
Predicting the Folding Pathway of Engrailed Homeodomain with a
Probabilistic Roadmap Enhanced Reaction-Path Algorithm

Da-wei Li,* Haijun Yang,* Li Han,y and Shuanghong Huo*
*Gustaf H. Carlson School of Chemistry and yDepartment of Mathematics and Computer Science, Clark University, Worcester,
Massachusetts

ABSTRACT To predict a protein-folding pathway, we present an alternative to the time-consuming dynamic simulation of
atomistic models. We replace the actual dynamic simulation with variational optimization of a reaction path connecting known initial
and final protein conformations in such a way as to maximize an estimate of the reactive flux or minimize the mean first passage
time at a given temperature, referred to as MaxFlux. We solve the MaxFlux global optimization problem with an efficient graph-
theoretic approach, the probabilistic roadmap method (PRM). We employed CHARMM19 and the EEF1 implicit solvation model to
describe the protein solution. The effectiveness of our MaxFlux-PRM is demonstrated in our promising simulation results on the
folding pathway of the engrailed homeodomain. Our MaxFlux-PRM approach provides the direct evidence to support that the
previously reported intermediate state is a genuine on-pathway intermediate, and the demand of CPU power is moderate.

INTRODUCTION

Predicting a protein-folding pathway is an important step

toward solving the protein-folding problem. Explicit-solvent

molecular dynamics (MD) simulations of protein folding

with all-atom models, e.g., CHARMM22 (1) and AMBER

parm94 (2), remain challenging, although some exciting

successes have been reported (3–5). Here, we present an

alternative to the time-consuming dynamic simulation of

atomistic models. We replace the actual dynamic simulation

with variational optimization of a reaction path connecting

known initial and final protein conformations in such a way

as to maximize an estimate of the reactive flux (j) or minimize

the mean first passage time (MFPT) at a given temperature,

referred to as MaxFlux (6). The dynamics of biomolecular

conformational transitions can be approximated as an over-

damped diffusive process in configuration space subject to

the Smoluchowski equation (7),
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where p(r,t) is the probability distribution. If g is the isotropic

and spatially independent friction coefficient, the diffusion

tensor D(r) ¼ (kBT/mg)I, where I is the identity matrix.

Because the temperature effect is included, the obtained reac-

tion path can be considered to be an approximate classical

MD trajectory. How representative is the optimized reaction

path of the experimentally measured overall reaction mech-

anism? For simple conformational transitions, e.g., those of

organic compounds, there is only one dominant path; as a

consequence, the optimal path with the shortest MFPT is the

best representation of the actual reaction mechanism. How-

ever, for proteins, DNA, and RNA, there may be a large

number of paths (with different probabilities) thermally

available for the transition, and the experimental observation

is the average of all thermally available paths according to

their probability. But this does not mean that there is no most

probable path. As we have shown in the conformational

reorganization within aggregates (8), there is a most popu-

lated path. And the most populated path is the one corre-

sponding to the optimal path that overcomes the lowest (free)

energy barrier or takes the shortest time.

For a one-dimensional bistable potential under stationary

conditions, the approximate forward-reacting MFPT ob-

tained by solving the Smoluchowski equation reproduces the

classical Arrhenius formula (6). For the system that moves in

a multidimensional potential of mean force U(r), further as-

sumptions are needed—1), the friction coefficient is isotropic

in space; 2), the reactive flux along the pathway is con-

stant—before one defines the optimal pathway as the one that

minimizes the MFPT (9),

P ¼
Z rP

rR

e
bUðrÞ

dlðrÞ; (1)

where b ¼ 1/kBT and kB is the Boltzmann constant. In this

work, T ¼ 300 K. U(r) was the effective energy for a given

conformation calculated with the CHARMM19 (10) force

field together with the EEF1 (11) implicit solvation model.

The dl(r) was defined as the Ca RMSD between two confor-

mations. This definition of optimal pathway is consistent

with the fact that a conformation of low effective energy is

favored with the probability proportional to exp (bDU) where

DU is the difference in effective energy between two con-

formations. Herein, the objective is to minimize the line

integral in Eq. 1.
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By minimizing the line integral of Eq. 1 using the self-

avoiding walk method (12), one can obtain an optimal

pathway corresponding to the fastest reaction rate (6). The

MaxFlux algorithm has been successfully applied to study

the conformational change of peptides (13,14). However,

searching for the global optimized folding pathway for a

protein, even a medium-sized protein, using an atomistic

model is computationally demanding. So far, the applications

of MaxFlux or its alternative MaxFlux-NEB (15) to beyond

peptide folding are seldom seen. The difficulties in finding

the global optimized path start from the initial guess, which is

usually a linear interpolation between the reactant and the

product. If the initial guess happens to be close to the optimal

pathway, a local minimization method, such as conjugate

gradient, is good enough to find the optimal pathway as

shown in the MaxFlux application to alanine dipeptide (6).

Unfortunately, in most of the cases, the initial guess is far

away from the final path; as a result, a global optimization

procedure is indispensable. However, the traditional global

minimization methods in the path space, such as simulated

annealing, are extremely time consuming. We solve the

MaxFlux global optimization problem with an efficient

graph-theoretic approach, the probabilistic roadmap method

(PRM), originally developed for robot motion planning (16)

and further adapted in our group (17) based on the pioneer

application of PRM to protein folding (18–21).

Imagining that the conformation space and the transition

between conformations are encoded in a graph, one can

query the graph to obtain useful information. In general, the

PRM approach builds a graph, the so-called roadmap, to

reflect the connectivity between roadmap nodes (or transi-

tions between conformations) in the part of the conforma-

tion space relevant to the study of protein-folding pathways.

And for any two conformations (or nodes) that are suffi-

ciently close based on some similarity measure, an edge

between them is created with the edge weight reflecting the

cost of the transition between the nodes. After constructing a

roadmap that has the reactant and product in one connected

component, the shortest (or minimum edge weight) path

between the reactant and product can be computed by

Dijkstra’s algorithm (22). The difference between MaxFlux-

PRM and Amato and co-workers’ PRM approach (18,19)

lies in the edge definition. Instead of using potential energy,

MaxFlux-PRM uses the approximate MFPT as edge weight.

The comparisons between MaxFlux-PRM and PRM on

Müller potential and three-hole potential have shown that

MaxFlux-PRM is able to identify an on-pathway interme-

diate state, whereas PRM fails to do so on these model po-

tentials (17). We also employed the MaxFlux-PRM method

to search for the folding pathway of the second b-hairpin of

the B1 domain of streptococcal protein G (17). Our folding

mechanism is in excellent agreement with the recent ex-

perimental results (23,24). However, this b-hairpin contains

only 16 residues. Can MaxFlux-PRM be applied to larger

systems?

Here, we report the application of further improved

MaxFlux-PRM to engrailed homeodomain (EnHD) (PDB

entry: 1ENH (25)). This protein adopts a three-helix bundle

conformation with 56-amino acid-containing helix 1 (H1:

residues 10–22), helix 2 (H2: residues 28–37), and helix 3

(H3: residues 42–56). H1 and H2 align antiparallel, while H3

lies on top of them and runs from the C-terminal of H2 to the

C-terminal of H1. The ultrafast kinetic measurements have

revealed a two-step folding mechanism at 25�C: a fast phase

with a half-life of 1.5 ms to give an intermediate state and a

slow phase with a 15-ms half-life to fold to the native state

(26). An on-pathway intermediate state has been modeled by

unfolding simulations (26), protein engineering (27), and ab

initio folding using a reduced all-atom model (28). Our re-

action path-based approach is able to provide the direct evi-

dence regarding whether the reported intermediate state is a

genuine on-pathway intermediate or not. The wealth of ex-

isting experimental and computational data in turn can test

the robustness of our MaxFlux-PRM (17) approach.

MATERIALS AND METHODS

The flow chart of our MaxFlux-PRM algorithm is shown in Fig. 1. We

employed several innovative techniques to address the conformation space

sampling, roadmap connection, and numerical precision issues, which are

important for the computational efficiency and the quality of roadmaps and

folding pathways. An iterative approach was employed to overcome the

difficulties of sampling. Our roadmap in earlier iterations has more relaxed

edge connection criteria and encodes coarse-grained conformational transi-

tions. The seeds are considered conformations that show promise for further

exploration and generation of more refined roadmaps. The effective energy

of each conformation is calculated using a CHARMM19 force field and

EEF1 solvation model (10,11). In the first iteration, we generated a set of

Gaussian distributions around the backbone dihedral angles of the seed

conformations, which are the extended state and the native state with a set of

standard deviations (STDs) of (5�, 10�, 20�, 40�, 80�, 160�). The small STDs

focus on the sampling in the vicinity of the seeds, whereas the larger STDs

allow broader roadmap coverage of the conformation space. To remove some

bad contacts, 100 steps of minimization were performed after the side chains

were built by CHARMM with the backbone dihedral angles restrained. To

sample the side-chain conformation, 15,000 steps of Monte Carlo (29) were

carried out in the side-chain dihedral angle space. Finally, the generated

conformation was minimized again with the backbone dihedral angles re-

strained for 3000 steps or DU , 0.005 kcal/mol, whichever came first. The

nodes with higher effective energy than a threshold (�1300 kcal/mol) were

removed. Only conformations with the effective energies lower than the

threshold value were saved as roadmap nodes. As a result, 29,533 nodes were

in the roadmap during the first iteration.

To build a neighbor list, we used Ca RMSD as a similarity measure. If the

Ca RMSD between two roadmap nodes is below certain cutoff values (rc),

our method creates an edge between the two. In general, the smaller rc value,

the fewer the roadmap edges, the more connected components are in the

roadmap, and the more detailed the folding pathways (if they exist). Because

the Ca RMSD between adjacent conformations along the folding path is #rc,

one can think of rc as the resolution of the folding pathway. Therefore, ul-

timately, we need to obtain folding pathways with rc to be sufficiently small,

at least in the areas of interest. Typical roadmap algorithms use one rc for all

edge constructions. But our algorithm uses different rcs in different areas of

the conformation space and different iterations. Larger rc was used in earlier

iterations to identify coarse-grained paths along which the conformations

were used as seeds for subsequent computations. For the folding pathway
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results presented here, we wanted to focus on the arrangement of the three

helices after the secondary structure formation because 1), the initial non-

specific collapse from the extended state to a random coil (unfolded state) is

not the concern of this work, and 2), because the a-helix formation has been

extensively studied (30), it is not our aim to reinvestigate it. Hence, the edges

close to the native state were set to satisfy a smaller threshold than those close

to the extended state. By trial and error, we adopted the following cutoff

values in the four iterations of the roadmap constructions used in the study:

iteration 1: rc ¼ 10 Å everywhere; iteration 2: rc ¼ 10 Å if Rg (radius of

gyration) . 32 Å and 6 Å elsewhere; iteration 3: rc ¼10 Å if Rg . 32 Å and

5 Å elsewhere; iteration 4: rc¼10 Å if Rg . 32 Å, 3 Å if Rg , 22 Å, and 5 Å

elsewhere. Thus, the final path has 3 Å resolution in the compact state. In

general, the iteration numbers and the cutoff values could vary: see the

Discussion section for the convergence criteria. Edges connect neighboring

nodes with a weight defined as w ¼ expðbðUðr1Þ1Uðr2ÞÞ=2ÞDl; which

means that the graph is undirected with the physical meaning of equal for-

ward and backward reaction rates at equilibrium. In this work, Dl is the Ca

RMSD between the neighboring nodes. The summation of the edge weights

along the path is a discretized form of Eq. 1. To query the roadmap, we

employed Dijkstra’s algorithm (22). The total numbers of nodes in the

roadmap in iterations 1–4 were 29,533, 181,635, 211,480, and 236,631,

respectively.

For our iterative sampling process, we decided to investigate the effect of

the choices of seeds on the roadmaps and folding pathways. In our prelim-

inary study in this regard, we also used a different seed generation method

from the first roadmap, which was to first merge similar roadmap nodes

(those with very small Ca RMSD) and then generate 15 node-disjoint

shortest paths, with all these path nodes as seeds for the second iteration.

These node-disjoint paths do not share common nodes with each other and

can be computed by repeatedly removing the intermediate nodes in the

shortest path so far and applying Dijkstra’s shortest-path algorithm. In our

study, we did not observe any significant difference between the final folding

pathway generated from such a larger set of seeds, which in general would

have a better coverage of phase space, and that generated using the approach

illustrated in Fig.1. In Results, we present the paths generated with the ap-

proaches illustrated in Fig. 1.

In the implementation of Dijkstra’s shortest-path algorithm, we took

special care to deal with the numerical precision issue. For a roadmap edge

between two nodes having effective energies U(r1) and U(r2), our edge weight

function includes an exponential term as mentioned above. With the fast

growth rate of an exponential function, the weight difference among our

roadmap edges could be very large, which could cause some problem if it

were not processed carefully. For example, once the weight of one partial path

reached 1050, adding 1010 by taking one subpath or 1020 by taking another

subpath could not be distinguished for double precision computation as in

C11 (15 bits of decimals). To address this issue, we used infinite-precision

computation for path weights and stored at each node the weight of the

shortest path from the first path node to the current node. Of course, when the

edge weight difference in a roadmap is small, double-precision computation

becomes acceptable and is more economical than infinite-precision compu-

tation.

RESULTS

Coarse-grained path obtained in the first iteration

In the first iteration, we could not find any path connecting

the extended to the native state if we set a small rc because the

sampling of the space far away from the seeds was very poor.

Therefore, rc ¼ 10 Å was applied to build the neighbor list.

Fig. 2 a shows the effective energy (molecular mechanics

potential plus solvation free energy) as well as the Ca RMSD

FIGURE 1 Flow chart of the MaxFlux-PRM algorithm: (sc) side chain;

(v) edge weight.

FIGURE 2 (a) Effective energy (potential energy plus solvation free

energy) as well as the Ca RMSD with respect to the native state as a function

of the folding path during the first iteration. (b) Representative conforma-

tions (a–d) along the path in a. The N-terminal is in blue, and the C-terminal

is in red. H1-H3 denotes the three helices. The Ca RMSD of residues 28–53

(in H2, H2-H3 loop, and H3) between conformation c and L16A EnHD

(model 1 of the NMR structure (27) in magenta) is 2.9 Å.
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with respect to the native state as a function of the folding

path during the first iteration. Representative conformations

along the path are labeled and depicted in Fig. 2 b. Note that

the only preknowledge factors were the extended state and

native state conformations, which were used as the seeds in

the first iteration. Our search gave rise to a path with Ca

RMSD between the adjacent conformations along the path

ranging from 5.9 Å to 9.8 Å, which could be considered as a

low-resolution path or a coarse-grained path. However, it

already contained essential information regarding the se-

quence of events and the folding mechanism. The extended

chain first nonspecifically collapses to a random coil with 25

Å Ca RMSD from the native state (point a in Fig. 2 a and

conformation a in Fig. 2 b). Then the a-helices start to form in

the three a-helical regions concurrently (point b in Fig. 2 a
and conformation b in Fig. 2 b) and optimize subsequently.

Most importantly, in conformation c (Fig. 2 b) at step 13 (Fig.

2 a), H2 and H3 start to contact with each other, whereas H1

is still further away. This structural feature is in good agree-

ment with the characteristics of intermediate state observed in

the thermal unfolding simulations (26), experimental inter-

mediate state analog (27), L16A EnHD, and Monte Carlo

folding simulations using a minimalistic all-atom model (28).

The Ca RMSD of residues 28–53 (in H2, H2-H3 loop, and

H3) between this conformation and L16A EnHD (model 1 of

the NMR structure (27)) is 2.9 Å with the main difference in

the N-terminal of H2 and the C-terminal of H3 (Fig. 2 b).

Conformation d in Fig. 2 b is the near native state.

Detailed folding pathway obtained in the
fourth iteration

To obtain the details of the folding path, as shown in the flow

chart (Fig. 1), we started the second iteration using the con-

formations along the coarse-grained path as seeds to generate

more nodes. Again, the only preknowledge were the con-

formations along the coarse-grained path obtained in the first

iteration, which in turn relied only on the known conforma-

tions of the extended state and the native state. No experi-

mental intermediate state has been used as the preknowledge.

The effective energy as well as the Ca RMSD with respect to

the native state as a function of the folding path during the

second and third iterations is shown in Supplementary Ma-

terial. The representative conformations along the path are

also presented in Supplementary Material. Until the fourth

iteration, we obtained a path with 41 nodes in the roadmap of

236,631 nodes. As illustrated in Fig. 3 a, the Ca RMSD from

the native state changes gradually along the folding pathway

compared with that of the first iteration shown in Fig. 2 a. The

initial drop in Rg from the extended state to Rg ¼ 32 Å cor-

responds to the nonspecific collapse. A random coil state

(step 17 in Fig. 3 a and conformation a in Fig. 3 b) was

reached, which can be considered an unfolded state. As in the

first iteration, the a-helices subsequently start to form in the

three a-helical regions and optimize (steps 18–28 in Fig. 3 a

and conformations b and c in Fig. 3 b). The helical content as

a function of folding steps is shown in Fig. 4 a. Before step

18, the helical content is zero. The three helices form si-

multaneously from step 18 to step 22, where Rg falls in the

region of 32 Å to 22 Å, and the rc was set to 5 Å. As men-

tioned in Materials and Methods, our aim was not to inves-

tigate the mechanism of helix formation; therefore, rc was

large in this stage, which means that the path in this range is

medium coarse-grained.

Our focus is the sequence of events of helix formation

versus tertiary structure development. Starting step 22, Rg

falls ,22 Å (Fig. 3 a). Accordingly, after this point, the nodes

along the path are obtained using rc ¼ 3 Å. As a result, the

path after step 22 can be considered a fine detailed path with

the Ca RMSD between the adjacent conformations along the

path ,3 Å. At step 22, the helical contents of all three helices

reach .80%; thereafter, they fluctuate before the helices are

completely formed (at step 35 in Fig. 4 a). However, the

native contacts between the helices at step 22 are only 28%,

10%, and 0% for H2-H3, H1-H2, and H1-H3, respectively

(Fig. 4 b). Obviously, the helices form independently before

the assembly of tertiary structure. Until step 30, H2 and H3

dock with each other (percentage native contact ¼ 75%),

whereas H1 is still floating around (H1-H2: 30%, and H1-H3:

0%). Because the H1-H2 loop can adopt various conforma-

tions, which in turn results in different orientations of H1

with respect to H2, the configurational entropy of the protein

in this stage of folding may lead to lower free energy. The

FIGURE 3 (a) Effective energy (potential energy plus solvation free en-

ergy), radius of gyration (Rg), and the Ca RMSD with respect to the native

state as a function of the folding path during the fourth iteration. (b) Repre-

sentative conformations (a–f) along the folding path. a–f correspond to

folding steps 17, 19, 28, 29–32, 33, and the native state in a, respectively. (d)

Superposition of the conformations from step 29 to 32. H1-H3 denotes the

three helices.
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conformations shown in panel d of Fig. 3 b seem very similar

to the ensemble description of an on-pathway obligate in-

termediate state captured in the folding simulation using a

minimalistic all-atom model (Fig. 5 I of Hubner et al. (28)).

Experimentally, L16A EnHD is an analog of the wild-type

intermediate state (27), in which the packing between H2 and

H3 is near native, whereas H1 lacks significant contacts with

H2 and H3. Along our path, the conformations from step 29

to 32 gradually approach the experimentally modeled inter-

mediate state in which the Ca RMSDs of residues 28–53 (in

H2, H2-H3 loop, and H3) between these conformations and

L16A EnHD (model 1 of the NMR structure (27)) are 4.6 Å,

3.9 Å, 3.3 Å, and 2.5 Å, respectively. When the L16A mutant

is compared with the wild-type, the helical contents of H1,

H2, and H3 in the intermediate state are 100%, 100%, and

80%, respectively. Along our path, steps 29–32 in Fig. 4 a,

the helical contents are in excellent agreement to the exper-

imental intermediate state analog.

After the intermediate state, a near-native state (steps 33–

40) forms, in which H1 starts to contact H2 and H3. The

conformation at step 33 (conformation e in Fig. 3 b) has 15

nonnative contacts and is a local minimum in the effective

energy surface (Fig. 3 a). This conformation appears very

similar to the near-native state reported by Shakhnovich and

co-workers (conformation NN in Fig. 5 of Hubner et al. (28)).

After step 33, the protein tries to rearrange the helical con-

tacts. The conformation just before the native state deviates

from the x-ray structure (Fig. 3 b) by 2.6 Å Ca RMSD, mainly

because there is less contact between H1 and H3 (Fig. 4 b).

When the flexible termini (residues 1–7 and residues 55–56)

are not included in the calculation, the Ca RMSD for residues

8–54 of the conformation at step 40 with respect to the native

state is 1.2 Å, whereas the all-atom (including polar H)

RMSD for these residues is 3.0 Å. By visualizing the su-

perposition of the second-last conformation along the path

and the last one, which is the native state, we found nonnative

contacts as well as native contacts a little bit further away

from the 4.5 Å threshold in the second-last conformation (as

shown in Fig. 4 c), leading to the jump in the content of native

contacts as shown in Fig. 4 b. The potential energy compo-

nent and the solvation free energy for the conformations at

the last two steps are presented in the Supplementary Material.

DISCUSSION

Our sequence of the folding event is close to the limit of the

framework (31) or diffusion-collision mechanism (32), in

FIGURE 4 (a) Helical content as a function of folding steps for the fourth

iteration. H1-H3 denotes the three helices. (b) Native contact (%) between

helices as a function of folding steps for the fourth iteration. Two residues

are considered to contact each other if any heavy atom (C, N, O, S) of one

residue is within 4.5 Å of any heavy atom of the other residue. (c) Super-

position of the native state (magenta) and the conformation at the second-last

step (blue) in the fourth iteration. Native contacts between helices are shown.

Nonnative contacts as well as native contacts a little bit further away from

the 4.5 Å threshold in the second-last conformation lead to the jump in

native contact content, as shown in b.

FIGURE 5 Computational cost based on a 64-bit AMD 1.6 GHz Opteron

CPU per 100,000 conformations. The pairwise RMSD is also for 100,000

conformations. For the roadmap query (Dijkstra’s algorithm), a hypothetical

graph contains 100,000 conformations and 100,000,000 edges.
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which the native-like secondary structures form first and the

development of the tertiary structure is a rate-limiting step.

The recent success in protein structure prediction using the

AMBER parm96 and GB/SA model for nine proteins also

proves the mechanism that local structure happens first at

independent sites along the chain followed by either zipping

or assembly with other structures (33). Note that there is no

intrinsic bias in the MaxFlux-PRM toward the diffusion-

collision mechanism against the nucleation-condensation

model (34), where the secondary and tertiary structures form

concurrently. The fact that our folding path is in line with

the recent experimental and computational results (26–28)

proves that the MaxFlux-PRM method has the ability to lo-

cate the folding pathway beyond the two-state folding. It is

important to point out that our model and analysis are subject

to a number of limitations. First, the MaxFlux-PRM path

provides the sequence of events. Consequently, as shown

above, we can verify whether an intermediate state is on-

pathway or not, but we cannot predict which event results in

an intermediate state and/or transition state with the current

version of MaxFlux-PRM. To obtain the free energy profile

along the path and locate the transition state(s) and the in-

termediate state(s), the DDrmsd method (35) can be used after

MaxFlux-PRM. Second, we employed an implicit solvation

model. The reason we did so is that in Berkowitz’s descrip-

tion of reactive flux (9), which is based on the Smoluchowski

equation of stochastic processes, U(r) is the potential of mean

force of the system with an average over all solvent degrees

of freedom at a given temperature. The solvation free energy

(DGsolvation) can be calculated with the implicit solvation

model, whereas the explicit water model is not practical to

give DGsolvation; nevertheless, the water expulsion in protein

folding cannot be addressed with such implicit solvation. To

compensate for this, the global optimized MaxFlux-PRM

path can be used as an initial guess for transition path sam-

pling (36), or one can add the explicit water in the free energy

profile calculation using the DDrmsd method (35).

In our previous work on the folding pathway of the

b-hairpin (17), we did not employ the iterative approach

because the system was small, and the initial generated

93,886 nodes gave rise to a path with a 1.6 Å mean Ca RMSD

between adjacent conformations. In this work, the criterion of

the convergence of iteration, the Ca RMSD between adjacent

conformations along the path is #3 Å in our region of interest

(Rg , 22 Å), which in turn depends on the cutoff of the

neighbor list, the rc value. In the first iteration, this RMSD

value ranges from 5.9 Å to 9.8 Å. These large RMSDs are not

absolutely satisfied, although the sequence of events is con-

sistent with the experimental results. The reason the coarse-

grained path can capture the characteristic of the intermediate

state is likely a result of our importance sampling strategy.

Although the Ca RMSD between the experimental interme-

diate analogy (L16A mutant) and the native state is 13.4 Å, in

the fc space, these two conformations are actually very

similar to each other (only the f and c angles in the H1-H2

loop are significantly different). Our sampling strategy has

ensured that, in the fc space, the proximity of the native state

is sampled intensively. As a result, it is not surprising to see

that the conformations similar to the reported intermediate

state are the nodes in our roadmap even in the first iteration.

In the folding process from unfolded state to native state, the

Ca RMSD between adjacent conformations along the path is

not uniform in the last iteration; in steps 1–12, the Ca RMSD

between adjacent conformations along the path # 10 Å; in

steps 13–22, the Ca RMSD # 5 Å; and in steps 23–41, the Ca

RMSD # 3 Å. If one starts an MD simulation from an NMR

structure, it is reasonable to obtain a trajectory with around 2

Å Ca RMSD from the native state. Thus, we believe that a

path with the Ca RMSD between adjacent conformations # 3

Å is an acceptable convergence criterion. For a given graph,

Dijkstra’s algorithm is a global minimization method that can

guarantee the location of the shortest path (see Cormen et al.

(22) for the proof), given that the neighbor list and edge

weight calculation are accurate.

Recently, network and graph analyses have been applied in

the protein-folding field (for a recent review see Caflisch

(37)). The differences between our graph-theoretic approach

and those of others are basically twofold. First, unlike other

approaches (28,38–40), which generate the nodes using ei-

ther MC or MD simulations, we create the nodes using PRM

without detailed simulations so that the system can avoid

being trapped in a local minimum, and the computational cost

is low (see the details on the computational cost in the fol-

lowing discussions). Second, our definition of edge weight is

different from others. Our edge weight along the path has

clear physical meaning, which is the MFPT. The correct

physical meaning of the edge weight is the key advantage of

MaxFlux-PRM compared with other PRM approaches in

protein folding (see Yang et al. (17) for the comparison on

model systems). The uniqueness of MaxFlux-PRM is that it

is a graph-theoretic approach enhanced reaction-path algo-

rithm, which distinguishes it from other reaction-path algo-

rithms such as the original MaxFlux (6), MaxFlux-NEB (15),

NEB (41), conjugate peak refinement (42), self-avoiding

walk (12), string method (43), milestoning (44), and transi-

tion path sampling (36). The combination between MaxFlux

and PRM allows us to overcome the long-lasting global op-

timization problem in the application of the reaction-path

algorithm. Thus, we hope that we have convinced the reader

that MaxFlux-PRM can find the global optimized path.

Moreover, in each step of the iteration, we tried to find the

k-shortest node-disjoint paths instead of the shortest path;

however, the k-shortest paths gave very similar routes to the

one presented here.

We show the computational cost of our MaxFlux-PRM

method in Fig. 5. Apparently, the cost is moderate. In addi-

tion, for node generation and pairwise Ca RMSD calcula-

tions, the scale-up on parallel computing is perfect with no

need of communication between CPUs. For the first iteration

to locate the coarse-grained path of EnHD, we generated
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;3 3 104 nodes which took ;6 h of running time on six

CPUs. Probably, the cost of thermal unfolding simulations in

explicit water is comparable to that of our MaxFlux-PRM

approach. Although it has been shown that the unfolding

simulation can successfully interpret the folding mechanism

for several proteins including EnDH (45), it is not clear

whether this is a general rule or not. There is also experi-

mental evidence against this generalization: for example, the

rate-limiting steps of the b-hairpin folding and unfolding are

different (23). Therefore, care must be taken when one uses

the thermal unfolding simulation to interpret the folding

mechanism. However, the b-hairpin may not be typical be-

cause it is small. To conclude, MaxFlux-PRM is a general

tool to study protein folding and conformational transition

pathway with moderate computational cost.

SUPPLEMENTARY MATERIAL

An online supplement to this article can be found by visiting

BJ Online at http://www.biophysj.org.
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