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ABSTRACT The Grb2-related adaptor protein GADS plays a central role during the initial phases of signal transduction in T
lymphocytes. GADS possesses N- and C-terminal Src homology 3 (SH3) domains flanking a central Src homology 2 (SH2)
domain and a 126-residue region rich in glutamine and proline residues, presumed to be largely unstructured. The SH2 domain
of GADS binds the adaptor protein LAT; the C-terminal SH3 domain pairs GADS to the adaptor protein SLP-76, whereas the
function of the central region is unknown. High-resolution three-dimensional models are available for the isolated SH2 and
C-terminal SH3 domains in complex with their respective binding partners, LAT and SLP-76. However, in part because of its
intrinsic instability, there is no structural information for the entire GADS molecule. Here, we report the low-resolution structure
of full-length GADS in solution using small-angle x-ray scattering (SAXS). Based on the SAXS data, complemented by gel
filtration experiments, we show that full-length GADS is monomeric in solution and that its overall structural parameters are
smaller than those expected for a protein with a long unstructured region. Ab initio and rigid body modeling of the SAXS data
reveal that full-length GADS is a relatively compact molecule and that the potentially unstructured region retains a significant
degree of structural order. The biological function of GADS is discussed based on its overall structure.

INTRODUCTION

T lymphocytes are key effector cells of the adaptive immune

system that perform critical activities for the body’s natural

defense against infections and many tumors (1,2). T cells gen-

erally use a two-signal mechanism for activation: 1), the

interaction between the T cell receptor (TCR) and specific

peptide/MHC complexes on the antigen-presenting cells (s)

delivers signals into the T cells; and 2), the costimulatory

interaction between CD28 molecules expressed on T cells and

B7 molecules on antigen presenting cells provides additional

activating signals to T cells.

TCR signaling depends on coordinated interactions of

multiple signaling proteins, which include adaptors or molec-

ular scaffolds (3,4). Adaptor proteins lack any enzymatic

activity or any transcription activation domains. Instead, they

have discrete binding sites on distinct modules that bind to

other proteins. Examples of these modules include SH2 and

PTB domains (which bind phosphorylated tyrosine resi-

dues), SH3 and WW domains (which constitutively associate

with proline-rich domains), and PH domains (which interact

with phosphorylated membrane lipids) (5,6). T-cell adaptors

include LAT (linker for activation of T cells), SLP-76 (SH2-

domain-containing leukocyte protein of 76 kDa), ITK (T-cell

protein tyrosine kinase), PLCg1 (phosphatidyl inositol-specific

phospholipase C1), NCK (adaptor protein containing SH2

and SH3 domain), VAV (guanine nucleotide exchange factor

of the Rho family), GADS (Grb2-related adaptor downstream

of Shc), ADAP (adhesion and degranulation promoting adap-

tor protein), GAB2 (GRB2-associated binding protein 2), and

SHP-2 (Src homology 2-domain-containing tyrosine phos-

phatase 2) (Fig. 1 A).

High-resolution structural information is available for iso-

lated modules (i.e., SH2, SH3, WW, PH) of some of the

above proteins, in free form or in complex with their minimal

binding partners. However, there is no structural information

for full-length molecules, and few biophysical studies have

been published (6,7). This lack of information is primarily

a result of the intrinsic instability and flexibility of full-length

adaptor proteins. In fact, a common characteristic of these

molecules is that they have a long region between their com-

pact domains. These linker regions are proposed to be gen-

erally disordered and represent a major complication to

studying the complete structure of adaptors (8,9).

We are interested in obtaining structural information on

the adaptor protein GADS (10), as this macromolecule plays

a pivotal role during the early events of signal transduction in

T cells (Fig. 1 A). GADS is composed of N-terminal SH3 and

SH2 domains and a C-terminus SH3 domain (11) (Fig. 1 B).

These domains are connected by a long sequence that is rich

in glutamine and proline residues (11) (Fig. 1 B). GADS

binds several intracellular signaling proteins, including SLP-

76, LAT, c-Cbl, HPK1, and Gab2 (Fig. 1 A) (12,13).

Structural studies of the SH2 domain of GADS in complex

with phosphorylated LAT peptides (14) and of the C-terminal

SH3 domain in complex with atypical consensus motifs of

SLP-76 (10,15,16) and HPK1 (17) (hematopoietic progen-

itor kinase 1) have been reported recently. However, no
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structural information is available for the full-length GADS

molecule.

Here we report a low-resolution structural model of full-

length GADS in solution obtained using small-angle x-ray

scattering (SAXS). This method is well suited to studying

multidomain proteins, such as GADS, that possess intrinsic

flexibility and low compactness (18). SAXS can provide

overall structural parameters as well as the shape and domain

organization of proteins in solution. Analysis of GADS by

SAXS reveals that this polypeptide is monomeric in solution

and possesses a surprisingly compact overall structure. This

picture is consistent with an ab initio model of GADS by a

chain of pseudoresidues. In addition, the work reported here

may serve as a guide for studying the overall shape of other

modular proteins or protein complexes in T-cell signaling or,

in general, for studying large proteins or protein complexes

whose structure determination is not feasible using traditional

techniques such as nuclear magnetic resonance spectroscopy

or x-ray crystallography.

METHODS

Protein expression and purification

Full-length GADS (residues 1–322; NCBI NM_010815) was expressed in

E. coli and purified by size-exclusion chromatography as described by

Houtman et al. (6).

SAXS data collection and processing

SAXS data were collected at the X33 beam line of the European Molecular

Biology Laboratory (EMBL), Hamburg outstation at the storage ring DORIS

III of the Deutsches Elektronen Synchrotron (DESY) synchrotron (19), as

described by Dimasi et al. (20). Scattering data from GADS solutions with

concentrations of 1.0, 2.4, 3.5, and 6.9 mg/ml were measured in a buffer

containing 20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10 mM EDTA, 0.05%

b-octylglucoside, and 2 mM DTT. All measurements were done at 15�C.

SAXS-based modeling

The low-resolution shape of GADS was reconstructed ab initio using the

programs DAMMIN (21) and GASBOR (22). These programs represent the

protein as an assembly of beads and dummy residues, respectively, inside a

spherical search volume of diameter Dmax. Starting from a random assembly,

DAMMIN and GASBOR employ simulated annealing to build scattering

equivalent models fitting the experimental data Iexp(s) to minimize

discrepancy:

x
2 ¼ 1

N � 1
+

j

IexpðsjÞ � cIcalcðsjÞ
sðsjÞ

� �2

;

where N is the number of experimental points, c a scaling factor, and Icalc(sj)

and s(sj) are the calculated intensity from the model and the experimental

error at the momentum transfer sj, respectively. The two methods yielded

consistent shapes for GADS. Ten independent GASBOR models were super-

posed and averaged using the programs DAMAVER (23) and SUBCOMP

(24).

The topology of the protein domains inside the SAXS low-resolution

GADS volume was examined by modeling the structure using the program

BUNCH (25). The program employs a simulated annealing protocol to find

the optimal positions and orientations of available high-resolution models

of domains and the probable conformations of the dummy residue chains of

the unknown regions to simultaneously fit the scattering data from all con-

structs. To construct the model with BUNCH, the structure of GADS was

divided into four domains as displayed in Fig. 1 B: 1), the N-terminal SH3

domain (homology model based on the PDB entry code 1GBR; see below);

2), the SH2 domain (PDB code 1R1S chain A); 3), a 134-residue un-

structured domain (Arg-154 to Gly-288) represented by a dummy residue

chain; and 4), the C-terminal SH3 domain (PDB code 2D0N chain A).

FIGURE 1 (A) Schematic representation of GADS-related signaling in T

cells. TCR ligation induces side-specific phosphorylation of the intracellular

chains of the TCR/CD3 complex. These initial events trigger phosphory-

lation of LAT and SLP-76. SLP-76 is subsequently recruited to LAT via

GADS. This trimolecular complex (LAT/GADS/SLP-76) then recruits other

modular proteins (VAV, NCK, ADAP, ITK, GAB2, PLCg). The formation

of this complex is required for the activation of the RAS-MAPK pathway

and for the cytoskeleton reorganization. (B) Schematic representation of full-

length GADS. GADS is composed of SH3-SH2 domains at the N-terminus

and a C-terminal SH3 domain. These are separated by a long unstructured

region composed of 126 amino acid residues. The SH2 domain of GADS

binds phosphorylated LAT; the C-terminal SH3 domain binds the adaptor

molecule SLP-76; the binding partner and the functional role of the N-terminal

SH3 domain are still unknown.
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Multiple BUNCH runs were performed starting from random initial con-

figurations (positions of domains and conformations of dummy residue

linkers/fragments).

Construction of the N-terminal GADS SH3
homology model

A homology model of the N-terminal SH3 domain of GADS (residues 1–54)

was build using the coordinates of the Grb2 N-terminal SH3 domain (PDB

entry code 1GBR Chain A) as a template. This choice was suggested by

sequence alignment of the target/template with an overall identity of 51.8%

in 54 overlapping residues. The three-dimensional structure was computed

after alignment with the program Modeller (26). The geometry of the ho-

mology model was examined with the program PROCHECK using a 1.4 Å

resolution cutoff (27). PROCHECK statistics showed that 83.0% of GADS-

nSH3 residues were in the most favored regions of the Ramachandran plot;

14.9% were in the additional allowed regions, and 2.1% were in the gen-

erously allowed regions. The GADS-nSH3 homology model consisted of 54

total residues.

Sequence analysis

Protein disorder was estimated using a neural networks-based predictor,

PROFbval (28), which detects flexibile regions with a high probability of

forming disordered structures. The disposition to disorder for each domain

of GADS was also estimated by the ‘‘unfoldability’’ index, as defined by

Uversky and collaborators (29,30). The hydrophobicity, H, and the charge,

R, were calculated with the program FoldIndex (31), and the ‘‘unfold-

ability’’ index was estimated as [H � (R 1 1.151)/2.785]. Positive values

indicate a structured polypeptide, whereas negative values indicate disor-

dered proteins. Secondary structure predictions were carried out with the

program JPred (32).

RESULTS

Expression, folding, and purification of stable
full-length GADS

Full-length GADS was expressed as inclusion bodies (Fig.

2 A) and was folded in vitro by dilution in a buffer containing

arginine (Fig. 2 B). We have previously expressed and

performed a biophysical characterization of the same full-

length GADS, demonstrating that it is biochemically active

(6). However, protein stability was a major problem that was

encountered (N. Dimasi and R. A. Mariuzza, unpublished data).

To improve protein stability, GADS was folded in an optimized

folding buffer containing b-octylglucoside, and the protein

was directly purified by size exclusion chromatography,

avoiding a previously used affinity purification protocol (6).

As seen in Fig. 2 B, most folded GADS eluates from the

gel filtration column as a major peak corresponding to a mo-

lecular weight that is in agreement with the expected molec-

ular mass of 36.8 kDa calculated from the amino acid

sequence. A second peak, corresponding to a molecular mass

of 73.6 kDa, constitutes ;6% of the total protein represent-

ing a dimeric form of GADS (Fig. 2 B). Gel filtration runs,

systematically repeated for several weeks, revealed no major

differences in the chromatographic profile, confirming that

the protein was stable and amenable to structural character-

ization. The purified protein, corresponding to the mono-

meric peak of GADS, was concentrated by ultrafiltration and

directly used for SAXS data collection without further

purification.

Sequence analysis of the long unstructured
domain present in full-length GADS

It has been hypothesized that the long sequence connecting

the SH3 and SH2 domains at the N-terminus to the C-terminal

SH3 domain of GADS is disordered (11). In fact, analysis

of this sequence by the protein-disorder predictor program

FIGURE 2 (A) Time course of protein expression. Protein expression was

induced with 1 mM IPTG at 37�C for the time shown above the SDS-PAGE.

Aliquots of bacteria were taken at the indicated intervals and directly loaded

on the SDS-PAGE. The proteins were stained with colloidal Coomassie. The

position of full-length GADS is shown with an arrow. As seen in the gel,

GADS is the major protein present after induction, with an estimated

molecular mass of 37 kDa. The protein molecular mass markers used were

lysozyme (14 kDa), b-lactoglobulin (18 kDa), restriction endonuclease

Bsp981 (25 kDa), carbonic anhydrase (37 kDa), ovalbumin (45 kDa),

bovine serum albumin (66 kDa), and b-galactosidase (116 kDa). (B) Size-

exclusion chromatography of folded full-length GADS. Elution volumes of the

molecular mass standards are indicated with numbered arrows. The standards

used were 1), albumin, 67 kDa; 2), ovalbumin, 43 kDa; 3), chymotrypsinogen

A, 25 kDa; and 3), ribonuclease A, 14 kDa. Blue Dextran (2000 kDa) was used

to measure the void volume of the column. The estimated mass of the full-

length GADS (major peak) is 37 kDa.
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PROFbval supports this hypothesis. The region between

residues 150 and 262 is characterized by a high degree of

flexibility (Fig. 3, upper panel), based on disorder indices

from PROFbval, which predicts a disordered structure be-

tween residues 145 and 263 (Fig. 3). This analysis is con-

sistent with a secondary structure prediction carried out with

the program JPred, which did not assign any secondary

structure to this domain (Fig. 3, lower panel).
Further evidence of the disordered nature of the central

region of GADS was obtained by calculation of the

‘‘unfoldability’’ index. The whole GADS sequence is

characterized by a charge of R¼ 0.029 and a hydrophobicity

index of H ¼ 0.422, resulting in an unfoldability of �0.006,

which indicates a disordered protein. This character is in

sharp contrast to the well-‘‘folded’’ regions of GADS-nSH3

(R ¼ 0.098, H ¼ 0.456), GADS-SH2 (R ¼ 0.022, H ¼
0.433), and GADS-cSH3 (R ¼ 0.068, H ¼ 0.461), that yield

‘‘unfoldability’’ indices of 0.021, 0.032, and 0.064, respec-

tively. By contrast, the central proline-rich long sequence has

a negative ‘‘unfoldability’’ equal to�0.158 (R¼ 0.009, H¼
0.360), clearly implying that this domain is highly disor-

dered.

SAXS experiments

The SAXS pattern from GADS, after subtraction of the sol-

vent scattering and extrapolation to infinite dilution, is dis-

played in Fig. 4 A. The Guinier plot of these data (33) yields

an effective molecular mass of the protein of 39 6 1 kDa,

compatible with the value predicted from the primary amino

acid sequence (36.8 kDa) and the gel filtration experiments.

This confirms that GADS remains monomeric in solution

under the experimental conditions used for carrying out the

SAXS experiments. The gyration radius (Rg) of GADS cal-

culated from the SAXS data is equal to 3.53 6 0.3 nm.

Surprisingly, the Kratky plot of s2I(s) versus s (Fig. 4 A,

inset) shows a bell-shaped form typical of globular proteins

(34), indicating that full-length GADS is rather compact in

solution. The corresponding distance distribution function

FIGURE 3 Sequence analysis of full-length GADS. Prediction of flexi-

bility and scores for protein disorder were obtained with the program

PROFbval. The prediction score (negative ¼ order; positive ¼ disorder) is

plotted against the residue number. The overall domain organization of

GADS is shown schematically at the top of the figure. (For domain

organization see Fig. 1 B.) At the bottom of the figure is shown the

secondary structure prediction of helices (a) and sheets (b) according to the

program JPred. These independent analyses predict that the long central

region of GADS (from residue 138 is to 263) is unstructured.

FIGURE 4 (A) Solution x-ray scattering patterns of full-length GADS

extrapolated to zero concentration (d). The continuous line represents the

smooth interpolation of the experimental data, extrapolated to s ¼ 0; inset

displays the normalized Kratky’s plot s2I(s) versus s. (B) Distance distribution

function of the experimental data calculated by the program GNOM.
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p(r) is displayed in Fig. 4 B. Analysis of these data yields a

Rg of 3.93 6 0.1 nm and a maximum size of the protein Dmax

of 14 6 1 nm. The overall SAXS parameters thus suggest

that GADS has an elongated shape, which is also confirmed

by the p(r) function having a skewed appearance character-

istic of elongated globular particles.

Low-resolution modeling of full-length GADS

The low-resolution models of full-length GADS generated

independently by the ab initio programs DAMMIN and

GASBOR displayed superimposable overall shapes fitting

the experimental data with no significant discrepancy. The

averaged model of 10 independent GASBOR reconstruc-

tions displayed in Fig. 5 A, although elongated, still shows a

relatively compact shape, with principal axis dimensions of

5.6 3 9.7 3 3.5 nm. In an attempt to obtain information

on the distribution of the different domains of the protein in

the low-resolution SAXS model, the structure of GADS was

represented using the atomic and homology models of indi-

vidual domains connected by the linkers, and the program

BUNCH was used to fit this arrangement to the experimental

data. Fifty independent BUNCH runs, starting from random

initial positions of domains and configurations of the linkers,

fitted the data (x , 1.4). The resulting models were classified

according to their topology. The first class, shown in Fig. 5 B,

was represented by 21 models that showed the cSH3 domain

at one extreme of the molecular volume and the nSH3 at

the other extreme, whereas SH2 was in between, near to the

nSH3 domain. A second class, composed by 20 models, was

basically similar to the first, but the localization of nSH3 and

SH2 domains was inverted, such that it presented the SH2 at

the extreme of the molecular volume (Fig. 5 C). The other nine

models presented the three structured domains in different

topologies in the wider extreme of the volume (lower part of

the models presented in Fig. 5; see Supplementary Material).

The two more conspicuous classes were quite well reproduc-

ible, but when starting from random positions, we have about

the same probability (0.4) of obtaining either of these two

models.

DISCUSSION

Among the physicochemical techniques that can be used

to gain structural information on adaptor proteins, informa-

tion obtained in solution using SAXS is particularly useful.

We have carried out an ab initio structure determination of

the adaptor protein GADS. Because GADS plays a pivotal

role during the initial phases of signaling in T lymphocytes,

knowledge of the GADS full-length structure is important

for understanding the structural basis of intracellular signal-

ing. Consequently, important questions can be answered by

analyzing the full-length structure of GADS. For example:

1), Is GADS monomeric in solution? 2), Is GADS extended

and therefore ‘‘natively’’ unfolded? 3), How are the compact

SH3 and SH2 domains spatially arranged? 4), Does their

spatial arrangement block their binding function?

We have shown that full-length GADS is monomeric in

solution and retains a compact overall structure despite the

fact that it possess a long unstructured region. We estimated

the gyration radius of full-length GADS, and for each of its

domains, from its chemical composition using the algorithm

of Tcherkasskaya et al. (35), which was developed to predict

the value of Rg of folded and unfolded globular proteins. The

measured Rg of GADS is 3.53 nm, which does not fit to the

predicted Rg for compact globular proteins, relaxed proteins

(molten globule), or completely denaturated protein (1.79 nm,

2.06 nm, and 4.88 nm, respectively). Measurements of Rg

FIGURE 5 (A) Averaged ab initio rigid model of full-length GADS obtained using the program GASBOR (violet beads). Two representative models

obtained by the optimization of positions and orientations of the GADS known domains obtained using the program BUNCH (B and C). The model was

obtained using three-dimensional structural information from the GADS N-terminal SH3 homology model, the SH2 domain (PDB entry 1R1S chain A), and

the C-terminal SH3 domain (PDB 2D0N chain A). The N-terminal SH3, the SH2, and C-terminal SH3 domains of GADS are schematically labeled and are

colored in blue, red, and yellow, respectively. The binding site regions are labeled and colored in green.
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done for the two domains of known atomic structure, SH2

(1.23 nm) and cSH3 (1.08 nm), and for the homology-

predicted structure of domain nSH3 (0.9 nm) are very near to

the Rg values predicted for globular proteins (1.22 nm, 1.06

nm, and 1.03 nm, respectively). By simple geometry, given

an arrangement of objects, the minimum Rg of the set will be

the sum of the Rg values of the two biggest ones. Therefore,

assuming that the three structured domains of GADS remain

compact in the native protein to satisfy this condition, it is

very unlikely that they would assemble with an unfolded

long unstructured domain, which would be expected to have

a Rg $ 3 nm, because it would largely exceed the measured

Rg of GADS of 3.5 nm. It follows that, most probably, the

unfolded long unstructured domain is neither fully compact

nor completely unfolded.

We attempted to determine the domain arrangement of

GADS using the available SAXS data. However, the optimi-

zation of positions and orientations of the available high-

resolution models of domains and the probable conformations

of the dummy residue chains done by BUNCH do not pro-

vide an unequivocal solution. After repeating the calcula-

tions numerous times, starting from random positions, and

without assuming any particular conformation for the long

unstructured domain, we obtained two main classes of models,

as represented in Fig. 5, B and C. We do not have any objective

criteria for deciding between these two possible topologies.

The binding sites of the GADS domains have been directly

identified from the crystallographic study of the receptor-

ligand interaction of cSH3 (10 and references therein), SH2

(14), and by homology on nSH3. In most SAXS models the

putative binding sites are exposed, as indicated in Fig. 5, B
and C. These observations supports the idea that when GADS

is in solution, the binding sites are available to their respective

substrates and are not blocked by the back-folding of the

molecule.

In conclusion, we have obtained information regarding the

overall architecture of GADS, a modular protein involved in

T-lymphocyte intracellular signaling. We propose that

structural analysis using the SAXS approach is an effective

methodology to study other modular proteins or complexes

participating in similar processes.
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