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Abstract
In intensive care physiological variables ofthe critical-
ly ill are measured and recorded in short time intervals.
The existing alarm systems based on fixed thresholds
produce a large number of false alarms. Usually the
change of a variable over time is more informative
than one pathological value at a particular time point.
Intelligent alarm systems which detect important
changes within a physiological time series are needed
for suitable bedside decision support. There are vari-
ous approaches to modeling time-dependent data and
also several methodologies for pattern detection in
time series. We compare several methodologies de-
signed for online detection of measurement artifacts,
level changes, and trends for a proper classification of
the patient's state by means of a comparative case-
study.

Introduction
In intensive care reliable detection ofcritical states and
of intervention effects is important for adequate bed-
side decision support. Clinical information systems
(CIS) can acquire and store physiological variables
and device parameters online at least every minute. A
physician can be confronted with more than 200 vari-
ables in a critically ill,patient during a typical moming
round1, while an experienced physician may not be
able to develop a systematic response to any problem
involving more than seven variables2. The existing au-
tomatic alarm systems based on fixed thresholds pro-
duce a large number of false alarms due to
measurement artifacts, patient movements or minor
problems such as transient fluctuations past the set
alarm limit3. On the other hand, changes of a variable
over time are often more important than one patholog-
ical value at the time of observation. Various ap-
proaches have been suggested for the detection of
qualitative patterns like outliers, level changes, and
trends. Data abstraction obtained by online classifica-
tion ofthe observations into these pattems can be used
as input for rule-based decision systems developed us-
ing methods of artificial intelligence4.
An intuitive approach is qualitative data abstraction by
measuring deviations of measurements from a target
range. However, application of this approach to real
data showed that physiological variables oscillate con-
siderably and that pattern recognition is difficult this
way5. Moreover, these techniques do not capture the
correlations between subsequent measurements of the

variables. These temporal correlations can be included
in trend templates6. Trend templates consist of sets of
low order polynomial regression models describing
qualitative characteristics. Pattem abstraction is done
based on the fit ofthese templates to the observed data.
The major drawbacks of this method are the demand
for predefined expected behavior and absolute value
thresholds. However, time series in intensive care of-
ten show irregular behavior like patchy outliers, or
outliers and level changes occurring in short time lags.
Such behavior is difficult to specify in advance. More-
over, thresholds should be dynamically depending on
the patient's status in the past.
Statistical time series analysis allows to model tempo-
ral correlations and to track the temporal development
of the patient's status. In general, it has been shown
that time series techniques are suitable for retrospec-
tive analysis of physiological variables7'8'9. For pat-
tern recognition, we can compare incoming
observations to confidence bounds calculated by au-
toregressive modelsl. Or we can apply multivariate
outlier identifiers after transforming the time series
into a suitable m-dimensional Phase Space1 1. Alterna-
tively, the influence ofnew observations on the param-
eters ofa dynamic linear model can be calculated12.
Since usually multiple variables are monitored, e.g.
several blood pressures, we can apply logical rules to
combine and validate the patterns detected in a single
variable. Rules for multivariate monitoring might even
detect patterns earlier than simpler univariate rules
since ajoint critical value for multiple variables can be
exceeded because of simultaneous changes in several
variables even when all single variables still look non-
critical13. In the present paper we concentrate on a ba-
sic discussion and comparison of several methods,
which are based on statistical time series analysis, to
online pattem detection in dynamic processes ofphys-
iological variables.

Methods
Data set. On the surgical intensive care unit of a ter-
tiary referral center online monitoring data was ac-
quired from 19 critically ill patients (eight female,
eleven male, mean age 65 years) with extended hemo-
dynamic monitoring requiring pulmonary artery cath-
eters, in one minute intervals from a standard clinical
information system. These data were transferred into a
secondary SQL database and exported into standard
statistical software for further analysis.
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From a total of 550,000 single observations of seven
variables (heart rate and invasive blood pressures),
segments of 150 to 500 observations for each variable
were visually classified by a senior intensivist into five
clinically relevant patterns: no change, presence of
outlier, temporary level change, permanent level
change, and trend. The intensivist had not to define
any objective criteria, why he chose a specific classifi-
cation. From a total of 134 time series 23 were clas-
sified as without change, 35 as containing outliers, 1O
as showing a trend pattern, and 24 and 42 as containing
temporary and permanent level changes respectively.
The time series were presented to the intensivist a sec-
ond time in different order for reclassification without
any different result. The same segments were analyzed
with second order autoregressive (AR(2)), phase space
(PS) and dynamic linear models (DLM).

In the following let xl,... ,XN be a time series consist-
ing ofobservations ofa physiological variable at equi-
distant time points t = 1, ..., N. As usual, we denote
the corresponding random variables by capital letters,
e.g. X1,..., XN.

Autoregressive models. In autoregressive models
(AR) each variable is expressed as a finite, weighted
linear aggregate of previous observations plus a ran-
dom error14. An AR model for a time series formally
resembles a multiple regression. A stochastic process
{Xt : t E K } is called an autoregressive process of
order, denoted by AR(p), if

Xt = +Xt_
I
+ ... + OpXt_ + £tfoalteK

where 4 ,... , are unknown weights measuring the

influence of preceding values on X . The random er-

rors Et, t E K , are assumed to stem from a white noise
process, which is a sequence ofuncorrelated variables
from a fixed distribution with mean zero and time in-
variant variance. In most applications normality is as-
sumed for the errors14.
Several authors have successfully applied AR models
in the field ofcritical care15, in longitudinal physiolog-
ical experiments 16, as well as in studies on laboratory
data of the chronically ill17. It has been shown that
usually autoregressive processes oflow order are suit-
able to describe physiological variables.
After some preliminary experiments we choose sec-
ond order autoregressive models, where the last two
measurements directly influence the current observa-
tion, for all cases. An extensive interactive model se-
lection process has to be avoided since this would not
be feasible in online monitoring. Each time series is
split into two segments, an estimation period contain-
ing the first n observations (average length 173 min-
utes) and a prediction period containing the remaining
observations (average length 123). An AR(2)-model is

fitted to the data from the estimation period by condi-
tional least squares. Prediction intervals are construct-
ed for both the estimation period (one-step
predictions) and the prediction period (h-step predic-
tions) on the basis of the estimated weights.
Pattem detection is done by comparing the actual ob-
servations to the prediction intervals (PI) for the pre-
diction period. According to the number of values
outside the PI, the pattern is classified into the different
categories. Values outside the PI are classified as an
outlier, if less than 5 consecutive observations (= min-
utes) are outside the PI, while a level change is identi-
fied by 5 or more consecutive observations outside the
PI. Trend patterns are identified indirectly by devia-
tions of the autocorrelation function (ACF) of the re-
siduals and the Durbin-Watson-statistics. In this case,
the ACF of the original series is analyzed for typical
trend patterns. Ifcorresponding signs can be found, an
AR(2) model is fitted to the first differences ofthe se-
ries. Ifthis model shows a sufficient goodness of fit, a
significant trend is assumed.
Phase space models. Phase space (PS) models are
based on a transformation ofthe time series into an m-
dimensional Euclidean space by constructing phase

space vectors x,:

= (XtrXt+l,Xt+2s...t+(m l))E 9

with me K\{0},t = 1, ...,N-(m- 1) and m<<N.
Here, m is called the embedding dimension. By this
technique, which is derived from the theory ofnonlin-
ear dynamic systems18'19, the dynamic information of
a series is transformed into a spatial information.
For linear Gaussian processes, Bauer et al. recom-
mended to choose m similarly to choosing the order of
an AR(p) model11. They defined the components of
the phase space vectors to be chronological observa-
tions with a time delay (lag) of always one, as depen-
dencies between consecutive observations should be
considered for pattern identification. For stationary
linear Gaussian processes (corresponding to a steady
state) the vectors form an elliptic cloud. Its form re-
flects the dependency structure of the process. The
centre and the shape of the ellipse are determined by
the unknown mean vector and the covariance matrix of
the vectors. For estimating these parameters either the
classical or robust estimators of the mean and the au-
tocovariances ofa time series can be used. If all obser-
vations lie inside the estimated ellipse, it can be said
that the system is in a steady state. If one or more vec-
tors extrude from the ellipse, a disturbance can be as-
sumed. Disturbances can be distinguished by the
movement ofthe affected vectors in the phase space11.
In our case-study the first 60 observations are taken
and analyzed retrospectively (i.e., outlying regions are
estimated and pattems in this time interval are identi-
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fled). Thereafter a time window of length 60 is moved
through the data. That means, that at time point
t = 61,..., it is determined, if the phase space vector is
in an outlying region. If not, then no pattern is detect-
ed, and the ellipse is replaced by a new one, which is
estimated from the last 60 observations. If the new
phase space vector is found in a distant region, it is
concluded that the system is not in a steady state, and
after analyzing the consecutive vectors at times t+1
and t+2 it is decided which pattem is present.
Dynamic Linear Models. In dynamic linear models
(DLM) the current value Xt of the observed process
is a linear transform of an unobservable state parame-
ter and an added random observation error20. The val-
ue of this state parameter is assumed to depend on its
value at time t-l via a linear model.
In an early application, Smith and West used a multi-
process version of the linear growth model, which can
be formulated as DLM for monitoring patients after
renal transplantation21^ 2. This linear growth model
reads

Xt = (1 O)Ot+et

ot = (O)t- I + 9t
Here, the states are 2-variate parameters

Ot = (jt, fit)', where the first component is the pro-
cess level and the second component is the slope, i.e.,
the change in level at time t. Furthermore,
t- N(0, Vt) is the random observation error and

N(0, W,) is the random change in "evolution" at
time t, respectively. The proper a-priori specification
of the variances is important since the model is sensi-
tive w.r.t. these hyperparameters. Smith and West
modeled the occurrence of outliers, level shifts and
trends via different variances of the error terms for
each of the states and calculated the a-posteriori prob-
abilities of the states2l. This procedure is not very re-
liable in pattem identification since it is highly
parameterized23.
Alternatively, we can use a simpler single-process
model and assess the influence of groups of observa-
tions on the Parameter estimates. Peila4 and De Jong
and Penzer2 suggested Cook26-type influence statis-
tics of the smoothed parameters for the retrospective
detection of structural changes. These statistics are
based on deletion diagnostics, where the standardized
difference between the parameter estimates using all
data and the estimates derived after deletion of an in-
teresting subgroup of the data is calculated.
For online detection of structural changes we use stan-
dardized differences between the parameter estimates
calculated using all data available at time t and the

forecasts of the parameters calculated at time t-d. A
level change can be detected by a large standardized
difference between the predicted and the estimated
level parameter at time t. We choose d=5 to consider
the possibility of a level change lasting several time
units. Similarly, we can detect a trend by a slope
change, i.e., by a large standardized difference be-
tween the predicted and the estimated slope at time t.
For the time delay, we choose d=20 since reliable de-
tection ofa slow monotone trend takes some time any-
way. An outlier implies a large difference between the
observation and the predicted level. Here, we choose
d=5 again because of the possibility of outlier patches
disturbing the estimate ofthe current level. Using large
sample asymptotics we can compare the standardized
differences to the percentiles of the standard Gaussian
distribution. We consider several strategies w.r.t. the
estimation intervals. Interval lengths of30 and 60 min-
utes are applied, and both possibilities of estimating
the parameters only once for the whole series (as in the
AR approach) and moving a time window of 30 (60)
minutes through the series (like in the PS approach)
are tried out.

Results
With autoregressive models all series with outliers,
level changes and without a change were correctly
identified, i.e., the classification was identical to that
of the intensivist. The phase space approach always
identified series without any change and with outliers,
too. Identification of level changes failed, where the
decrease or increase of the observed values was rather
slow. Table I summarizes the results ofour case-study.
Table I: Comparison ofthe methods. Number ofcorrect clas-
sifications among the total number of patterns given in
brackets. Using AR models all pattems with the only excep-
tion trends could be correctly identified, but sometimes the
significance level had to be adjusted. PS models showed the
best automatic performance without any adjustments, but
cannot detect trends. DLMs allow trend detection, too.

AR PS DLM

No change (23) 23 23 23

Outlier (35) 35 35 35

Temp. LC (24) 24 20 15

Perm. LC (42) 42 37 28

Trend (10) 0 0 6

Dynamic linear models are at first sight very appealing
as they allow to assess the distance ofeach observation
from the current level as well as the changes in level
and in slope over time. Nevertheless, classification
with DLMs was more problematic since the influence
statistics turned out to be not very reliable when the
changes do not have an ideal form. Moreover, the pa-
rameter estimates are strongly affected by outliers. Se-
ries without change and with outliers could be
identified more often with estimation intervals of 60

186



minutes. Level changes were detected best by moving
an estimation interval of30 minutes through the series.
However, any ofthe results was worse than for the AR
and the PS approach. Identification by influence statis-
tics for the DLM parameters has severe problems with
little variability during the estimation period, with lev-
el changes occurring stepwise and with patterns ofout-
liers at short time lags. Little variability during the
estimation period causes the detection of outliers and
level changes to be too sensitive subsequently. Step-
wise level changes are hard to detect since the
smoothed level parameter adjusts step by step, possi-
bly without any significant influence statistics. Several
close outliers may either mask each other or be mistak-
en for a level change.

All methods were more sensitive to outliers and level
changes than clinically relevant. Especially with outli-
er detection, 95% prediction intervals for autoregres-
sive models were too close. In a second run the
prediction intervals were adjusted until clinically rele-
vant results were found. This problem was most pro-
nounced when the series had very small variability
during the estimation period. For those series devia-
tions from the mean are statistically significant at the
95% level which are clinically not meaningful, as the
small prediction intervals do not reflect therapeutically
important changes. In five cases of outlier detection,
the PIs were adjusted to 99.99%. For a very sensitive
detection of outliers in some instances the PI was re-
duced to 90%. In PS-models an overall level of
99.99% was chosen for all series. For DLMs, standard-
ized adjustments depending on the estimation period
could improve classification in some cases.

The possibility ofdirect trend detection is the main ad-
vantage ofDLMs since trend detection cannot be done
directly neither with AR nor with PS models. Trend
detection with DLMs was best when the hyperparam-
eters were fitted to an estimation interval of30 minutes
at the beginning and kept unchanged thereafter.

Comparison between precisely diagnosed AR models
and over-determined models (AR order higher than
necessary) showed that over-determined models allow
a semi-automatic pattern detection without any trade-
off in clinical sensitivity. PS models offer opportuni-
ties for fully automated time series analysis in this con-
text.

Discussion

The individual statistical evaluation of a single patient
constitutes an important task in critical care monitor-
ing.

In our study, patterns of univariate physiological time
series could reliably be identified both with low order
autoregressive models and phase space models. The
only exception were trend patterns where both ap-
proaches have shortcomings. DLMs offer advantages
for trend detection, but they are not as reliable as the

other approaches for the detection of outliers and level
changes. The phase space approach allows a meaning-
ful application even with small sample sizes.
For most bedside decision problems the methods are
too sensitive. AR models seem to be better in this re-
gard than PS and DLMs. But a direct comparison is
difficult because in the estimation period ofAR mod-
els no pattem detection is performed. Thus, there is no
possibility to misclassify pattems in this period,
whereas PS models look for pattems from the onset. A
possibility to reduce the sensitivity is to use an auto-
matically adjusted level. A low level should be chosen,
ifthe variability of the process is small and vice versa.
Such an automated level adjustnent has already been
included into the PS procedure and has lead to signifi-
cant improvements.
DLMs demand suitable specification of the hyperpa-
rameters, and for any classification rule formulated by
influence statistics there are pattems of outliers which
can corrupt the analysis.
For DLMs robust Kalman filter procedures27, which
are less sensitive against outliers, might improve clas-
sification. Influence statistics are based on non-revers-
ible transformations, thus they imply a loss of
information. This is worse in online monitoring, where
few information is available, than in a retrospective
setting. As an alternative, the smoothed parameter es-
timates could be monitored directly.
From a clinical application perspective our results
show that there is not one single statistical methodolo-
gy that can gracefully handle all requirements for
univariate pattem detection in physiologic time series.
Therefore, it may be best to use different methods in
combination and fine-tune each method to a specific
set ofpattems.
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