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ABSTRACT

Automatedphysiologic event detection and alerting is
a challenging task in the ICU Ideally care providers
should be alerted only when events are clinically
significant and there is opportunity for corrective
action. However, the concepts of clinical
significance and opportunity are difficult to define in
automated systems, and effectiveness of alerting
algorithms is difficult to measure. This paper
describes recent efforts on the Simon project to
capture information from ICU care providers about
patient state and therapy in response to alerts, in
order to assess the value of event definitions and
progressively refine alerting algorithms. Event
definitions for intracranial pressure and cerebral
perfusion pressure were studied by implementing a
reliable system to automatically deliver alerts to
clinical users' alphanumeric pagers, and to capture
associated documentation about patient state and
therapy when the alerts occurred. During a 6-month
test period in the trauma ICU at Vanderbilt
University Medical Center, 530 alerts were detected
in 2280 hours ofdata spanning 14 patients. Clinical
users electronically documented 81% of these alerts
as they occurred. Retrospectively classifying
documentation based on therapeutic actions taken, or
reasons why actions were not taken, provided useful
information about ways to potentially improve event
definitions and enhance system utility.

INTRODUCTION

Effective medical care processes typically embody a
feedback loop, in which care providers continually
assess patient condition and take action to improve it.
Physiologic data from bedside monitors is one
indicator of patient condition, and is a factor in 13-
22% of clinical decisions made during ICU rounds'.
Computerized decision support systems have been
developed to monitor physiologic data and alert care
providers when events of possible clinical
significance occur. However, these systems
generally reflect only the information delivery
portion of the "loop", in that alerts are delivered but
there is no facility for capturing information about
related actions or relevance of the alert. Information

about patient state and related therapeutic actions at
the time of alerts is invaluable ifevent definitions and
are to be progressively improved in a scientific way.

Without such refinement, current systems for
physiologic event detection and clinical alerting
remain inadequate. One study in 1997 found that
only about 23% of physiologic alerts from based on
heart rate threshold alarms from physiologic monitors
were clinically relevane. While ICU monitoring
technology is relatively advanced in terms of
technical architecture, information display, variety of
sensors, and interfaces to other bedside devices, alert
definitions remain primrily restricted to specifying
high or low limits of individual monitor parameters,
independent oftime. Given the substantial variability
in patients and clinical environments, providers are
faced with a difficult tradeoff in setting these limits:
either set a wide range of acceptable values to
minimize false alarms, potentially at the expense of
timely notification, or set the range narrow to receive
earlier notification, at the expense of considerable
false-positive alerts. While a variety of event-
detection solutions have been proposed including
multi-state filters3, template recognition4, and fuzzy
logic process models5, these and other advancements
are typically not assessed in terms of the relevance of
individual alerts generated during actual patient care.
Notable exceptions include work by Tate et al. to
examine effectiveness of alphanumeric pager alerts
based on critical lab values6, and by Shabot and
colleagues to study alerts delivered to wireless
devices based on physiologic, laboratory and other
data7. This paper describes recent work on the Simon
(Signal Interpretation and Monitoring) project to
provide physiologic event detection, alert
notification, and documentation capabilities in a
working ICU information system, and to study how
data entered by clinical users in response to alerts can
be used to assess and improve system performance.

METHODS

Since the main purpose was to deliver alerts to care
providers over the course of patient care and to
capture feedback as alerts occurred, the first step was
to implement an architecture that could support
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progressive development of event detection and
alerting mechanisms, while maintaining a level of
reliability sufficient for routine clinical use. Existing
architectural components8'9 were deployed, and
several new components were added. A schematic of
this architecture is show below in Figure 1.
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Figure 1: Simon Architecture

For performance reasons, the architecture separates
high bandwidth data streams generated by bedside
devices from other data channels such as user notes
and hospital information system (HIS) data. The
central point of access for all bedside device data is a
data router, which relies on a publish-subscribe
mechanism implemented over TCP/IP sockets to
rapidly relay data from bedside medical device
interfaces ("publishers") to processing modules and
other "subscribers" requiring immediate, continuous
access to bedside device data sampled every few
seconds. All other data access is accomplished
through open database connectivity (ODBC)
connections to a relational database on a separate
machine, implemented using Microsoft SQL Server.
Components developed as part ofthis work included:

1. A database archive module to store all
physiologic data to the database in "batches"9;

2. Processing/logic modules to compress this data
for long term storage, associate data with
patients based on hospital census information,
monitor and manage system components, notify
the researcher if system problems occurred, and
deliver alerts to care providers via email and/or
alphanumeric pager;

3. A java-based note application for entering free
text notes in response to alerts, modified from
existing code developed at VUMC;

4. Clients for WWW display of current data,
alphanumeric pager alerting, and recently
generated alerts.

During the test period, the implementation of this
architecture supported data collection and processing
from up to six different medical devices on each of
four trauma ICU beds, and a variety of other sources
and clients. As of July 2001, six additional beds had
been added.

After implementing the basic architecture, an
attending trauma surgeon with over 20 years of
critical care experience was asked to define a set of
physiologic events for testing that he thought might
have clinical significance. He choose to generally
express events in the form of threshold conditions
over time, for example intracranial pressure > 25
mmHgfor 15 minutes. Some events did not have a
duration requirement, such as cardiac index < 2.5
I/minim2. An event detector was developed by
another member of the project team9, and tested off-
line on actual data. During initial testing, several
factors were noted that influenced design of event
detection algorithms as well as the choice of which
events to study: 1) Some parameters were not always
available, due to device configuration requirements
that unit staff were trained to do; 2) Noise and
artifacts would require more advanced processing
than simply monitoring current values in the data
streams; and 3) False positive alerts would likely be
present even with better processing, due to external
variables that could not be sensed by the system,
including lab data and patient status (i.e. organ donor,
DNR).

Figure 2: Portion of SimonWWW GUI (annotated)

As a result, initial efforts focused on detecting events
in intracranial pressure (ICP) and cerebral perfusion
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pressure (CPP), two parameters the system could
reliably acquire at all times. The corresponding event
definitions were:

ICP > 25 mmHgfor 15 minutes
CPP < 60 mmHgfor 15 minutes

Typical ICP and CPP signals are noted above in
Figure 2, showing a full day of data for a single
patient. Each arrow points to the respective threshold
value. In addition, a multi-state detection algorithm
was defined to improve performance in the presence
of noise, short data dropouts, and other artifacts.

While the event detector was being tested, a note-
entry application was implemented that allowed users
to enter free-text notes in response to alerts. It was
important to be able to link this application with
existing information sources, and to be able to easily
deploy it on three bedside laptops dedicated to the
project. An existing template-based note entry
application, written in Java at VUMC, was adapted to
run via a web browser, and to directly interface with
the Simon database via Java Database Connectivity
(JDBC). Four nurses initially tested this application
over a period of six weeks, and performance issues
were addressed by adding additional memory to the
three bedside laptops dedicated to the project.

Finally, mechanisms were needed to notify care
providers of alerts and to tie event, alert, and note
data together. Database tables were defined to store
events, alerts, and notes, as well as configuration data
such as who should receive alerts for a particular bed.
When an event is detected and added to the database,
a notification engine looks up any number of email or
alphanumeric pager recipients for the particular bed,
delivers alerts appropriately, and logs the delivery in
the database. A pager display of an actual clinical
alert is shown in Figure 3.

Figure 3: Clinical Alert on Alphanumeric Pager

A WWW page (Figure 4) lists all alerts generated
over the past 12 hours and whether notes have been
entered for each alert. Clicking on the alert hyperlink
brings up the note entry application with patient

demographics, timestamps, and alert information
automatically entered.

Figure 4: Alert status GUI

After all components were developed and tested, a
group of clinical users was identified who would
enter documentation in response to each alert. The
VUMC Division of Trauma staffs a clinical nurse
supervisor (CNS) position with a licensed nurse
practitioner at all times, an ideal test group for
several reasons. First, they are generally aware of the
state of the most critically ill patients in the trauma
unit. Second, their duties permit them to review
alerts for any patient, assess the situation, and enter
documentation in a timely manner. Most important,
they generally have significant clinical experience
and interest in the project, and were willing to act as
"filters" between the system and the other members
of the care team.

In July 2000 users attended a brief presentation and
demonstration of the system, and the CNS on duty
began receiving alerts via alphanumeric pager. After
only a few days, they suggested an important
refinement to the alert definitions. While users
wanted to receive ICP alerts at all times, they only
felt CPP alerts were significant in the presence of
increased intracranial pressure, so the system was
modified accordingly. Data from August 8, 2000
through Jan. 18, 2001 were reviewed. Data
corresponding to patients that arrived in a Simon bed
before the start of this interval, or left after the end,
were not considered. For each patient with ICP or
CPP alerts, the total monitored time was computed as
the duration of ICP monitoring less data gaps greater
than five minutes. Since an important aspect of the
work was in assessing the feedback side of the
process, documentation for each alert was
subjectively classified into one of five areas
according to the type of clinical action, or reason why
no action was taken, in relation to the alert.
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RESULTS

Over the study period, 530 ICP and/or CPP alerts
were detected in 14 different patients, corresponding
to approximately 2280 total hours of ICP data. Four
additional patients had ICP/CPP monitoring for a
significant time (> 30 minutes), but no alerts were
detected. Figure 5 shows the incidence of ICP and
CPP alerts by patients who had at least one alert.
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Figure 5: Frequency of ICP and CPP alerts in four
trauma critical care beds, 8/00 - 1/01

Figure 6 shows the breakdown of documentation
types entered in response to alerts during the study
period.
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W'hile users were not given specific instructions
about what type of information to include in notes,

almost all documentation referenced new or
continuing therapy related to the alert condition, or
gave reasons why therapeutic actions were not taken.
Such reasons included: 1) Medical therapy
maximized - no additional medical treatment options
were available due to patient lab values, or 2) No
therapeutic action was needed because the condition
spontaneously resolved, or a determination was made
to discontinue treatment for ICP/CPP, as in the case
of patients with do not resuscitate (DNR) orders. Six
percent of notes could not be classified into these
groups, and included a wide variety of information
such as the patient being under care of another
service, to technical feedback and suggestions. A
few in this category were reports of disbelief by the
bedside nurse that the alert condition occurred, when
asked by the CNS who received the alphanumeric
page. No notes were recorded for 19% of alerts,
although almost all of these were for a single patient
over a four-day period, indicating a short-lived
technical or user issue that went undetected.

Technically, the system generally performed well
during the test period. There was one known
extended outage, of five days duration starting on
11/23/00. Outages were otherwise limited to a few
hours per month on average, usually due to network
and/or power glitches. Subjective user feedback was
fairly positive, although users expressed dismay in a
few cases where alerts continued after DNR orders
were in place, as the system had no way of sensing
this situation. Finally, successive notes included
substantial repetition, discussed in more detail below.

DISCUSSION

Overall, the system was effective at providing
clinical alerts to users, as well as capturing data about
how alerts were related to clinical therapy or lack
thereof. Users were remarkably good at ensuring a
note was entered for each alert. If the one period
mentioned above is omitted (where notes for one
patient were not entered over a four-day period) more
than 95% of all alerts were documented. Factors that
contributed to this high response rate likely included
a simple, easy-to-use interface for documentation, as
well as substantial enthusiasm for the project from
the trauma division director. From a technical
standpoint, alerts were reliably detected for ICP and
CPP because of fully automatic operation with no
special connection or configuration requirements.
Reliably detecting events in other signals, such as
those from portable bedside devices that must be
physically connected to the system each time or
specifically programmed to send data, might be more
difficult and require substantial user training.
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Also, success in detecting alerts and eliciting
documentation from users does not necessarily imply
clinical usefulness. Subjective review of note content
indicated that users probably considered many of the
alerts redundant, due to substantial numbers of notes
reading "ditto", "see previous entry", or similar
phrases. This effect is in part due to the close
coupling of ICP and CPP. CPP is the difference
between mean arterial pressure and ICP, so an
increase in ICP is usually accompanied by a decrease
in CPP. In many cases this would trigger two alerts
within a few minutes of each other, with similar user
documentation. While it is difficult to assess utility
given the fact that supervisors entered all data and
were not specifically asked to rate usefulness in any
controlled way, the presence of duplicate notes and
the short time interval between the corresponding
alerts implies some unnecessary redundancy in alert
delivery.

However, note type and content may be used to
prioritize system improvements to reduce this
redundancy, making the system more suitable for
routine use by bedside nurses. Note content was very
important during initial testing, in terms of deciding
to only deliver CPP events in the presence of an
increased ICP event. During the study period, the
types of alerts entered suggest additional
enhancements. Since 16% of notes indicated that
therapy was maximized based on clinical lab values,
only notifying care providers when therapy could be
resumed based on lab data, or by not sending alerts in
cases where no therapy could be provided might
improve usefulness. In addition, a facility to tell the
system not to send alerts for patients with DNR
orders would be helpful. Notes referencing
corresponding therapy were most prevalent,
suggesting that a mechanism to incorporate
information about drug administration and other
therapies might be most beneficial. In this case, the
system would not generate alerts if appropriate
therapy was being administered. Defining
"appropriate therapy" in terms of computational
algorithms may be challenging, requiring higher-
level knowledge than the fairly simple event
definitions described here. However, by closing the
loop and evaluating not only alerts generated to care
providers but also related therapeutic actions, such
modifications can be progressively implemented and
evaluated to improve performance.
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