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ABSTRACT It is not yet understood how migratory birds sense the Earth’s magnetic field as a source of compass information.
One suggestion is that the magnetoreceptor involves a photochemical reaction whose product yields are sensitive to external
magnetic fields. Specifically, a flavin-tryptophan radical pair is supposedly formed by photoinduced sequential electron transfer
along a chain of three tryptophan residues in a cryptochrome flavoprotein immobilized in the retina. The electron Zeeman
interaction with the Earth’s magnetic field (;50 mT), modulated by anisotropic magnetic interactions within the radicals, causes
the product yields to depend on the orientation of the receptor. According to well-established theory, the radicals would need to
be separated by .3.5 nm in order that interradical spin-spin interactions are weak enough to permit a ;50 mT field to have a
significant effect. Using quantum mechanical simulations, it is shown here that substantial changes in product yields can
nevertheless be expected at the much smaller separation of 2.0 6 0.2 nm where the effects of exchange and dipolar
interactions partially cancel. The terminal flavin-tryptophan radical pair in cryptochrome has a separation of ;1.9 nm and is thus
ideally placed to act as a magnetoreceptor for the compass mechanism.

INTRODUCTION

It has been suggested that the ability of migratory birds to

extract compass information from the geomagnetic field

(reviewed in (1–4)) is derived from a magnetic field-sensitive

chemical reaction (5–8). Behavioral (9,10), biological (11,12),

theoretical (13–17), and other (18) evidence is steadily ac-

cumulating to support this hypothesis, the idea being that a

photochemical reaction in the retina produces an immobi-

lized transient radical pair whose subsequent chemical fate is

influenced by the orientation of the bird’s head with respect

to the Earth’s magnetic field (8). The other principal pro-

posed mechanism of avian magnetoreception centers on

magnetic iron minerals in the beak that appear to act as a

magnetometer, allowing birds to determine their geographic

position (19,20). Here we focus on the mechanism of com-

pass orientation.

Ritz et al. have proposed that a radical pair magneto-

receptor is formed by photoinduced intramolecular electron

transfers in a cryptochrome (8). Cryptochromes are 50–90 kDa

blue-light photoreceptor flavoproteins that regulate a variety

of processes in organisms ranging from bacteria to humans

(reviewed in (21)). They exhibit high sequence-homology and

structural similarity to DNA photolyases, which are light-

dependent flavoenzymes that repair DNA damaged by ultra-

violet light (reviewed in (22,23)). Relatively little is known

about the photocycle of cryptochromes; however, there are

similarities (24,25) to the photoactivation reaction of pho-

tolyases (26) and it has been suggested that excitation of the

fully oxidized flavin adenine dinucleotide (FAD) chromo-

phore leads to sequential intraprotein electron transfer along

a chain of three tryptophan residues, the Trp triad (23,27,28).

Although no effects of applied magnetic fields on the photo-

responses of photolyases have yet been reported, time-re-

solved electron paramagnetic resonance (EPR) spectroscopy

has clearly shown that the light-induced flavin-tryptophan

and flavin-tyrosine radical pairs formed in photolyases pos-

sess the electron spin-correlation that is a necessary but not

sufficient condition for magnetosensitivity (29,30). A well-

established precedent for comparatively large magnetic field

effects on photoinduced radical pairs in proteins, and for the

conservation of spin correlation in sequential steps along an

electron transport chain, is provided by the photosynthetic

reaction center proteins of both bacteria and plants (29,

31–33).

In plants, two cryptochromes, Cry1 and Cry2, mediate a

number of photoresponses, including blue-light inhibition of

hypocotyl (stem) elongation and entrainment of the circadian

clock (21). Very recently, Ahmad and colleagues (18) have

observed enhanced cryptochrome-mediated hypocotyl growth

inhibition in Arabidopsis thaliana in a 500 mT magnetic field

under blue-light irradiation but not under red light (where the

mediating photoreceptors are phytochromes), nor in total

darkness. No magnetic field effects were found in Cry-

deficient mutants. Blue-light-induced degradation of Cry2

and blue-light-dependent anthocyanin accumulation—another

cryptochrome-dependent process—were also enhanced at

500 mT (18). These observations have been interpreted in

terms of a radical pair model, by analogy with photolyase.

The ability of a magnetic field to affect the product yields

of a free radical process may be understood by reference to

the simple reaction shown in Scheme 1. A spin-conserving

electron transfer reaction (not shown) from a donor molecule

D to an acceptor molecule A creates a spin-correlated radical
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pair [D
�1 A

��], either in a singlet state S (with total electron

spin angular momentum quantum number S ¼ 0) or a triplet

state T (with S ¼ 1), depending on the spin states of the

precursors, D and A. The relative yields of the products, SP

and TP, formed by reaction of S[D
�1 A

��] and T[D
�1 A

��],

respectively, are controlled by the rate constants of those

reactions (kS and kT in Scheme 1) but also by the coherent

interconversion of S[D
�1 A

��] and T[D
�1 A

��] (indicated by

curved arrows in Scheme 1). S 4 T interconversion is

mediated by the various magnetic interactions within and

between the two radicals, including the Zeeman interaction

of the two electron spins with an external magnetic field, in

this case, the Earth’s magnetic field. Thus, if the external

field enhances the efficiency of S 4 T interconversion the

result, for a radical pair initially in the S state, is an increase

in the yield of TP and a corresponding decrease in that of SP.

This model, known as the radical-pair mechanism, accounts

for a wide range of magnetic effects on the chemistry of free

radicals (33–40). However, to act as a compass, the radical

pair must respond to the direction of the external field as well

as to its amplitude. This can be achieved with a spatially

ordered array of donor-acceptor molecules (1), at least in

principle, if the radicals are immobilized and the electron

spins have anisotropic local magnetic interactions, the most

likely being the hyperfine couplings to high-abundance mag-

netic nuclei (e.g., 1H and 14N). Thus, the S 4 T inter-

conversion and therefore the reaction yields should depend

on the orientation of the radical pair and, by extension, the

orientation of the bird’s head, with respect to the direction of

the external field (5–8,14).

The chemical effects of weak external magnetic fields,

including the radical pair model of avian magnetoreception,

have been explored extensively by means of quantum

mechanical simulations of simple reaction schemes (e.g.,

Scheme 1). These take into account the spin evolution

described above, together with the spin-selective formation

and disappearance of the S and T states of the radical pair

(8,14–16,41–44). A number of simplifying approximations

are commonly employed in these calculations, either to

render the problem computationally tractable or to enable

general trends and principles to be extracted. In the context

of magnetoreception, typical assumptions are that the

hyperfine interactions are isotropic or axially anisotropic;

that the S and T states of the pair recombine at equal rates;

that the two radicals are completely immobile; that spin

relaxation is negligibly slow; and that the spin-spin interac-

tions between the two radicals are negligible. This last

assumption, which appears to be universal in theoretical

treatments of avian magnetoreception, is the most likely to

be misleading.

Interradical exchange and dipolar interactions can have a

profound effect on the response of a radical pair to an applied

magnetic field (31,45–49). For a radical pair magneto-

receptor, one can anticipate that the neglect of exchange and

dipolar interactions will only be valid if the two radicals are

far enough apart that both interactions are weak, not only in

comparison with the major hyperfine couplings (typically

100–1000 mT) but also, more stringently, with respect to the

geomagnetic field strength (25–65 mT). The dipolar cou-

pling, D(r), usually has the longer range and dominates the

exchange interaction, J(r), except at small radical-radical

separations, r , 0.5–1.0 nm (50,51). The strength and

distance dependence of D(r) are given exactly by

DðrÞ ¼ �3

2

m0

4p

g
2

eZ
2

r
3 ; i:e:; DðrÞ=mT ¼ �2:78310

3

ðr=nmÞ3
; (1)

assuming the electron spins to be point magnetic dipoles,

generally a good approximation for radical pairs (see below).

Thus, D(r) ¼ �500 mT at a separation r ¼ 1.77 nm and

�50 mT at r ¼ 3.82 nm. When the Zeeman interaction with

the external magnetic field is sufficiently strong, the effect of

the dipolar coupling is to produce energy-level splittings

proportional to D(r)[3cos2j � 1] where j is the angle be-

tween the vector connecting the two dipoles and the magnetic

field direction; in fields whose amplitudes are comparable to

or smaller than D(r) and/or the hyperfine interactions, the

dependence on j is both less straightforward and less pro-

nounced (50). The exchange interaction parameter, J(r), has

a complex dependence on the electronic properties of the

radicals, their separation, and the nature of the intervening

medium. J(r) is usually assumed to fall off exponentially

with r and to be independent of j (52)

JðrÞ ¼ J0 expð�brÞ; (2)

where J0 may be positive or negative and b . 0.

A prerequisite for a radical pair reaction to respond

significantly to an applied magnetic field whose strength is

weak compared to some or all of the hyperfine interactions

(the so-called low-field effect (44,53–59)) is that there are

degenerate spin energy-levels in zero field which become

nondegenerate in a weak field as a result of the electron

Zeeman interaction (43,44). An exchange interaction com-

parable to or larger than the Zeeman interaction lifts the zero-

field degeneracies and suppresses the effect of the external

magnetic field (44). A dipolar interaction is likely to produce

a similar result (50). Thus, if jD(r)j or jJ(r)j is too large, the

S 4 T interconversion that would otherwise be driven by

the weak Zeeman interaction will be blocked. To permit a

;50 mT external magnetic field to influence significantly the

spin dynamics of a radical pair, both jD(r)j and jJ(r)j would

need, in general, to be ,;50 mT, i.e., the radicals should be

.;3.5 nm apart. Such large separations are difficult to
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reconcile with some of the other conditions that a radical pair

must satisfy to act as a magnetoreceptor. For example, r .

2.5 nm is unlikely to be compatible with an efficient spin-

selective radical recombination, presumably by long-range

electron transfer, at a rate that competes favorably with elec-

tron spin relaxation.

At first sight, therefore, the inevitable presence of ex-

change and dipolar interactions within a radical pair would

seem to exclude the possibility of a strong response to an

external magnetic field as weak as that of the Earth. A pos-

sible resolution of this quandary, which has not been con-

sidered hitherto, is that the exchange and dipolar interactions

are of appropriate size and sign for their effects to be ap-

proximately equal and opposite. In this situation, the radical

pair might, to some extent, evolve under the Zeeman and

hyperfine interactions as if in the absence of interradical

spin-spin interactions. That this is, in principle, possible can

be seen from the matrix elements of the exchange and dipolar

Hamiltonians (ĤJ and ĤD) in the S, T0, and T61 basis (60):

ÆSjĤJjSæ ¼ J; ÆTmjĤJjTmæ ¼ �J; m ¼ 0;61

ÆSjĤDjSæ ¼ 0; ÆTmjĤDjTmæ ¼ D
�

m
2 � 2

3

�
; m ¼ 0;61:

(3)

The effect of ĤJ and ĤD in the absence of Zeeman and

hyperfine interactions is to produce a singlet-triplet splitting of

2J and to split the three triplet sublevels into a doubly

degenerate pair at 11
3

D and a nondegenerate level at �2
3

D.

The condition for partial cancellation of the effects of

exchange and dipolar interactions is that which reintroduces

degeneracies among the zero-field states of the radical pair.

From Eq. 3, the S and Tm states have equal energy when

D ¼ 2

m
2 � 2

3

J; m ¼ 0;61: (4)

As shown in Fig. 1, S and T61 are degenerate when D ¼
16J, while S and T0 are degenerate when D ¼ �3J. Since

D is negative for a radical pair, the former can occur when

J0 , 0 and the latter when J0 . 0.

The purpose of this article is to demonstrate that such

‘‘J/D cancellation’’ can indeed take place and that a ;50 mT

field can have a significant effect on reaction product yields

in the presence of radical-radical interactions that would

otherwise preclude the operation of the radical pair as a com-

pass sensor. Numerical simulations are presented, the results

of which are discussed in the context of the proposed cryp-

tochrome magnetoreceptor.

THEORETICAL METHODS

We consider an immobilized radical pair able to recombine to form dis-

tinct chemical products from its S and T states with equal first-order rate

constants, kS ¼ kT ¼ k ¼ 106 s�1 (Scheme 1). The initial state is a pure

singlet and we calculate the dependence of the yield, FS, of the singlet-

product SP (Scheme 1) on the direction of the applied magnetic field, which

is specified by the polar angles u and f defined in the molecular frame (44)

FSðu;fÞ ¼
1

M
+
4M

n¼1

+
4M

m¼1

k
2

k
2
1 ðvn � vmÞ2

jÆnjP̂Sjmæj2: (5)

M is the number of nuclear spin configurations (M ¼ 2N for a radical pair

containing N spin-½ nuclei), vn and vm are eigenvalues, and jnæ and jmæ
eigenstates, of the radical pair spin Hamiltonian Ĥ; and P̂S is the singlet

projection operator. Note that Ĥ; and therefore vn, vm, jnæ, and jmæ are all, in

general, functions of u and f when anisotropic spin interactions are present

in the radical pair. The use of identical reaction rates (kS ¼ kT) considerably

simplifies the calculation (44) but is unlikely to be a feature of any real

radical pair magnetoreceptor. However, this approximation does not obscure

the essential physics and is therefore harmless for the present purposes.

The spin Hamiltonian contains terms for the Zeeman interactions of the

two electron spins with the applied magnetic field, ĤZðu;fÞ; the various

hyperfine interactions in the two radicals, ĤHFI; and the exchange and

dipolar interactions,

Ĥ ¼ ĤZðu;fÞ1 ĤHFI 1 ĤJðrÞ1 ĤDðrÞ: (6)

We omit the nuclear Zeeman interaction, which is extremely small for the

weak applied magnetic fields under consideration. For simplicity, all nuclei

are spin-½ with the consequence that nuclear quadrupolar interactions need

not be considered.

The isotropic Zeeman Hamiltonian (in angular frequency units) may be

written

ĤZðu;fÞ ¼ geB0 Ŝxsinucosf 1 Ŝysinusinf 1 Ŝzcosu
� �

; (7)

where B0 is the strength of the external magnetic field and Ŝ ¼ Ŝ
ð1Þ

1Ŝ
ð2Þ

is

the total electron spin operator (1 and 2 label the two electron spins). We

make the reasonable assumption that B0 is small enough that the difference

between the isotropic g-values of the two radicals and the anisotropic parts

of their g-tensors may safely be omitted.

The hyperfine Hamiltonian is given by

ĤHFI ¼ +
2

i¼1

+
N

k¼1

a
ði;kÞŜ

ðiÞ � ÎðkÞ1 Ŝ
ðiÞ � Aði;kÞ � ÎðkÞ

h i
; (8)

where a(i, k) is the isotropic hyperfine coupling constant and A(i, k) is the

anisotropic part of the hyperfine interaction tensor of nucleus k coupled to

electron i. Taking all hyperfine tensors to be axial, A(i, k) (in the molecular

FIGURE 1 Energy levels for a radical pair as a function of the exchange

parameter J for a fixed value of the dipolar coupling parameter D. The figure

is appropriate for a radical pair with D , 0, with no hyperfine couplings and

in the absence of an external magnetic field. The S and Tm states are

degenerate when D ¼ �3J (m ¼ 0, J . 0) and at D ¼ 6J (m ¼ 61, J , 0).
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frame) is related to A9(i, k) (in the principal axis system of the tensor) by

the co-latitude, g(i,k) and azimuth, d(i,k). The axialities of the hyperfine

interactions are defined as aði;kÞ ¼ A9
ði;kÞ
zz =2aði;kÞ with A9

ði;kÞ
xx ¼ A9

ði;kÞ
yy ¼

�1
2
A9
ði;kÞ
zz : (9)

The exchange and dipolar Hamiltonians whose matrix elements were

given in Eq. 3 are

ĤJðrÞ ¼ �JðrÞðŜ2 � 1̂Þ; (9)

ĤDðrÞ ¼ DðrÞ ðŜz cose 1 Ŝx sineÞ2 � 1

3
Ŝ

2

� �
; (10)

where e specifies the orientation of the dipolar axis in the molecular frame.

Although D , 0 for a radical pair, the calculations reported below were

performed with both positive and negative values of D to explore the full

range of behavior of the various radical pairs studied. Note that FS is

unchanged if the signs of all of J, D, a(i, k), and A(i, k) are reversed.

The anisotropy of the singlet-yield

G ¼ maxu;f½FS� �minu;f½FS�
maxu;f½FS�

3 100% (11)

was obtained by computing FS for several thousand combinations of u and

f. The spherically averaged singlet-yield was calculated using a trapezium

rule approximation to the integral

ÆFsæ ¼
1

4p

Z 2p

0

Z p

0

Fsðu;fÞsinu du df: (12)

The dipolar coupling parameters D (axiality) and E (rhombicity) for

radical pairs in A. thaliana Cry1 were calculated from the crystal structure

(61) in two ways. Approximate values were obtained using the point-dipole

approximation, Eq. 1, with r equal to the center-to-center separation of the

two radicals. The center of each radical (the reduced flavin or an oxidized

tryptophan) was determined as the mean of the crystallographic coordinates

of all the ring carbon and nitrogen atoms (i.e., 14 atoms for the flavin and

9 for a tryptophan). The rhombicity E is zero for point dipoles. More

accurate values of D and E were obtained by explicit numerical integration

over the distributions of spin density (r1(r) and r2(r)) in the semioccupied

molecular orbitals (SOMOs) of the two radicals. The nine components of the

dipolar coupling matrix (in Tesla; p,q ¼ x,y,z) were calculated according to

Dpq ¼
1

2

m0

4p
Zge

Z
r1ðr1Þr2ðr2Þ

r2

12dpq � 3p12q12

r
5

12

� �
dt1dt2;

(13)

with obvious notation. This 333 matrix was diagonalized to give

eigenvalues DX . DY . DZ from which D and E were calculated as D ¼
3DZ/2 and E ¼ (DX � DY)/2. The SOMOs were obtained from Gaussian 03

(62) at the DFT B3LYP EPR-II level of theory.

RESULTS

Exchange and dipolar interactions that are comparable to or

stronger than the hyperfine interactions in a radical pair are

expected to block S 4 T interconversion. This effect may be

seen in Fig. 2 A where the singlet-yield FS is plotted against

D for a radical pair containing a single proton with an

isotropic hyperfine interaction (a ¼ 500 mT) with and

without a modest exchange interaction (J ¼ 500 mT), in the

absence of an applied magnetic field. As either J or D is

changed away from zero, the singlet product yield rises

toward 1.0, consistent with the anticipated inhibition of S 4
T mixing in this singlet-born radical pair. For example, the

triplet yield (FT¼ 1�FS) drops by 84% (from 0.38 to 0.06)

when jJj ¼ 0.5 mT and D ¼ 0 or J ¼ 0 and jDj ¼ 3.0 mT.

The observation that jJ/aj $ 1 or jD/aj $ 6 is sufficient

significantly to suppress S4T interconversion is also borne

out by inspection of the relative sizes of the diagonal and off-

diagonal matrix elements of the spin Hamiltonian. As

expected, an exchange or a dipolar interaction on its own

only has a negligible effect when jJj � jaj or jDj � jaj,
respectively.

It is clear from the minima in the dashed curve (J ¼
500 mT) in Fig. 2 A that a substantial fraction of the S 4 T

interconversion can be restored when one of the matching

conditions (D � 6J and D � �3J) is met. It is also evident

that the cancellation conditions do not have to be satisfied

exactly for this to happen: the dips in FS are not centered

exactly at D ¼ 6J or D ¼ �3J and they have finite widths,

determined in this case by the magnitude of the isotropic

hyperfine coupling constant, a.

It is also important to see how J and D affect the response

of the singlet-yield to a weak applied magnetic field. Fig. 2 B
shows the change in ÆFSæ produced by a 50 mT applied field

as a function of D for three exchange interactions (0, 50 mT,

and 500 mT). It is clear that once J or D becomes larger than

B0, the S4T interconversion induced by the Zeeman

interaction is quenched. The condition for interradical

interactions to have a negligible influence on the magnetic

field effect (i.e., jJj � B0 and jDj � B0) can thus be very

restrictive in the case of weak external fields.

Although Fig. 2 A shows that J/D cancellation can restore

significant S 4 T interconversion, this is not a sufficient

FIGURE 2 (A) Calculated singlet-yield, FS(0), at zero

field as a function of D for J ¼ 0 (solid line) and J ¼ 500

mT (dashed line). (B) Calculated change in the spherically

averaged singlet-yield [ÆFS(B0)æ � FS(0)] produced by an

external 50 mT magnetic field as a function of D for J ¼ 0

(dashed line), J ¼ 50 mT (solid line), and J ¼ 500 mT

(dash-dot line). In both cases: a ¼ 500 mT, a ¼ 0, and k ¼
106 s�1.

1568 Efimova and Hore

Biophysical Journal 94(5) 1565–1574



condition for a pair of interacting radicals to act as a

magnetoreceptor. To be able to detect the direction of the

Earth’s magnetic field, the radical pair must contain aniso-

tropic magnetic interactions that cause the singlet-yield to

vary with the orientation of the receptor in the magnetic field.

Fig. 3 shows the anisotropy of the singlet-yield for various

combinations of J and D in the case of a one-proton radical

pair with an axial hyperfine tensor, for two values of the

hyperfine anisotropy parameter. The large singlet-yield

anisotropies found for D ¼ J ¼ 0 (Fig. 3, A and C) are

greatly attenuated when either J or D is changed to a value

large compared to the applied magnetic field strength (50 mT).

When both J and D are nonzero the anisotropy is severely

attenuated except when D � 6J (for a � 0.02) or when D �
�3J (for a � �1.0). Only weak cancellation effects are

found for D � �3J when a � 0.02 or for D � 6J when a �
�1.0, showing that Eq. 4 is a necessary but not sufficient

condition for a weak Zeeman interaction to be able to induce

a significant degree of S 4 T mixing. Fig. 3 also shows the

shapes of the singlet-yield anisotropies, FS(u,f) � ÆFSæ, for

the indicated values of J, D, and a. In Fig. 3, A and C, where

J ¼ D ¼ 0, the orientation dependence of FS(u,f) is ;3cos2

u � 1, and the symmetry is that of the hyperfine interaction

(the z axis), as expected (14). For Fig. 3, B and D, where the

polar plots refer to nonzero values of both J and D, the (u,f)-

dependence is more complex and reflects the symmetry of

the dipolar coupling (the x axis) as well as of the hyperfine

interaction.

To explore more extensively the conditions required for

J/D cancellation to take place, we have calculated the singlet-

yield anisotropy for large ensembles of radical pairs in

which a selection of the parameters for each member of

the ensemble were assigned values at random from within

predefined ranges. The aim is to judge whether cancellation

is a rare occurrence, expected only for very particular com-

binations of interaction strengths, or whether it is a more

general phenomenon. Such a Monte Carlo approach was

used because the alternative—a systematic coverage of the

whole parameter space—would have been computationally

prohibitive.

Singlet-yield anisotropies G were calculated for an

ensemble of 106 one-proton radical pairs. The results are

summarized in Fig. 4 A in which each dot represents a radical

pair with G . 10%. One sees that the radical pairs with

significant anisotropy are clustered around the lines D ¼ 6J
and D ¼ �3J. Away from these lines, extremely few radical

pairs have anisotropy .15%.

Fig. 4, B and C, show the outcomes of similar calculations

for 106 two-proton and 107 three-proton radical pairs (all

protons on the same radical) in which the parameters of

the second and third hyperfine couplings (a(i, k), a(i, k), g(i, k),

d(i, k); k ¼ 2,3) were added to the list of randomly chosen

variables. As in Fig. 4 A, the radical pairs with .15%

anisotropy are found close to the lines D ¼ 6J and D ¼ �3J,

but less tightly clustered than in Fig. 4 A. Evidently, for more

complex radical pairs, there is greater scope for hyperfine

FIGURE 3 Calculated singlet-yield anisotropies (G, Eq.

11) as a function of D for various combinations of J and a.

(A) J¼ 0, a¼�1.0; (B) J¼ 500 mT, a¼�1.0; (C) J¼ 0,

a ¼ 0.02; and (D) J ¼ 500 mT, a ¼ 0.02. The polar plots

represent the anisotropy of the singlet-yield for four

combinations of J, D, and a. In each case, FS(u,f) was

calculated for 6400 combinations of u and f. The distance

of the surface from the origin in the direction (u,f) is

proportional to FS(u,f) � ÆFSæ. The color scale is a

spectrum in which the maximum value (i.e., most positive)

is red and the minimum (most negative) blue. The sym-

metry axes of the hyperfine and dipolar interactions lie

along the z and x directions, respectively. In all cases: a ¼
500 mT, e ¼ p/2, k ¼ 106 s�1, and B0 ¼ 50 mT.
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interactions to compensate for a slightly nonideal match

between J and D.

Further evidence that J/D cancellation does not require special

combinations of hyperfine interactions was obtained by calcu-

lating FS for ensembles of multinuclear radical pairs with fixed

values of J and D and randomly chosen values of the hyperfine

parameters in the ranges:�1 mT , a(i, k) , 1 mT;�3 , a(i, k) ,

3; 0 , g(i, k) , p; 0 , d(i, k) , 2p; and up to a total of four

nuclear spins. The other parameters had fixed values: B0 ¼
50 mT, k ¼ 106 s�1. The results are given in Table 1.

It can be seen from Table 1 that with J¼D¼ 0 (first row), the

anisotropy of the singlet-yield is generally rather large and a high

proportion of radical pairs have G . 5%. When jJj is increased

(second row), G usually drops quickly toward zero. However,

when D and J satisfy one of the cancellation conditions (third

and fourth rows), the anisotropy can remain large even though

J and D are comparable to the isotropic hyperfine interactions

and are larger than B0. Table 1 shows that J/D cancellation is not

restricted to small regions of the parameter space, and that G is

consistently larger when all the nuclei are confined to a single

radical rather than being more uniformly distributed. For

example, (4,0) radical pairs have larger entries in the table

than do either (3,1) or (2,2) pairs for all four combinations of J
and D. This behavior mirrors that reported for multinuclear

radical pairs with isotropic hyperfine interactions (42).

DISCUSSION

Exchange-dipolar cancellation

The simulations described here demonstrate that while a

modest exchange or dipolar interaction efficiently quenches

the effects of an ;50 mT external magnetic field, these

changes may be at least partially restored when one of the

cancellation conditions D � 6J or �3J is satisfied. We now

explore the consequences of this conclusion for the proposal

that the radical pair magnetoreceptor is formed in a crypto-

chrome.

By analogy with the photoactivation reaction of DNA

photolyase, it has been suggested that a long-lived flavin-

tryptophan radical pair, with properties suitable for magneto-

reception, is formed in an avian cryptochrome by a sequence

of electron transfers involving three tryptophan residues and

the photoexcited, fully oxidized form of the FAD cofactor

(17). This process is shown in Scheme 2 using the sequence

numbers for A. thaliana Cry1; the protonation of the excited

state FAD* (63) is not shown explicitly, and the deproto-

nation of the cation radical of the terminal tryptophan

W324
�1 (64) is omitted. The first electron transfer (W400 /

FAD*) occurs in 38 ps in E. coli photolyase (27); the second

(W377 / W400
�1) and third (W324 / W377

�1) have

been estimated to be faster than 10 ns, also in E. coli
photolyase (26). The primary (FADH

�
W400

�1) and sec-

ondary (FADH
�

W377
�1) radical pairs are therefore much

shorter-lived than the tertiary pair (FADH
�

W324
�1), which

has a lifetime of ;1 ms in A. thaliana Cry1 (24), and for this

reason has been suggested as the most likely candidate for

the magnetoreceptor.

To judge the extent to which the spin evolution of these

three radical pairs is likely to be affected by radical-radical

interactions, we start by estimating the dipolar parameters.

Table 2 gives the center-to-center distances, from the crystal

structure of A. thaliana Cry1 (61), and the corresponding

FIGURE 4 Calculations of singlet-yield aniso-

tropies G for radical pairs with (A) 1, (B) 2, and (C)

3 protons on one radical and none on the other. For

each member of the ensemble of radical pairs,

parameters were assigned values at random from

within the ranges: �4 mT , D , 4 mT; �2 mT ,

J , 2 mT; �1 mT , a(i,k) , 1 mT; �3 , a(i,k) ,

3; and 0 , g(i,k) , p; 0 , d(i,k) , 2p, with k¼ 106

s�1. Each singlet-yield was calculated for a grid of

900 values of u and f, from which G was

determined using Eq. 11. The colored dots repre-

sent values of G in the ranges 10–15% (yellow),

15–20% (green), and .20% (red).

TABLE 1 Percentages of radical pairs that have singlet-yield anisotropy G [ 5%

J/mT D/mT (1,0) (2,0) (1,1) (3,0) (2,1) (4,0) (3,1) (2,2)

0 0 94.9 97.5 66.8 99.4 68.3 99.2 45.4 69.3

�0.333 0 0.0 2.5 0.1 3.8 0.7 2.3 0.3 0.2

�0.333 11.0 8.5 45.9 6.5 15.9 6.3 20.1 3.0 4.2

10.167 11.0 42.5 30.0 29.3 8.9 7.1 1.8 1.2 1.1

The value (n,m) signifies n spin-½ nuclei in radical 1 and m in radical 2. Singlet-yields were calculated for 64,000–117,000 radical pairs for each combination

of J and D. See text for further details. Although singlet-yield anisotropies were calculated for an ensemble of ;105 radical pairs, the parameter space for the

n 1 m ¼ 4 case is so large that the coverage is rather sparse; the entries in this table are therefore underestimates of the percentages of pairs that have G . 5%.
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point-dipole values of D obtained using Eq. 1. Also included

in the table are values of D and E (the rhombicity) deter-

mined by averaging over the appropriate electronic wave-

functions of the two radicals using Eq. 13. As expected, the

values of E are small (,3% of jDj), justifying the neglect of

the rhombicity in the calculations reported above. The

differences (, 20%) between the two estimates of D for each

radical pair illustrate the approximate nature of the point-

dipole approach, especially for the primary radical pair,

which has the smallest radical-radical separation. It is clear

from Table 2 that all three values of D(r) are .50 mT and so

cannot be considered to have a negligible effect on the spin

dynamics.

We now turn to the exchange interactions. Although J0

and b in Eq. 2 have been determined for bi-radicals in

solution (65), these values are unlikely to be appropriate for

radicals in the largely nonpolar interior of a protein where the

extent of electron delocalization and the relative orientation

of the relevant molecular orbitals are likely to play an im-

portant role. From an analysis of electron transfer rates in

photosynthetic reaction center proteins, Moser et al. (66)

found that V2(re), the matrix element that couples the

electronic wavefunctions of the reactants and the products of

the electron transfer reaction, depends exponentially on re,

the edge-to edge donor-acceptor separation

V
2ðreÞ} expð�breÞ; (14)

with b � 14 nm�1 (66). It is reasonable to assume (67) that

the exchange interaction J(r) has the same exponential

distance-dependence, i.e., that we may use a value of

14 nm�1 for b in Eq. 2. An estimate of J0 may therefore be

obtained from Eq. 2 using the exchange interaction (jJj ¼
900 mT) for the primary radical pair in the reaction center of

the purple photosynthetic bacterium Rb. sphaeroides R26

(68–70), for which the center-to-center separation is r ¼
1.8 nm (71). Thus, one finds jJ0j � 8 3 1013 mT. Given the

assumptions involved in this estimate, this value could well

be in error by an order of magnitude: we therefore estimate

8 3 1012 mT # jJ0j # 8 3 1014 mT.

Fig. 5 shows the dependence on r of J(r) (Eq. 2 with b ¼
14 nm�1 and 8 3 1012 mT # jJ0j # 8 3 1014 mT), jD(r)j/3,

and jD(r)j/6 (Eq. 1). It is evident that the exchange inter-

action dominates at small r and falls off with increasing sep-

aration much more rapidly than does the dipolar interaction.

With the above range of jJ0j values, Fig. 5 shows that the

matching condition for cancellation of the two interactions

(jJ(r)j � jD(r)j/3 or jJ(r)j � jD(r)j/6) is satisfied for radical-

radical separations between ;1.8 and 2.2 nm.

It can be seen from Fig. 5 that both the primary (FADH
�

W400
�1) and secondary (FADH

�
W377

�1) radical pairs are

expected to have strong dipolar and very strong exchange

interactions which are not of appropriate amplitudes to can-

cel one another. Neither pair should be able to undergo any

appreciable S 4 T interconversion, and still less respond to

a 50 mT magnetic field. As a consequence, the tertiary pair

(FADH
�

W324
�1) should be formed in a pure (singlet or

triplet) spin state with maximum spin correlation (ignoring

spin relaxation). Were this not the case, the tertiary pair

would be formed in a coherent superposition of singlet and

TABLE 2 Radical pair separations and dipolar

coupling parameters

FAD-W400 FAD-W377 FAD-W324

r/nm* 0.85 1.32 1.90

D(r)/mT (approximation)y �4500 �1200 �400

D(r)/mTz �5350 �1180 �380

jE(r)j/mTz 110 30 2

*Center-to-center distance.
yPoint dipole approximation.
zIntegral over SOMOs of flavin and tryptophan radicals.

FIGURE 5 Dependence of the exchange and dipolar interactions in a

radical pair on the center-to-center separation of the two radicals. The shaded

area corresponds to log[jJ0/mTjexp(�br)] with 8 3 1012 mT # jJ0j # 8 3

1014 mT and b ¼ 14 nm�1. The dashed lines represent logj(D(r)/3)/mT and

logj(D(r)/6)/mTj, calculated using the point-dipole approximation. The ver-

tical lines indicate the separations of the radicals in the primary, secondary,

and tertiary FAD-tryptophan radical pairs. The horizontal line drawn at

50 mT is the approximate strength of the Earth’s magnetic field.
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triplet states and would display a reduced sensitivity to an

external magnetic field.

Fig. 5 also shows that J(r) and D(r) are far from negligible

compared to 50 mT for the tertiary radical pair, and would

therefore severely attenuate the influence of the geomagnetic

field were it not for the fact that its radical-radical separation

falls within the range of r for which J/D cancellation can be

expected. We therefore predict that FADH
�

W324
�1 is

particularly well suited as a magnetoreceptor not because

J(r) and D(r) are negligible (as previously assumed), but

because their effects may cancel one another.

Electron transfer kinetics

A further consideration is whether the 2.0 6 0.2 nm range of

radical-radical separations that is optimum for magneto-

reception is consistent with a sufficiently rapid back-electron

transfer reaction. A crucial requirement for a magnetic field

effect is that the radical pair is able to recombine spin-

selectively at a rate that competes with spin relaxation and

other spin-independent reactions. Given that the relaxation

of a protein-bound radical could be as slow as 10–100 ms

(30), a reasonable lower limit for the rate constant k of back

electron transfer (i.e., FADH
�

W324
�1 / FAD 1 W324 1

H1) would be 104 s�1. To see whether this is compatible with a

center-to-center separation r of 2.0 6 0.2 nm, we turn to Marcus

theory (72,73). Moser et al. have shown that for electron transfer

reactions in proteins, k is given by the expression

logðk=s
�1Þ ¼ 15� 6re=nm� 3:1

ðDG 1 lÞ2

l

� �
=eV; (15)

where DG and l are, respectively, the Gibbs energy and the

reorganization energy of the electron transfer reaction (66).

For a given edge-to-edge distance, the optimum electron

transfer rate occurs when DG ¼ �l, so that

logðk=s
�1Þ# 15� 6re=nm: (16)

From Eq. 16, it may be seen that k $ 104 s�1 implies re #

1.8 nm. For the flavin-tryptophan radical pairs considered

above, the center-to-center separation is ;0.4 nm larger than

the edge-to-edge distance, from which we obtain r # 2.2 nm.

It therefore appears that the range of separations required for

J/D cancellation is indeed consistent with a sufficiently rapid

back electron transfer reaction.

Hyperfine interactions

Another issue concerns how and whether the results obtained

using model radical pairs with small numbers of nuclei can

be extrapolated to a real radical pair such as FADH
�

W
�1

which contains 16 nuclei with isotropic hyperfine couplings,

jaj, larger than ;0.1 mT. It is impossible to simulate spin

systems this large with currently available computers, and so

it is difficult to predict precisely the extent of J/D cancel-

lation in such a pair. In addition, it may be misleading to

attempt to extrapolate from small model systems with ran-

domly chosen hyperfine parameters to real systems which

may have correlated, symmetry-related (and possibly evo-

lutionarily optimized) hyperfine interactions. For example,

simulations of a flavin-tryptophan pair containing eight nuclei

(14) suggest that the anisotropy of the singlet-yield is dom-

inated by two nitrogens in the flavin radical which have

relatively large, axial, and collinear hyperfine tensors and

whose effects appear to reinforce one another. It is possible,

therefore, that the behavior of a FADH
�

W
�1 radical pair is

well modeled by a system containing only a few nuclear spins.

Reaction yield anisotropy

Finally, how large would G need to be to allow a bird

equipped with a radical pair magnetoreceptor to sense its

orientation in the Earth’s magnetic field? Far too little is

known about the signal transduction of any magnetic field-

dependent reaction yield to give a convincing answer, but

some insight may be obtained by assuming that the radical

pair reaction leads directly or indirectly to the production of

neurotransmitter molecules in amounts that depend on the

orientation of the magnetoreceptor in the magnetic field.

Thus, Weaver et al. (13) have estimated the number of recep-

tors R and the minimum total detector volume V required

to overcome stochastic fluctuations in the number of ligand-

receptor complexes. Adapting their arguments, which focus

on detection of small changes in the intensity of the external

field, to the detection of its direction, it is straightforward

to show that

R � 4

½GDu�2
and V=m

3 � 10
�19

R; (17)

where Du is the change in orientation to be detected. Thus, to

detect a 0.1 radian change in orientation using a reaction with

a 10% singlet-yield anisotropy (G ¼ 0.1), the number of

receptors must be .;4 3 104 and the total detector volume

would need to be at least ;4 3 10�15 m3 or ;(20 mm)3.

Judged by the arguments presented by Weaver et al. (13),

both figures seem plausible.

CONCLUSION

We conclude that in several respects the radical pair con-

sisting of FADH
�

and the radical derived from the terminal

tryptophan residue of the cryptochrome Trp-triad has prop-

erties that make it a favorable candidate for the proposed

avian compass magnetoreceptor.
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