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Abstract
Corticotropin releasing hormone (CRH) plays a major role in central nervous system responses to
stressors and has been implicated in stress-induced alterations in sleep. In the absence of stressors,
CRH contributes to the regulation of spontaneous waking. We examined the effects of CRH and
astressin (AST), a non-specific CRH antagonist, on wakefulness and sleep in two mouse strains with
differential responsiveness to stress to determine whether CRH might also differentially affect
undisturbed sleep and activity. Less reactive C57BL/6J (n=7) and high reactive BALB/cJ (n=7) male
mice were implanted with a transmitter for determining sleep via telemetry and with a guide cannula
aimed into a lateral ventricle. After recovery from surgery and habituation to handling, ICV
microinjections of CRH (0.04, 0.2, and 0.4 μg), AST (0.1, 0.4, and 1.0 μg) or vehicle alone (pyrogen-
free saline, 0.2 μl) were administered during the fourth h after lights on and sleep was recorded for
the subsequent 8 h. Comparisons of wakefulness and sleep were conducted across conditions and
across strains. In C57BL/6J mice, REM was significantly decreased after microinjections of CRH
(0.2 μg) and CRH (0.4 μg), and NREM and total sleep were decreased after microinjections of CRH
(0.4 μg ). CRH (0.4 μg) and AST did not significantly change wakefulness or sleep. In BALB/cJ
mice, CRH (0.4 μg) increased wakefulness and decreased NREM, REM and total sleep. AST
decreased active wakefulness and significantly increased REM at the low and high dosages. These
findings demonstrate that CRH produces changes in arousal when given to otherwise undisturbed
mice. Strain differences in the effects of CRH and AST may be linked to the relative responsiveness
of C57BL/6J and BALB/cJ mice to stressors and to underlying differences in the CRH system.

Introduction
Several lines of evidence indicate a major role for corticotropin releasing hormone (CRH) in
mediating central nervous system responses to stressors (Koob and Bloom, 1985; Heinrichs et
al., 1995; Koob, 1999; Koob and Heinrichs, 1999; Bakshi and Kalin, 2000; Deussing and
Wurst, 2005). Stress induces arousal (Chrousos, 1998) and CRH has been implicated in stress-
induced alterations in sleep (Gonzalez and Valatx, 1998; Chang and Opp, 2002), particularly
in the control of rapid eye movement sleep (REM) (Gonzalez and Valatx, 1997). For example,
administration of CRH antagonists have been reported to eliminate REM rebound after
immobilization stress (Gonzalez and Valatx, 1997) and to decrease REM rebound after sleep
deprivation (Gonzalez and Valatx, 1998). CRH has also been implicated in the control of
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muscle tone in REM and produces a dose-dependent suppression of muscle tone when
microinjected into the dorsolateral pontine inhibitory area and medial medullary reticular
formation of decrebrate cats (Lai and Siegel, 1992).

In the absence of stressors, CRH appears to contribute to the regulation of spontaneous waking
(Opp, 1995; Opp, 1997; Chang and Opp, 2001) as evidenced by findings that the ICV
administration of CRH increases wakefulness in rats (Ehlers et al., 1986; Marrosu et al.,
1990) and rabbits (Opp et al., 1989). The enhancement of wakefulness by CRH may occur at
dosages too low to stimulate the hypothalamo-pituitary-adrenal (HPA) axis or produce
behavioral effects (Opp, 1995). In addition, in rats in non-stressful conditions, the ICV
administration of CRH enhanced wakefulness when given at the beginning of either the light
or dark period whereas ICV antagonists, astressin (AST) and αHelCRH (α-helical CRH9–41),
reduced wakefulness and increased non-REM (NREM) only when administered in the dark
period (Chang and Opp, 1998). These findings indicate that CRH may produce changes in
arousal and sleep in otherwise undisturbed conditions.

Our work and that of others has identified mouse strains that are differentially responsive to
stressors, and also exhibit different levels of sleep disruptions after stressful experiences.
Behavioral data suggest that C57BL/6J mice are a less “anxious” or reactive strain, and that
BALB/cJ are a more “anxious” or reactive strain (Tang et al., 2002). Indeed, BALB/cJ mice
have been suggested to exhibit pathological anxiety (Belzung and Griebel, 2001; Tang et al.,
2002) whereas C57BL/6J mice show an intermediate phenotype in most behaviors (Crawley,
1999) and are often used in strain comparisons. Moreover, mice display greater changes in
REM than in NREM after exposure to novelty (Tang et al., 2004; Tang et al., 2005) and after
experiencing stressors such as fearful stimuli (Sanford et al., 2001; Sanford et al., 2003a;
2003b; 2003d; Liu et al., 2004) and restraint (Wurbel et al., 1998; Meerlo et al., 2001; Liu et
al., 2004). The relative magnitude and duration of the changes in sleep has been found to vary
with strain. For example, compared to C57BL/6J mice, BALB/cJ mice display greater initial
post-exposure reductions in REM following a variety of stressors (Wurbel et al., 1998; Sanford
et al., 2003a; 2003b; 2003d). In addition, exposure to an open field induced greater initial
reductions with less subsequent increases in REM in BALB/cJ mice whereas C57BL/6J mice
exhibited relatively less initial reductions but greater subsequent increases (Tang et al., 2004;
Tang et al., 2005). Based on these results, we suggested that the putative trait anxiety in BALB/
cJ mice might play a critical role in the relatively greater effects on REM induced by stressors
(Liu et al., 2003; Sanford et al., 2003a; 2003b; 2003d; Liu et al., 2004; Tang et al., 2005).

Strain differences in responses to stressors may be linked to differences in the CRH system
(Anisman et al., 2007) which may also be involved in differences in post-stress sleep. Mouse
strains, including C57BL/6J mice, BALB/cJ mice, exhibit differences in undisturbed baseline
sleep (Tang and Sanford, 2002). C57BL/6J mice and BALB/cJ mice also differ in the regulation
of CRH as is evident by strain differences in signal transduction pathways mediating signal
processing of CRH in the hippocampus and in the effects of ICV CRH on contextual fear
(Blank et al., 2003). To our knowledge, the potential role of CRH in mediating EEG-determined
arousal and sleep in mice has not been examined. In this study, we administered CRH and
AST, an antagonist at both CRH1 and CRH2 receptors (Gulyas et al., 1995), in C57BL/6J mice
and BALB/cJ mice to determine whether CRH might also differentially affect undisturbed
wakefulness and sleep in strains with different levels of reactivity to stressors.

Results
Effects of CRH and AST on Wakefulness in C57BL/6J Mice

None of the dosages of CRH we administered significantly altered active wakefulness in
C57BL/6J mice (Figure 1 A), but compared to SAL, CRHH increased quiet wakefulness in the
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first 4 h block and 8 h total recording period (Figure 1 B). The increase in quiet wakefulness
after CRHH was also significantly increased compared to CRHL over the 8 h total recording
period. There was an increase in total wakefulness after CRHH in the second 4 h block and 8
h total recording period (Figure 1 C). The increase was significant compared to SAL and to
CRHL. AST at the concentrations we examined did not significantly alter either active or quiet
wakefulness in C57BL/6J mice (Figure 1 D–F).

Effects of CRH and AST on Sleep in C57BL/6J Mice
CRHH significantly reduced NREM over the 8 h total recording period, but the decrease was
not significant in either 4 h block (Figure 2 A). CRHH also significantly reduced REM in each
analysis period and CRHM reduced REM in the second 4 h block and over the 8 h total recording
period (Figure 2 B). Reductions after CRHM and CRHH were significant compared to both
SAL and CRHL during the second 4 h block and 8 h total recording period. Total sleep (Figure
2 C) after CRHH was reduced in the second 4 h block (compared to SAL) and 8 h total recording
period (compared to SAL and CRHL). AST at the concentrations we examined did not
significantly alter NREM, REM or total sleep in C57BL/6J mice (Figure 2 D–F).

Analyses for the number and length of NREM and REM episodes did not reveal significant
differences across conditions for either CRH or AST.

Effects of CRH and AST on Wakefulness in BALB/cJ Mice
Compared to SAL and CRHL, CRHH significantly increased active wakefulness during the
first 4 h block (Figure 3 A). During the second 4 h block, CRHM increased active wakefulness
compared to CRHL. Over the entire 8 h recording period, active wakefulness after CRHM and
CRHH was increased compared to after CRHL, but not compared to after SAL.

Compared to SAL, CRHL and CRHM, CRHH significantly increased amount of time in quiet
wakefulness (Figure 3 B) and total wakefulness (Figure 3 C) during the first 4 h block and total
8 h recording period. There was also a significant difference in total wakefulness after
CRHL compared to CRHM during the second 4 h block (Figure 3 C).

ASTM and ASTH reduced active wakefulness during the first 4 h block (Figure 3 D), and
compared to ASTH, quiet wakefulness was reduced after ASTL during the first 4 h block
(Figure 3 E). No other comparisons were significant.

Effects of CRH and AST on Sleep in BALB/cJ Mice
Compared to SAL, CRHL and CRHM, CRHH significantly reduced NREM during the first 4
h block (Figure 4 A). The reduction was also significant compared to SAL and CRHL over the
total 8 h recording period. Compared to SAL and CRHL, CRHM significantly reduced NREM
during the second 4 h block. The reduction was also significant compared to SAL and
CRHLover the total 8 h recording period.

The number of NREM episodes was significantly reduced after microinjections of CRHH (15.1
±1.9) compared to SAL (23.2±1.5) and CRHL (22.3±1.8) during the first 4 h block, F(3,18)
=7.2, p<0.006), and after CRHH (32.5±2.8) compared to SAL (44.3±3.9) and CRHL (44.2±3.5)
during the total 8-h period, F(3,18)=6.9, p<0.008. No other comparisons reached significance.

CRHH significantly reduced REM compared to SAL, CRHL and CRHM during the first 4 h
block and over the entire 8 h total recording period compared to SAL and CRHL (Figure 4 B).
Interestingly, compared to SAL, CRHM, and CRHH, REM was increased during the second 4
h block after administration of the low dose of CRH. The increase also was significant
compared to SAL and CRHH when the entire 8 h recording period was considered. The increase
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in REM during the second 4 h block was due to an increase in the number of REM episodes
after microinjection of CRHL (8.4±0.5) compared to SAL (6.4±0.76), CRHM (5.9±0.81) and
CRHH (6.5±0.9), F(3,18)=9.2, p<0.001.

AST did not significantly alter NREM (Figure 4 D) or total sleep (Figure 4 F) in any of the
analyses. However, REM was increased after ASTL and ASTH during the first 4 h block and
over the 8 h total recording period (Figure 4 E). Apparent increases in REM after ASTM did
not reach significance, and no other comparisons reached significance.

Relative Effects of CRH and AST on Wakefulness and Sleep Across Strains
Figures 5 and 6 show changes in wakefulness and sleep in C57BL/6J and BALB/cJ mice
considered as percentage change relative to SAL levels that resulted from administration of
CRH and AST, respectively. The only strain difference in wakefulness was found with the high
dosage of CRH. CRHH significantly increased quiet wakefulness (Figure 5 B) and total
wakefulness (Figure 5 C) in BALB/cJ mice relative to the increases in C57BL/6J mice.
Corresponding to the relatively greater increases in wakefulness produced by CRHH in BALB/
cJ mice, CRHH also produced relatively greater decreases in NREM (Figure 5 D) and total
sleep (Figure 5 F). The relatively greater reduction in NREM in BALB/cJ mice was also
significant with CRHM. The only strain difference in the impact of CRH on REM was found
at the middle dosage (Figure 5 D). Compared to SAL, CRHM significantly reduced REM in
C57BL/6J mice, but not in BALB/cJ mice. This difference was found in a greater reduction in
REM considered as a percentage of SAL levels in C57BL/6J mice.

Interestingly, compared to SAL, AST did not significantly alter REM amounts in C57BL/6J
mice, but increased REM amounts in BALB/cJ mice, though the middle dosage did not reach
significance (Figure 4E). However, when considered as percentage change relative to SAL,
the relative increase in REM was greater in BALB/cJ mice at all dosages (Figure 6 D). No
other comparisons for AST were significant.

Discussion
Our results support previous work indicating a role for CRH in regulating sleep and arousal
(Opp, 1997; Chang and Opp, 1998; Chang and Opp, 2001; Chang and Opp, 2002) and extend
those findings by demonstrating that mouse strains differentially responsive to stressors also
differ with respect to effects of CRH on wakefulness and sleep. The greater effects of CRH
and AST on wakefulness and sleep in BALB/cJ mice compared to C57BL/6J mice are
consistent with findings that BALB/cJ mice are more reactive in behavioral tests of anxiety
(Belzung and Griebel, 2001; Tang et al., 2002b) and also show greater alterations in sleep in
response to a number of stressors (Wurbel et al., 1998; Sanford et al., 2003a; 2003b; 2003d).
Thus, strain differences in the effects of CRH and AST may be linked to underlying differences
in the CRH system that may also be involved in the relative responsiveness to stressors in
C57BL/6J and BALB/cJ mice.

C57BL/6J mice have been extensively used for comparisons to BALB/cJ mice and other
strains. The C57BL/6J strain ranks higher on most phenotypic indices of inbred mouse strains
and exhibits fewer inbred deficits relative to comparison strains (Crawley et al., 1997) including
BALB/cJ mice (Goodrick, 1975; Henderson, 1989). The C57BL/6J and BALB/cJ strains also
exhibit significant differences in normal sleep. In telemetric recordings of baseline,
uninterrupted sleep, C57BL/6J mice exhibited more total sleep and more NREM than did
BALB/cJ mice (Tang and Sanford, 2002). The strains had different light-dark distributions of
REM with C57BL/6J mice showing a more typical pattern of greater REM during the light
period whereas BALB/cJ mice showed greater dark period REM even though NREM was less
(Tang and Sanford, 2002).
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BALB/cJ mice also display greater spontaneous home cage activity than do C57BL/6J mice
(Tang and Sanford, 2002), whereas many studies have reported that BALB/cJ display less
activity than C57BL/6J mice when placed in an open field (Crabbe, 1986; Crawley et al.,
1997). We have also found that BALB/cJ mice are less active during the first 5-minute period
in the open field (Tang et al., 2002). However, greater homecage activity in BALB/cJ mice
suggests that their open-field activity may be suppressed to an even greater relative degree, a
suggestion consistent with greater sensitivity to CRH.

Because C57BL/6J and BALB/cJ mice show different levels of reactivity to stressors, a point
should be made that the handling procedures necessary for administering microinjections can
be stressful in themselves. Indeed, many of the handling procedures used for laboratory animals
result in a stress response that does not appear to readily habituate (Balcombe et al., 2004). In
rats, we found that three separate sessions of 5 min manual restraint such as that commonly in
administering microinjections significantly reduced subsequent NREM and REM during the
first h of recording compared to non-interrupted baseline recordings (Tang et al., 2007). There
were also subsequent increases in total sleep and NREM during both light and dark periods,
and significantly increased dark period REM. Even after several experiences, the handling
procedures could affect the sleep response to other types of stress including footshock and
exposure to novel chamber (Tang et al., 2007). Thus, even though each mouse experienced
three sessions of handling prior to beginning the experiment, the effects we observed on sleep
after microinjections of CRH and AST may be viewed as occurring in mice that had been
subjected to an additional mild stressor that could itself affect sleep.

Perhaps the most extensive studies implicating CRH in the regulation of arousal and sleep in
rodents has been conducted by Opp and his colleagues. These studies demonstrated that rat
strains that differed in the synthesis and secretion of CRH (Sternberg et al., 1989) and in basal
plasma concentrations of corticosterone, show significant differences in amounts of sleep
(Opp, 1997). Specifically, Lewis strain rats have a deficiency in the synthesis and secretion of
hypothalamic CRH and exhibit less wakefulness and more NREM than do genetically related
inbred Fischer 344 rats and than do outbred Spague-Dawley (Opp, 1997; Tang et al., 2004)
and Wistar strain rats (Tang et al., 2004). Opp’s laboratory also found that rats recorded in their
home cages under well-habituated conditions, and without the presence of stressors, showed
selective increases in wakefulness and decrease in NREM, but no significant change in REM
after the ICV administration of CRH (Chang and Opp, 1998; Chang and Opp, 1999).
Furthermore, the ICV administration of CRH enhanced wakefulness when given at the
beginning of either the light or dark period whereas ICV administration of the CRH antagonists,
AST and αHelCRH, reduced wakefulness and increased NREM only when administered in the
dark period when spontaneous arousal is high (Chang and Opp, 1998).

The present results also found that ICV administered CRH produced increases in wakefulness
and decreases in NREM in mice, though there were variations with dosage and across strain.
However, we found that CRH also produced decreases in REM in both strains, again with
differences across dosages and strains. The difference between studies in rats and mice could
be related to species differences and possibly to differences in ambient temperature. The rats
in the studies conducted in Opp’s lab were maintained at 22–23° C which is within the
thermoneutral range for rats (Poole and Stephenson, 1977) whereas our mouse colony is
maintained at 24.5±0.5° C which is below the 29–30° thermoneutral temperatures typically
reported for mice (Williams et al., 2003; DeRuisseau et al., 2004; Overton and Williams,
2004). Ambient temperature can significantly affect sleep in mice (Roussel et al., 1984), thus,
there is the possibility that relative temperature played a role in the species differences we saw.

Another possible factor in the differences between mice and rats was that the range of CRH
concentrations we used was higher than that used by Opp and his colleagues (0.05 and 0.1
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nmol) in some of their studies (e.g., (Chang and Opp, 1998)). Indeed, we found that the low
dosage of CRH did not decrease REM in either mouse strain, and actually resulted in an increase
in REM amounts and number of REM episodes in BALB/cJ mice during the second 4 h block
of the recording period, though REM in the first 4 h block did not differ from that after SAL.
As there was no significant change in REM or any other state during the first 4 h of recording
at the low dosage, it is doubtful that the later increase in REM was a direct effect of CRH. The
increase was found only when the entire 4 h block was considered, whereas REM was not
significantly increased in any single 1 h period during the second 4 h block. This suggests that
the functional significance of this increase may have been minimal.

AST was selected as the CRH antagonist in our studies. In vitro assays indicate that AST is
more potent for both CRH1 and CRH2 receptors than is another common CRH antagonist,
αHelCRH, yet does not have its partial agonist properties (Brauns et al., 2001). However, in
vivo studies in rats suggest that AST may be somewhat less potent in preventing some CRH-
and stress-induced and anxiety-related behaviors (Spina et al., 2000). Thus, potentially lesser
potency in combination with strain differences in the regulation of CRH (Blank et al., 2003)
may have been in factor in our failure to observe significant effects of AST on wakefulness or
sleep in C57BL/6J mice. However, in rats ICV administration of AST and αHelCRH reduced
wakefulness and increased NREM only when administered in the dark period (Chang and Opp,
1998). Our results in C57BL/6J mice are consistent with these findings as our microinjections
were performed in the light period when endogenous activity of the CRH/HPA axis is at its
lowest (Reviewed in (Chang and Opp, 2001)). In BALB/cJ mice, however, ASTM and
ASTH reduced active wakefulness in the first 4 h block after administration. This difference
may have been related to significant strain differences in the light-dark distributions of sleep
between C57BL/6J and BALB/cJ mice. We previously found that compared to C57BL/6J mice,
BALB/cJ mice had significantly less total sleep during 24 h recordings that was mainly due to
less NREM during the 12 h light period (Tang and Sanford, 2002). In addition, BALB/cJ mice
had less light period REM than C57BL/6J mice, though not significantly less total REM over
the entire 24 h recording period (Tang and Sanford, 2002). The increase in REM in BALB/cJ
mice with the administration of AST suggests that CRH may be involved in the relative
decrease found in the light period, and potentially in the greater light period wakefulness.
Studies comparing the circadian variation in CRH in association with sleep in these two strains
would be needed to test this possibility.

The CRH family of neuropeptides in mammals also includes urocortin 1 (Ucn1), urocortin 2
(Ucn2; also known as stresscopin-related peptide) and urocortin 3 (Ucn3; also known as
stresscopin peptide). Both CRH and CRH-related neuropeptides exert their influence on
CRH1 and CRH2 (Lovenberg et al., 1995; Van Pett et al., 2000; Dautzenberg and Hauger,
2002). CRH is relatively selective for the CRH1 receptor with moderate affinity to the CRH2
receptor (Timpl et al., 1998) whereas Ucn1 has high affinity to both CRH1 and CRH2 receptors
(Timpl et al., 1998), but relatively greater affinity for CRH2 receptors (Lewis et al., 2001;
Reyes et al., 2001). By comparison, both Ucn2 and Ucn3 are highly selective for CRH2
receptors with virtually no activity at CRH1 receptors (Onoe et al., 1996; Lewis et al., 2001;
Reyes et al., 2001), though Ucn3 appears to be more selective for CRH2 receptors than is Ucn2
(Valdez et al., 2003). AST antagonizes both types of CRH receptors, but does not allow
distinguishing between potential effects to CRH and the urocortins because both bind to the
same receptors. To clarify the respective contributions of CRH and urocortins to the regulation
of spontaneous wakefulness, Chang and Opp (2004) targeted the initiation codon of CRH
mRNA with antisense DNA oligodeoxynucleotides (ODNs) to target “knock down” the peptide
while leaving the receptors intact. ICV administration of antisense reduced wakefulness during
the dark period, thereby, implicating CRH rather than urocortins. However, as discussed below,
the urocortins can influence arousal when microinjected locally into the amygdala.
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Strain differences in the relative effects of manipulations of the CRH system on sleep are
consistent with observations that C57BL/6J and BALB/cJ mice differ in their responses to
stressors. Strain differences in the CRH system between C57BL/6J mice and BALB/cJ mice
have been demonstrated (Blank et al., 2003), but have not been fully elucidated. More work
has been conducted on two related strains, C57BL/6ByJ and BALB/cByJ, that are also less
and more reactive to stressors, and compared to C57BL/6ByJ mice, BALB/cByJ mice show
greater stressor-provoked HPA responses including CRH, adrenocorticotropin hormone and
corticosterone (Reviewed in Anisman et al., 2007). However, it must be noted that there may
be differences in the CRH/HPA axis across substrains.

C57BL/6J and BALB/cJ mice also exhibit other neurobiological differences that could be
involved in the differences in the effects of CRH and AST on sleep. The amygdala is a critical
region for the central effects of CRH, and it appears to mediate a number of its anxiogenic
effects as evidenced by intra-amygdala microinjections of CRH agonists and antagonists
(Reviewed in Davis and Whalen, 2001). Our work (Sanford et al., 1997; Sanford et al.,
2003c; Tang et al., 2005; Sanford et al., 2006; Sanford et al., 2006) and that of others (Calvo
et al., 1987; Calvo et al., 1996) has demonstrated a role for the amygdala in regulating arousal
and sleep and we have found that microinjections of a 1.0 ng dosages CRH into the central
nucleus of the amygdala (CNA) of rats decreased average amount of REM over 4 h post-
injection (Pawlyk et al., 2006). Ongoing work in our lab conducted in rats also suggests that
the CRH system in other regions of the amygdala can influence sleep and arousal. For instance,
microinjections of Ucn3 into the basolateral amygdala (BLA) decrease REM (unpublished
results), a result consistent with findings that local application of CRH or urocortin, which
works at CRH receptor sites into BLA in rats produces dose-dependent increases in anxiety
behaviors (Sajdyk et al., 1999). Thus, the amygdala could be an important site for the influence
of the CRH system on arousal and sleep.

There is a close relationship between stress-elicited CRH and GABA (Timpl et al., 1998).
Benzodiazepines (BZs) act by enhancing GABAergic transmission (Feldman et al., 1997) and
BZ receptors are abundant in the limbic system, including the amygdala (Niehoff and Kuhar,
1983; Zezula et al., 1988; Onoe et al., 1996), which may be a key site of action for their efficacy
in treating anxiety (Yadin et al., 1991; Sanders and Shekhar, 1995). Local BZ microinjections
into the amygdala decrease “anxiety” (they increase punished responses) in conflict paradigms
(Shibata et al., 1989; Davis, 1990), whereas antagonizing GABA increases anxiety behaviors
(Sanders and Shekhar, 1995 ). Prior administration of a BZ agonist attenuates the anxiogenic
effects of ICV administered CRH (De Boer et al., 1992). Compared to C57BL/6J mice, BALB/
cJ mice exhibited fivefold less BZ receptor density in the amygdala (Hode et al., 2000) and
have more sensitive behavioral reactions to BZ agonists (Griebel et al., 2000). The significantly
fewer BZ receptors in the amygdala of BALB/cJ mice would indicate an important reduction
in an endogenous modulator of emotion that has been suggested to be involved in the trait
anxiety BALB/c mice appear to exhibit (Hode et al., 2000). Given the role of CRH in the
amygdala in regulating stress and arousal, the difference in BZ receptors between strains may
play a role in the enhanced effect of CRH on arousal and sleep in BALB/cJ mice.

In comparisons of mice obtained from a different supplier (Orl), BALB/c mice have been
reported to have fewer locus coeruleus (LC) neurons than do C57BL/6 mice (Touret et al.,
1982). These differences were consistent in measurements made from 2 to 42 days of age, and
the size of the difference varied in the dorsal (50% less) and ventral (35% less) regions of LC.
Functioning of the CRH system has been closely linked to that of pontine regions implicated
in the regulation of REM, including LC. The application of CRH to LC increases noradrenaline
release (Valentino and Foote, 1998) and the endogenous source of CRH to LC originates in
CNA (Van Bockstaele et al., 1998) and possibly the bed nucleus of the stria terminalis (Smith
GW et al., 1998). Thus, there are strain differences in both forebrain and pontine REM
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regulatory regions that could be involved in the differences in the effects of CRH on arousal
and sleep in BALB/cJ and C57BL/6J.

In conclusion, the present study demonstrates significant differences in the effects of CRH on
arousal and sleep in mouse strains that exhibit different amounts of baseline sleep and that
differentially respond to stressors. These strain differences may be linked to variations in the
CRH system between strains, and also to significant differences in the neural substrates by
which CRH is thought to influence behavioral state. These results indicate that a critical
consideration of strain characteristics is important in interpreting data and may lead to a better
understanding of the relationship between stress and sleep.

Experimental Procedures
Subjects

The subjects were male C57BL/6J (n=7) and BALB/cJ (n=7) mice obtained from Jackson
Laboratories, Bar Harbor, Maine. The mice weighed 20–25 gm at the beginning of the
experiment. Food and water were available ad libitum. The recording room was kept on a 12:12
light: dark cycle with lights on from 0700 to 1900 h, and ambient temperature was maintained
at 24.5±0.5° C.

The mice were implanted intraperitoneally with telemetry transmitters (DataSciences ETA10-
F20) for recording EEG and activity as described in Tang and Sanford (Tang and Sanford,
2002). EEG leads from the transmitter body were led subcutaneously to the head, and the free
ends were placed into holes drilled in the dorsal skull to allow recording cortical EEG. In the
same surgery, the mice were stereotaxically implanted with a cannula for microinjections into
the right ventricle via a 1-mm hole in the skull drilled 1.00 mm lateral and 0.5-mm posterior
to the Bregma (−0.5). Afterward, the tip of a 26-gauge stainless steel infusion cannula was
placed 2.00 mm below the skull surface into the right ventricle. The cannula was secured to
the skull with dental cement and a stylus was inserted to maintain patency. All surgery was
conducted with the mouse under isoflurane (as inhalant: 5% induction; 2% maintenance)
anesthesia. Ibuprofen (30 mg/kg, oral) was continuously available in each animal’s drinking
water for 24 to 48 h preoperatively and for a minimum of 72 h post operatively. All procedures
were conducted in accordance with the National Institutes of Health Guide for the Care and
Use of Experimental Animals and were approved by Eastern Virginia Medical School’s Animal
Care and Use Committee (Protocol # 05–017).

Procedures
Sleep Recording—Telemetry signals (EEG and activity) were processed and collected at
250 Hz by a DataSciences Dataquest A.R.T software (version 3.1). For recording, individual
cages were placed on a DataSciences telemetry receiver (RPC-1) and the transmitter activated
with a magnetic switch. When the animals were not on study, the transmitter was inactivated.
The records were visually scored in 10 s epochs using the SleepSign scoring program. Epochs
were scored as either active wakefulness (activity recorded in epoch), quiet wakefulness (no
activity in epoch), NREM or REM based on EEG and gross whole body activity as previously
described (Tang and Sanford, 2002).

Drugs and Microinjections
After recovery from surgery, the mice were habituated to three daily sessions of the handling
procedures needed for administering microinjections. ICV location of the cannula was verified
with administration of angiotensin (20 ng in 1.0 μl ICV) and observation for drinking (Walker
and Romsos, 1992). Only mice that showed a clear angiotensin-induced drinking response
were used in the study.
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CRH and AST (cyclo(33)[D-Phe12,N1e21,38,Glu30,Lys33] h/rCRF(12–41)) were obtained in
powder form from Sigma-Aldrich (St. Louis, MO) and were diluted to the desired
concentrations in pyrogen-free saline (SAL). Three concentrations of CRH (CRHL: 0.04 μg
(0.042 mM), CRHM: 0.2 μg (0.21 mM), CRHH: 0.4 μg (0.42 mM)), three concentrations of
AST (ASTL: 0.1 μg (0.14 mM), ASTM: 0.4 μg (0.56 mM), ASTH: 1.0 μg (1.4 mM)) or SAL
alone (0.2 μl) were administered during the fourth h after lights on and sleep was recorded for
the subsequent 8 h. Microinjection in the light period at this time was chosen to parallel and
allow comparison to other behavioral and pharmacological manipulations that have been
conducted in our lab. All animals received each microinjection series administered in a
counterbalanced order for each drug. Approximately half of the mice received CRH first and
half received AST first.

For microinjections, injection cannulae (33 ga.), which projected 1.0 mm beyond the tip of the
guide cannulae, were secured in place within the guide cannulae. The injection cannulae were
connected to lengths of polyethylene tubing that in turn were connected to 5.0 μl Hamilton
syringes. The injection cannulae and tubing had been pre-filled with the solution to be injected.
The microinjections were counterbalanced across conditions and at least 5 days elapsed
between injections. The solutions in a volume of 0.2 μl were slowly infused over one min.
After receiving the injections, the mice were returned to their home cages.

Data Analyses
Wakefulness (active wakefulness, quiet wakefulness and total (active + quiet) wakefulness)
and sleep (REM, NREM, and total (NREM + REM) sleep) were examined for 8 h after each
microinjection. The data after each microinjection series were analyzed in two 4 h blocks in
the light period with 4 (Dosage) X 2 (Block) within subjects ANOVAs and over the 8 h total
recording period with 1 (Subjects) X 4 (Dosage) within subjects ANOVAs. Because
differences in baseline spontaneous sleep amounts differ among strains, we also examined the
effects of CRH and AST on wakefulness and sleep considered as percentage change relative
to levels after SAL for the entire 8 h recording period. This enabled comparisons across strains
of the relative effects of CRH and AST. When appropriate, post hoc comparisons were
conducted using Tukey or unpaired t tests.
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Figure 1.
Time spent in active (with activity) and quiet (without activity) wakefulness after ICV
microinjections of saline (SAL), corticotropin releasing hormone (CRH L: 0.04, M: 0.2, H:
0.4 μg) and astressin (AST L: 0.1, M: 0.4, H: 1.0 μg) in C57BL/6J mice. The results of
significant ANOVAs are placed over the appropriate comparisons. Post hoc comparisons
among means were conducted with Tukey tests. *, p<0.05, compared to SAL; L, p<0.05,
compared to low concentration.
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Figure 2.
Time spent in NREM and REM after after ICV microinjections of saline (SAL), corticotropin
releasing hormone (CRH L: 0.04, M: 0.2, H: 0.4 μg) and astressin (AST L: 0.1, M: 0.4, H: 1.0
μg) in C57BL/6J mice. The results of significant ANOVAs are placed over the appropriate
comparisons. Post hoc comparisons among means were conducted with Tukey tests. *, p<0.05,
compared to SAL; L, p<0.05, compared to low concentrations.

Sanford et al. Page 15

Brain Res. Author manuscript; available in PMC 2009 January 23.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Time spent in active (with activity) and quiet (without activity) wakefulness after ICV
microinjections of saline (SAL), corticotropin releasing hormone (CRH L: L: 0.04, M: 0.2, H:
0.4 μg) and astressin (AST L: L: 0.1, M: 0.4, H: 1.0 μg) in BALB/cJ mice. The results of
significant ANOVAs are placed over the appropriate comparisons. Post hoc comparisons
among means were conducted with Tukey tests. *, p<0.05, compared to SAL; L, M, p<0.05,
compared to low and medium concentrations.
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Figure 4.
Time spent in NREM and REM after ICV microinjections of saline (SAL), corticotropin
releasing hormone (CRH L: 0.04, M: 0.2, H: 0.4 μg) and astressin (AST L: 0.1, M: 0.4, H: 1.0
μg) in BALB/cJ mice. The results of significant ANOVAs are placed over the appropriate
comparisons. Post hoc comparisons among means were conducted with Tukey tests. *, p<0.05,
compared to SAL; L, p<0.05, compared to low concentration.
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Figure 5.
Effects of corticotropin releasing hormone (CRH L: 0.04, M: 0.2, H: 0.4 μg) on active
wakefulness, quiet wakefulness and total wakefulness (upper panels) and on NREM, REM and
total sleep (lower panels) in each strain plotted as a percentage change relative to their
respective 8 h saline control recordings. The p values (t tests) for significant differences
between strains at given dosages are above the relevant comparisons.
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Figure 6.
Effects of astressin (AST L: 0.1, M: 0.4, H: 1.0 μg) on active wakefulness, quiet wakefulness
and total wakefulness (upper panels) and on NREM, REM and total sleep (lower panels) in
each strain plotted as a percentage change relative to their respective 8 h saline control
recordings. The p values (t tests) for significant differences between strains at given dosages
are above the relevant comparisons.
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