
Calculation of Free Energy Barriers to the Fusion of Small Vesicles

J. Y. Lee and M. Schick
Department of Physics, University of Washington, Seattle, Washington

ABSTRACT The fusion of small vesicles, either with a planar bilayer or with one another, is studied using a microscopic model
in which the bilayers are composed of hexagonal- and lamellar-forming amphiphiles. The free energy of the system is obtained
within the self-consistent field approximation. We find that the free energy barrier to form the initial stalk is hardly affected by the
radius of the vesicle, but that the barrier to expand the hemifusion diaphragm and form a fusion pore decreases rapidly as the
radius decreases. As a consequence, once the initial barrier to stalk formation is overcome, one which we estimate at 13 kBT for
biological membranes, fusion involving small vesicles should proceed with little or no further input of energy.

INTRODUCTION

Membrane fusion is a critical event in many biological

processes such as viral infection, cellular trafficking, and

neurotransmitter release. It is widely accepted that fusion

proceeds through an intermediate, called a ‘‘stalk,’’ which is

formed when hydrophobic tails from two apposing mem-

branes come into contact via a fluctuation and make a

hydrophobic bridge between them. In the standard stalk

mechanism, first proposed by Kozlov and Markin (1), the

stalk expands radially or, equivalently, the two cis leaves of

the original bilayers recede. This leaves a hemifusion

diaphragm consisting of the two trans leaves of the bilayers.

When a hole forms in this diaphragm, a fusion pore is formed

and the process is essentially complete. An alternative path

that begins with a stalk has also been proposed (2,3) and

observed in simulations (2–7) along with the standard one. In

this mechanism, the stalk elongates around a hole that had

formed in one or both of the bilayers next to it. When the

hole is completely surrounded by the elongated stalk, the

resulting structure resembles a hemifusion diaphragm, which

can rupture to form a fusion pore. In microscopic studies of

fusion barriers, the barrier energies of the standard and

alternative mechanisms are found to be comparable (8,9).

As membranes are brought in proximity to each other,

water is expelled from the space between them and con-

sequently their free energy per unit area increases; that is,

they are placed under tension. Fusion, a process that reduces

area, is one possible response to this tension. During this

process, lipids must necessarily rearrange, and the resulting

deformation of the membranes gives rise to a free energy

barrier. The capacity of membranes for such deformation

depends on such factors as their lipid architecture, membrane

composition, and intermembrane distance, among others.

Since fusion intermediates such as the stalk and hemifusion

diaphragm are curved structures, membranes that consist of

hexagonal-forming lipids, such as the phosphatidylethanol-

amines, are expected to fuse more readily than those containing

lamellar-forming lipids, such as the phosphatidylcholines.

We have shown that the addition of hexagonal formers, espe-

cially in the cis leaflets, greatly reduces the barrier energies

of the process (9), thus making the process more likely. This

is in agreement with experiment (10–13).

The theoretical works cited above, like most others on the

free energy barriers to fusion, consider the fusion of two

planar bilayers. This is reasonable given that the region ac-

tively undergoing fusion is presumably much smaller than the

characteristic size of the vessels to be fused. A significant

exception to this is the fusion of a synaptic vesicle with the

plasma membrane. While the latter can be modeled as flat, a

synaptic vesicle is small, with a radius typically of ;25 nm,

but which can be as small as 14 nm (14,15). This is only a few

times larger than the vesicle’s bilayer thickness of 3–4 nm. In

such a case, one expects that the small radius, Rv, of the vesicle

increases its free energy per unit area, which is to say that it

imparts to it an effective surface tension. Indeed, in phenom-

enological theories, this effective surface tension would be

proportional to 1=R2
v (16). As the free energy barriers to fusion

decrease with increasing tension (17,18), one expects these

vesicles to fuse more easily the smaller they are. This is indeed

observed in experiment. Lentz et al. (19) studied fusion of model

membranes of varying diameters and observed that fusion

took place only for highly curved, small unilamellar vesicles,

while there was no appreciable mixing of contents for large

unilamellar vesicles of the same composition. In a more re-

cent experiment by Martens et al. (20), it was found that

synaptotagmin-1 promoted SNARE-mediated fusion of syn-

aptic vesicles. It also induced the formation from bilayers of

tubes of radius of ;9 nm. It was postulated that the promotion

of this large curvature was the cause of the enhanced fusion.

There are few theoretical studies (21,22) that consider the

effect on the barriers to fusion due to the finite radii of one or

both of the fusing vesicles. Both employ free energies in

which the elastic energy is supplemented by other phenom-

enological terms representing work done against hydration
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and other forces. The fusion of such vesicles has been

studied in simulation (5,7,18,23–25) but the manner in which

the fusion barriers depend upon the radius of the vesicle has

not. The purpose of this work is to elucidate this very

question utilizing the field-theoretic methods that we have

employed previously (8,9,17,26). We consider both the

fusion of a vesicle with a planar bilayer and also the fusion of

two vesicles with one another. We find that the increased

curvature has little effect on the barrier to produce the initial

stalk at a given intermembrane separation, but it significantly

reduces the second barrier—that between the expansion of

the hemifusion diaphragm and the formation of the pore

itself. Thus, once the initial stalk is formed, fusion can

proceed readily with little additional energy input.

THE MODEL

Our basic assumption is that the self-assembly of lipids into

bilayer membranes and various fusion intermediates is com-

mon to systems of amphiphiles. Therefore, the choice of a

specific amphiphilic system to study theoretically is a matter

of convenience. Indeed vesicles composed of diblock copol-

ymers have been shown to exhibit behaviors similar to those

of biological membranes (27). Energy scales, of course, are

specific to the system. We have shown that the scale in our

model of diblocks is smaller by a factor of 2.6 than those

characterizing lipid membranes in water (26). We adjust

accordingly when explicitly comparing energies to relevant

biological processes.

As in our previous calculations, we consider two types of

AB diblock copolymers as membrane constituents, and A

homopolymers as solvent, all contained in a volume V. The

statistical segment length of monomers A and B is assumed

to be the same. Each diblock of type 1 is characterized by its

molecular volume Nv, where v is the segment volume, and its

hydrophilic fraction, f1, is arbitrarily chosen to be of type A.

Diblocks of type 2 are similarly characterized by the molec-

ular volume ãNv, where ã denotes the ratio of the type 2

diblock length to the type 1 diblock length. The hydrophilic

fraction is f2. We set f1 ¼ 0.4 and f2 ¼ 0.294 as these values

produce spontaneous curvatures close to those of dioleoyl-

phosphatidylcholine and dioleoylphosphatidylethanolamine

(17). In addition, we set ð1� f1ÞNv ¼ ð1� f2ÞãNv such that

hydrophobic tails of type 1 and 2 amphiphiles are of equal

length. For f1 ¼ 0.4 and f2 ¼ 0.294, ã ¼ 0:85. The char-

acteristic energy between hydrophilic and hydrophobic seg-

ments is described by a Flory interaction parameter, x, which

is related to the inverse temperature, 1/T. The solvents are

represented by A type homopolymers of volume Nv. As the

penetration into the bilayer of the homopolymer solvent

varies with its volume, this choice is made to ensure that

the penetration occurs primarily in the headgroup region, as

shown in Fig. 3 of Katsov et al. (17), and falls rapidly as the

hydrophobic region is entered as it should. Lastly, the bulk

three-dimensional system is assumed to be incompressible.

This does not mean that the bilayer itself cannot be stretched

or compressed, but only that any volume changes in the bi-

layer must be compensated by opposite ones in the surround-

ing solvent. The model is now completely defined.

The free energy of the system of flexible chains with

Gaussian chain statistics is easily formulated (28,29) but is

too difficult to be evaluated analytically. Hence, we evaluate

it within the self-consistent field approximation. Within this

formalism the free energy, VðT;V;A; z1; z2; zsÞ, of the

system containing a planar bilayer of area A is given by the

minimum of the functional V
~
,

Nv

kBT
V
~ ¼ �z1Q1 � z2Q2 � zsQs

1

Z
dr½xNfAðrÞfBðrÞ � wAðrÞfAðrÞ

� wBðrÞfBðrÞ � jðrÞð1� fAðrÞ � fBðrÞÞ�; (1)

where Q1, Q2, and Qs are the single chain partition functions

of amphiphiles of type 1 and 2 and of solvent molecules,

respectively (17). The numbers of these molecules, n1, n2,

and ns, is controlled by the activities z1, z2, and zs. Due to the

incompressibility condition, only two of them are indepen-

dent. The local volume fractions fA and fB are the sum of A

and B type monomer volume fractions from different types

of molecules: fA ¼ f1, A 1 f2, A 1 fs, and fB ¼ f1, B 1

f2, B. The mean fields associated with A and B type mono-

mers which are generated by the approximation are denoted

wA and wB. A Lagrange multiplier j(r) enforces the incom-

pressibility constraint at every point in space. These fields,

and the Lagrange multiplier j(r), are determined by the self-

consistent equations which result from minimizing the free

energy functional. (See the Appendix.) Insertion of these

fields into the free energy functional, Eq. 1, yields the free

energy within the self-consistent field approximation,

Nv

kBT
VðT;V;A; fzigÞ ¼ � z1Q1ðT; ½wA;wB�Þ

� z2Q2ðT; ½wA;wB�Þ � zsQsðT; ½wA�Þ

�
Z

drxNfAðrÞfBðrÞ; (2)

where fzig denotes the set of the three activities z1, z2, and

zs. The free energy of the system without the bilayer, i.e., a

homogeneous solution, is denoted V0(T, V, fzig). The

difference between these two free energies, in the thermo-

dynamic limit of infinite volume, defines the excess free

energy of the system:

dVðT;A; fzigÞ[ lim
V/N
½VðT;V;A; fzigÞ �V0ðT;V; fzigÞ�:

(3)

With the excess free energy known, the surface free energy

per unit area, or equivalently, the surface tension, g, is

obtained from the excess free energy, dVbilayer, of a flat

bilayer,
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gðT; fzigÞ[ lim
A/N

dVbilayerðT;A; fzigÞ
A : (4)

To describe the system containing a planar bilayer and a

vesicle in close apposition, we impose additional constraints

to specify the location of the hydrophilic/hydrophobic inter-

face of the cis leaflet of the vesicle, rv, and of the planar bi-

layer, rp, away from their region of contact. These positions

are specified as follows. We take the vesicle to be formed by

rotating a semicircle about the z axis in a cylindrical coordi-

nate system, and the planar bilayer to be situated perpendic-

ular to the z axis, a distance H from the vesicle, where H is

measured between hydrophilic/hydrophobic interfaces of cis
leaflets of either bilayer along the z axis. The configuration is

depicted in Fig. 1 a. If we choose the midpoint between the

vesicle and the planar bilayer to occur at z¼ 0, r ¼ 0, then rp

with components (rp, up, zp) is given by zp ¼ �H/2 for all rp

and up, and the components (rv, uv, zv) of rv are such that

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

v1½Rv � ðzv � H=2Þ�2
q

for all uv, where Rv is the dis-

tance from the center of the vesicle to the hydrophilic/

hydrophobic interface of the outer leaflet of the vesicle. To

enforce that the hydrophilic/hydrophobic interface pass through

these locations, we employ a Lagrange multiplier l, so that

the free energy functional is now given by

To calculate the free energy of fusion intermediates (such as

the stalk, hemifusion diaphragm, or fusion pore) as a func-

tion of a radius, R, that we stipulate, we must ensure that the

hydrophilic/hydrophobic interface pass through this radius.

It is defined to be the minimum value of the r-coordinate of

the hydrophilic/hydrophobic interface connecting the cis
leaflets of the bilayer and vesicle. Since there is no reflection

symmetry about z ¼ 0, the minimum value of r does not

necessarily occur at z ¼ 0. We found that the z coordinate at

which the minimum radius occurs is generally close to zm,

the midpoint between the unfused vesicle and planar bilayer

at fixed r ¼ R. Consequently, we use a Lagrange multiplier,

c, to impose that the hydrophilic/hydrophobic interface pass

through the circle defined by r ¼ R and z ¼ zm (30). It

remains only to specify where the hydrophilic/hydrophobic

interface in the fusion region is to join up with the locations

rp and rv above of the unperturbed planar bilayer and vesicle.

We do this by imposing the constraint that the interface pass

through rp and rv only in the region r $ R 1 Rc, where Rc is

positive and at least as large as the hydrophilic thickness of

the bilayer (see Fig. 1 b). The free energy expression for

fusion intermediates is finally given by

where Q is the Heaviside step function. The requirement that

this free energy functional be stationary with respect to

variation of the functions fA(r), fB(r), wA(r), wB(r), and

j(r) again yields a set of self-consistent equations, Eqs. 10–

14 of the Appendix, which are solved in real space to obtain

the free energy of the system containing the corresponding

intermediate, VðT;V;A; fzig;H;Rv;RÞ. Again, the excess

free energy is defined as the difference between this and the

free energy of the homogeneous solution

dVðT;A; fzig;H;Rv;RÞ[ lim
V/N
½VðT;V;A; fzig;H;Rv;RÞ

�V0ðT;V; fzigÞ�: (7)

To determine the free energy of the intermediate, we calcu-

late the excess free energy of the unperturbed system of

bilayer and vesicle of radius Rv, which are a distance H apart.

Denote this excess free energy as dVunpertðT;A; fzig;H;RvÞ.
Then the excess free energy of the intermediate of radius R,

when the perturbed vesicle of radius Rv is at the same

distance H from the planar bilayer, is given by

dVintðT; fzig;H;Rv;RÞ[ lim
A/N
½dVðT;A; fzig;H;Rv;RÞ

� dVunpertðT;A; fzig;H;RvÞ�: (8)

RESULTS AND DISCUSSION

We first examine the effect of curvature on the barrier energy

to membrane fusion for bilayers composed entirely of a

lamellar-forming amphiphile with hydrophilic volume frac-

NvV
~

kBT
¼ �z1Q1 � z2Q2 � zsQs 1

Z
dV½xNfAðrÞfBðrÞ � wAðrÞfAðrÞ � wBðrÞfBðrÞ � jðrÞð1� fAðrÞ � fBðrÞÞ

� l½dðr� rpÞ1 dðr� rvÞ�ðfAðrÞ � fBðrÞÞ�: (5)

NvV
~

kBT
¼ �z1Q1 � z2Q2 � zsQs 1

Z
dV½xNfAðrÞfBðrÞ � wAðrÞfAðrÞ � wBðrÞfBðrÞ � jðrÞð1� fAðrÞ � fBðrÞÞ

�cdðr � RÞdðz� zmÞðfAðrÞ � fBðrÞÞ � l½dðr� rpÞ1 dðr� rvÞ�Q½r � ðR 1 RcÞ�ðfAðrÞ � fBðrÞÞ�; (6)
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tion f ¼ 0.4. In Fig. 2, we show the characteristic energies of

stalk/hemifusion intermediates and fusion pores as a function

of R for membrane merger in two systems: one consisting of

two planar bilayers, the other consisting of a single planar

bilayer and a highly curved vesicle of Rv ¼ 19.6Rg. The

characteristic size, Rg, in the polymer system is the radius of

gyration of the diblocks of type 1 and of the solvent homo-

polymers, Rg ¼ (Na2/6)1/2 with a the common statistical

segment length of monomers A and B. The bilayers shown

here are either under zero applied tension or one of g ¼
0.067g0, which corresponds to ;2.7 mN/m. Such a value is

at the lower end of tensions which can cause lysis (31), so

that these results span the entire range of relevant applied

tensions. Again, Rv is the distance from the center of the

vesicle to the hydrophilic/hydrophobic interface of the outer

leaf. If we include the thickness of the hydrophilic head-

groups of the outer leaf, measured from the above interface

to that at which the headgroup and solvent densities are

equal, the radius of the vesicle is ;20.3Rg. The thickness of a

planar bilayer, measured from the point at which the volume

fractions of headgroup and solvent are equal on one side to

the other, is 4.3Rg. Therefore the vesicles with Rv ¼ 19.6Rg

are characterized by a radius which is approximately five

times larger than the planar bilayer thickness. This is rea-

sonable for a highly curved vesicle. The radius of a synaptic

vesicle, one of the smallest endocytotic vesicles, can be as

small as 14 nm (15), ;3.5–4.5 times the thickness of the

typical membrane thickness of 3–4 nm (32). To highlight the

effects of the curvature, we fix the distance between bilayer

and vesicle. The value of H chosen is 1.96Rg, the distance at

which a minimum occurs in the free energy between the

planar bilayer and the single component vesicle of Rv ¼
19.6Rg. This minimum arises from the attractive depletion

force between bilayer and vesicle. We note from the figure

that the barrier to make the initial stalk itself is not greatly

affected by the curvature of the vesicle. This feature is in

agreement with the observations that large membrane cur-

vature does not have a significant effect on the rate of for-

mation of the initial intermediate (19,33), and is one that has

not been captured by previous phenomenological calcula-

tions (21,22). In contrast, the energy barrier for the stalk to

expand and convert to a fusion pore is significantly reduced

from the value obtained in the system of two planar bilayers.

Assuming that the barrier energy to fusion occurs where the

energies of stalk/hemifusion intermediates and of pores are

equal, we observe a barrier reduction of ;5 kBT from the

fusion of planar membranes to fusion of a planar membrane

and a vesicle. This corresponds to 13 kBT in a biological

system. It should also be noted that there is no metastable

stalk in this system. As a consequence, the barrier to fusion is

the difference between the free energy at which the pore

forms and the free energy of the unperturbed system. Further,

fusion along this path would have to occur in a single acti-

vated step.

To model a more realistic membrane composition, we add

hexagonal-forming amphiphiles of f2 ¼ 0.294 and ã ¼ 0:85

to the bilayers such that the average volume fraction is 0.4.

This mimics the approximate composition of lamellar formers

and hexagonal formers in the plasma membrane of human

FIGURE 2 Excess free energy of stalk/hemifusion intermediates and

fusion pores for systems comprised of f¼ 0.4 diblocks. The bilayers here are

either under zero tension (open symbols) or an external tension of g/g0 ¼
0.067 (solid symbols), with g0 the interfacial tension between coexisting

solutions of hydrophobic and hydrophilic homopolymers. The bilayers are

separated by H ¼ 1.96Rg. Squares represent the excess energy of stalk/

hemifusion intermediates between two planar bilayers and circles are for

stalk/hemifusion intermediates between a planar bilayer and a vesicle of Rv

¼ 19.6Rg. The excess energy of fusion pores is represented by either dashed

lines (zero tension) or solid lines (g/g0 ¼ 0.067), of which two upper curves

are for pores between two planar bilayers and two lower curves are for pores

between a planar bilayer and a vesicle of Rv ¼ 19.6Rg.

FIGURE 1 (a) Apposed planar bilayer and vesicle, sep-

arated by distance H. The size of the vesicle is measured

by the distance, Rv, from its center to the hydrophilic/

hydrophobic interface of the outer leaflet, and H is mea-

sured between the hydrophilic/hydrophobic interfaces of

cis leaflets at the minimum separation. Only some of the

lipids in the bilayers are shown to more easily visualize the

location of the hydrophilic/hydrophobic interfaces. (b)

Stalk/hemifusion intermediate in the system of planar bi-

layer and vesicle. The radius R of the intermediate is shown.

The X symbols denote the distance R 1 Rc beyond which

the constraint is imposed that the bilayer and vesicle take

their unperturbed locations.
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red blood cells (34). In Fig. 3, we show the energies of stalk/

hemifusion intermediates as a function of their radius R for

fusion between two planar bilayers (upper curve), between a

planar bilayer and a vesicle of Rv ¼ 29.4Rg (middle curve),

and Rv ¼ 19.6Rg (lower curve). With the size of the head-

group included, these vesicles are of radii which are ap-

proximately seven and five times greater than the bilayer

thickness, and therefore comparable in size to small synaptic

vesicles. The system is under zero applied tension, and the

value of H is the same as in Fig. 2. Again, the free energy

barrier to create the initial stalk is not greatly affected. The

barrier to its formation is ;6 kBT, corresponding to ;16 kBT
for a biological system. These barriers are shown by the solid

square and circle at R/Rg � 0.6 for the fusion of the vesicles

with Rv ¼ 29.4Rg and 19.6Rg, respectively. However, in the

case of fusion of the planar bilayer and this vesicle, the stalk

is now a metastable entity, which means that fusion can

occur in a two-step process. The increase of free energy as

the radius of the stalk decreases from its value at the local

minimum is due to the greater crowding of the hydrophobic

entities into the increasingly narrow stalk. For very small

stalk radii, there are simply no solutions of the self-consistent

equations (Eqs. 10–14). Note from the middle and lower

curves of the figure, those for the fusion of a vesicle and

planar membrane, that the energy to go from the metastable

stalk across the maximum to the fusion pore, that is, the

second barrier in the process (shown by the solid square and

circle at R/Rg � 2), is now less than the barrier to make

the initial stalk itself. Thus, formation of the stalk is now the

rate-limiting process. Plots of the headgroup density at the

two barriers are shown in the insets together with a similar

plot for a well-developed hemifusion diaphragm. Finally one

sees that the effect of increasing the curvature of one of the

fusing vesicles from zero, that of a planar bilayer, to a value

appropriate for a synaptic vesicle, is to reduce markedly the

second barrier to fusion, that between the expansion of the

hemifusion diaphragm and the formation of the fusion pore.

Therefore we expect that fusion between a planar bilayer and

a vesicle will take place the more readily the smaller the

radius of the vesicle. This is in agreement with experiment

(19).

There are several reasons for this behavior. We have

already mentioned that a spherical vesicle, even under zero

applied tension, will behave as if it were under a tension

proportional to 1=R2
v, the square of its curvature. Thus a

smaller vesicle, one with larger curvature, behaves as if it

were under a larger tension. As we have shown that the

second barrier to fusion decreases with increasing tension

(17), it is not surprising that this second barrier decreases

with increasing curvature. This large effective tension

presumably overshadows any actual applied tension, which

is why it has so little effect on the results of Fig. 2. The origin

of this effective tension is also clear. The system is such

that a planar bilayer is a favorable structure. Bending of

the bilayer causes the hydrophilic parts of the chains on the

inner, concave, leaf to become crowded while those on the

outer, convex, leaf become somewhat diluted. Both re-

sponses are departures from their preferred configuration

(16). One expects that as a result of the curvature, the

inverse-hexagonal-forming lipids, component 2, will have a

somewhat larger concentration in the concave leaf than when

in the planar bilayer. Consequently, the lamellar-forming

lipids, component 1, will be slightly concentrated in the

outer, convex, leaflet. To verify this, we plot the density

profiles of hydrophobic tails of type 1 and 2 amphiphiles in

Fig. 4. The one-dimensional density profiles are the result of

making a cut parallel to the z axis at different values of r, the

distance from the axis of symmetry. In the figure they are,

from top to bottom, at r ¼ 0, 2.45Rg, and 4.9Rg. Of the two

peaks, that on the right-hand side is for the vesicle and that

on the left is for the planar bilayer. For the cut made through

r ¼ 0, i.e., at the minimum separation distance between the

bilayer and the vesicle, we see an elevated density of lamellar

formers and reduced density of hexagonal formers at the

outer leaflet (cis leaflet) of the vesicle. The local composition

of the inner leaflet shows the opposite. Note that these

changes in local composition due to the curvature are just the

reverse of those which promote fusion (i.e., increased

hexagonal formers in the cis leaf). However, the relative

change in volume fraction is small as the amphiphiles tend to

distribute evenly throughout the membrane to maximize

their entropy of mixing. Thus, this change in local compo-

sition does not overwhelm the primary effect of the

curvature, which is to promote fusion.

A second effect which tends to lower the initial barrier to

create a stalk is that the distance at which the minimum free

energy occurs in the system of a vesicle and planar bilayer is

FIGURE 3 Excess free energy of stalk/hemifusion intermediates for two-

component bilayers comprised of lamellar-forming f1 ¼ 0.4 and hexagonal-

forming f2 ¼ 0.294 AB diblocks under zero tension. The upper curve

(triangles) is for two planar bilayers, the middle curve (squares) is for a

planar bilayer and a vesicle of Rv ¼ 29.4Rg, and the bottom (circles) is for a

planar bilayer and a vesicle of Rv ¼ 19.6Rg. The distance between the two

bilayers is H ¼ 1.96Rg. Solid symbols indicate the first and second barriers

for each system. Insets below the curves show density plots of headgroups of

a stalk of R ¼ 0.67Rg at which the first barrier occurs, a hemifusion

diaphragm of R ¼ 2.0Rg at which the second barrier occurs, and a

hemifusion diaphragm of the largest radius shown in the plot (R ¼ 2.9Rg)

between a planar bilayer and a vesicle of Rv ¼ 29.4Rg.
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smaller than the analogous distance between two planar

bilayers. This comes about simply because the distance

between vesicle and plane increases as one moves away from

the point of closest approach and hence the repulsion

decreases. In particular, the distance at which the minimum

free energy occurs for two planar bilayers of the composition

used above is Hmin ¼ 2.2Rg, while that for a planar bilayer

and a vesicle of Rv¼ 19.6Rg of the same composition is Hmin¼
1.7Rg. As the barrier to make the initial stalk increases with

its length (26), that between the vesicle and planar bilayer is

somewhat less than the barrier to make the initial stalk be-

tween planar bilayers.

Lastly, we have examined the fusion between two vesicles

of the same radius. The problem is a simpler one because of

the reflection symmetry about the z ¼ 0 plane. From the

above, we would expect that the second barrier to fusion in

this case would be reduced from that in the system of one

vesicle fusing with a planar bilayer. That is indeed the case.

Whereas the middle curve of Fig. 3 showed the free energies

of intermediates in the fusion of a planar bilayer and a vesicle

of radius Rv ¼ 19.6Rg, the upper curve of Fig. 5 shows the

analogous results for the fusion of two such vesicles. Note

that the second barrier, that between the metastable stalk and

the formation of the fusion pore, is now very small. One

would expect that in the fusion of two similar, but even

smaller, vesicles, this second barrier would disappear

completely. That this is correct is shown in Fig. 5 where

we have plotted the free energy of the intermediates in the

fusion of vesicles characterized by a distance from their

center to the hydrophobic/hydrophilic interface of Rv equal

to 19.6Rg, 17.2Rg, 14.8Rg, and 7.4Rg. In agreement with the

phenomenological calculations of Malinin and Lentz (22),

there is a dramatic decrease in the barrier between the initial

stalk and the expansion and conversion to a pore with

increasing curvature. However, the effect is much larger in

our calculation. Indeed the difference between the two

barriers vanishes for vesicles of radius 19.6 Rg measured to

the hydrophilic/hydrophobic interface. When the additional

thickness of the hydrophilic headgroups is included, the

radius of this vesicle is ;20 Rg. Given that our bilayers are of

thickness 4.3Rg from headgroup to headgroup, and that

typical bilayers are on the order of 4 nm, the radius of this

vesicle would correspond to ;19 nm. The vanishing of the

difference between barriers at such a radius is in nice

agreement with the observation of Lentz and Lee (35) that

the barriers to these two intermediates are equal in the fusion

of vesicles of radius of 22.5 nm. As a further note, the

absolute value of the barriers as calculated here are smaller

than those obtained in the phenomenological calculations of

the literature (21,22) by factors ranging from 2 to 10.

The smallest vesicles considered above, those with a

distance to the hydrophilic/hydrophobic interface of Rv ¼
7.4Rg, or a radius of ;8.1 Rg when the headgroups are

included, correspond to vesicles with a diameter of ;17 nm.

This is approximately the diameter of the lipid tubes that

were caused to form by synaptotagmin in recent experiments

(20). From Fig. 5, one sees that once the barrier to the

formation of a stalk between two small vesicles is overcome,

a barrier we estimate at ;13 kBT in a biological membrane,

hemifusion expansion, and pore formation can occur without

further energy input.

APPENDIX: MODEL PARAMETERS

As noted earlier, our model has been completely specified. It contains

several parameters. They are the strength of the repulsive interaction

between A and B monomers, x, the polymerization index, N, the ratio, ã, of

the molecular volumes of diblock 2 to diblock 1, the polymer segment

volume, v, and the statistical segment lengths aA ¼ aB, which have been set

equal to one another, a. More generally, they could be taken to differ, but

FIGURE 4 Density profiles of hydrophobic tails of lamellar formers

(solid curve) and hexagonal formers (dashed curve) in apposed planar

bilayer and vesicle of Rv ¼ 19.6Rg along (a) r ¼ 0, (b) r ¼ 2.45Rg, and (c)

r ¼ 4.9Rg. The planar bilayer is on the left.

FIGURE 5 Free energies of fusion intermediates in the fusion of identical

vesicles. From top to bottom, the radii are 19.6Rg, 17.2Rg, 14.8Rg, and

7.4Rg.
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this would simply alter the energies of all quantities (36) and therefore the

scaling factor relating the model energies to the biological ones. As the

statistical segment lengths are equal, the ratio of the volume fractions and

lengths of copolymers 1 and 2 are equal. This leaves us with five parameters to

be specified. By measuring all lengths in units of the radius of gyration of

polymer 1 and of the homopolymer, Rg¼ (Na2/6)1/2, we reduce the number of

parameters to four. Within the self-consistent field theory, N and x do not enter

the equations independently, but only in the combination xN, so there are only

three parameters to specify. We have taken ã ¼ 0:85 so that the tails of the two

amphiphiles are of equal length. To compare our results for the polymer system

with a previous simulation of such polymers (4), we choose xN ¼ 30. Lastly,

the volume of the system is of no interest but rather the free energy per unit

volume which depends upon the volume per molecule. Again to make contact

with the simulations, we choose V=½ðn11n21nsÞR3
g� ¼ 1:54. All parameters

are now specified.

The free energy per unit volume depends on the temperature, T, and the

number of molecules per unit volume of type 1, n1/V, of type 2, n2/V, and of

solvent, ns/V. Equivalently, it depends on the temperature and the three

chemical potentials z1, z2, and z3. By measuring all energies in units of kBT,

we need not specify the temperature. Finally, the condition of bulk

incompressibility,

Nv
ns

V
1

n1

V
1

ãn2

V

� �
¼ 1; (9)

reduces the number of independent chemical potentials to two.

The free energy in the self-consistent field approximation is equal to the

minimum of the free energy functional of Eq. 6. This functional is

extremized with respect to the five functions wA(r), wB(r), z(r), fA(r), and

fB(r), which yields the five equations

wAðrÞ ¼ xNfBðrÞ1 jðrÞ � cdðr � RÞdðz� zmÞ
� l½dðr� rpÞ1 dðr� rvÞ�Q½r � ðR 1 RcÞ�;

(10)

wBðrÞ ¼ xNfAðrÞ1 jðrÞ1 cdðr � RÞdðz� zmÞ
1 l½dðr� rpÞ1 dðr� rvÞ�Q½r � ðR 1 RcÞ�;

(11)

1 ¼ fAðrÞ1 fBðrÞ; (12)

fAðrÞ ¼
dQ1½wA;wB�

dwA

1
dQ2½wA;wB�

dwA

1
dQs½wA;wB�

dwA

; (13)

fBðrÞ ¼
dQ1½wA;wB�

dwB

1
dQ2½wA;wB�

dwB

: (14)

The partition functions are obtained from single-chain propagators in the

usual way familiar from polymer physics (28,37). For example, the solvent

partition function

Qs½wA� ¼
Z

dr qhðr; 1Þ; (15)

where the homopolymer single-chain propagator, qh(r, s), satisfies the

modified diffusion equation

@qhðr; sÞ
@s

¼ R
2

g=
2
qhðr; sÞ � wAðrÞqhðr; sÞ; (16)

and the boundary condition qh(r, s ¼ 0) ¼ 1. Methods for solving these

equations are discussed by Fredrickson (28) and by Matsen (29).
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