to the different way in which we
handle the large facets on the protein surface.

Although the solvent accessibility model and our
implementation of the Voronoi model agree on the size
of the interfaces, they differ in their definition of interface
atoms. Both models find the same fraction of the interface
atoms to be buried in the complex, and all atoms that lose
solvent accessibility are part of the Voronoi interface.
However, the converse is not true: A remarkable result of
our study is the presence at interfaces of atoms that are
already buried in the component subunits. In the complex,
these atoms share Voronoi facets with one or several
atoms of the other component, yet removing that compo-
nent does not make them accessible to a water probe.
They do not contribute to the hydrophobic effect and,
being mostly nonpolar, may form few polar interactions.
But they contribute to van der Waals interactions and to
the close packing of the interface. A solvent-accessible
atom may also fail to lose accessibility because the addi-

tional contacts it makes in the complex concern a region of
its surface that is buried in the component subunit. We find
that the solvent accessibility criterion misses ~13% of the
interface atoms for that reason. Main-chain atoms, which
account for 19% of the BSA (Lo Conte et al. 1999),
represent 39% of Ny, and are a majority among the interface
atoms that do not lose accessibility. Thus, the Voronoi model
suggests that the protein main chain plays a role in protein—
protein interaction that is even more important than sug-
gested by previous studies.

The Voronoi model also gives a quantitative basis to
features that are not easily estimated otherwise. For
instance, the connectivity of an interface has a simple
definition: Connected components are sets of bicolor
facets that have edges in common. By that criterion,
a majority of the interfaces in Table 1 are singly
connected, a single scc including all or nearly all of the
facets. The larger interfaces may contain two or three scc
of comparable size. Interfaces have been split in various
ways in the past, for instance, by considering segments of
the protein sequence (Jones and Thornton 1997) or by
clustering interface atoms based on a distance criterion
(Chakrabarti and Janin 2002; Reichmann et al. 2005). The
geometric clustering procedure of Chakrabarti and Janin
(2002) distributes interface atoms into patches that are
essentially identical to an scc in three-quarters of the
complexes of Table 3, and in most other cases, it splits an
scc into two patches as in Figure 4. Thus, the two
approaches yield very similar results, but the Voronoi
definition does not depend on a cutoff distance as does
the clustering procedure.

The curvature of interface is another parameter that can
be defined in the Voronoi model. The quantity h(e)
measured at a Voronoi edge (Equation 5) is an extension
to a polyhedral surface, of the mean curvature of a smooth
surface (Cohen-Steiner and Morvan 2003). Its sign
indicates whether the interface is locally convex toward
the A or the B component of the complex. When A(g) is
averaged over the whole interface to yield the sy angle
(Equation 6), the large value obtained for some PI
complexes reflects the complementary concave/convex
surfaces of the protease and the inhibitor. In AA and ST
complexes, the interaction involves mostly flat patches on
the protein surfaces, and sy is small. The curvature
defined by h(e) is distinct from the angle deficiency of
Ban et al. (2004), which is estimated at the vertexes of
Voronoi polyhedra, not at their edges. It also differs from
the planarity estimated by fitting a least-squares plane
through the interface atoms (Argos 1988; Jones and Thornton
1996), yet the same qualitative conclusions can be drawn
concerning the shapes of different classes of interfaces.

Unlike the solvent accessibility model, which identifies
the interface atoms (albeit not all of them) but says nothing
about their partners in the other subunit, the Voronoi model

2091

www.proteinscience.org



Cazals et al.

identifies the pairs in contact in a natural way without
requiring a distance cutoff. This property has been used to
analyze contacts and generate empirical potentials between
protein atoms (Munson and Singh 1997; McConkey et al.
2002). We show here that the Voronoi model also handles
protein—water interactions, which are abundant at protein—
protein interfaces (Janin 1999; Rodier et al. 2005). Our data
highlight the role of structural water, which fills packing
defects and links together the components of interfaces that
are split into several scc when only protein atoms are taken
into account.

As a conclusion, we believe that this study introduces
a new tool to analyze interactions between biological
macromolecules and give a geometric, topological, and
chemical description of their interfaces starting at the
atomic level.
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