1067—5027/01/$5.00 © 2001 AMIA, Inc.

Representing and Querying Conceptual Graphs with Relational Database
Management Systems is Possible

Gunther Schadow MD PhD, Michael R. Barnes MD, Clement J. McDonald MD
Regenstrief Institute and Indiana University School of Medicine, Indianapolis, IN

This is an experimental study on the feasibility of main-
taining medical concept dictionaries in production
grade relational database management systems
(RDBMS.) In the past, RDBMS did not support transi-
tive relational structures and had therefore been
unsuitable for managing knowledge bases. The revised
SQL-99 standard, however, may change this. In this
paper we show that modern RDBMS that support re-
cursive queries are capable of querying transitive
relationships in a generic data model. We show a sim-
ple but efficient indexed representation of transitive
closure. We could confirm that even challenging com-
bined transitive relationships can be queried in SOL.

Introduction

Conceptual graphs are an approach to organize cate-
gorical knowledge about concepts. Terminologies,
ontologies, and conceptual graphs are quite active areas
of research in medical informatics. Many research sys-
tems to manage these conceptual graphs (e.g., GRAIL',
PROTEGE-II’, LUME’) are stand-alone systems (often
implemented in LISP) that support expressive descrip-
tion logics and inference, but that have limited data
management features. These systems mostly depend on
the entire conceptual graph to be loaded into memory.
Their innovativeness and power notwithstanding, these
specialized research systems do not blend very well into
a production data management system.

Relational Database Management Systems (RDBMS)
on the other hand are a theoretically sound and industri-
ally proven technology for managing large amounts of
shared data,*> but RDBMS have not been used for
managing knowledge bases. This is because most
RDBMS do not support transitive closure queries,
which are an indispensable tool for managing concept

0. Relationship
! jtarget " [tmecd: CHARG)
Concept M! I:'"!".
id:INT flae_lqw:INT
name : VARCHAR tree_high : INT
0.*
source
1

Figure 1: Example generic data model.

networks.® However, RDBMS are catching up and it is
time to revisit the practicality of maintaining extensive
medical knowledge in RDBMS.

In this paper, we outline an approach for managing
conceptual graphs in an industry supported RDBMS. As
we are currently migrating the Regenstrief Medical Re-
cord System’ (RMRS) and its medical concept
dictionary to industry standard relational data architec-
ture, this work is a study in the possibilities and
limitations of RDBMS meeting the needs of generic
data modeling and conceptual graphs. The RMRS dic-
tionary contains approximately 25000 concepts, with
approximately 1000 concepts added every year since
1978. In addition we maintain the rapidly growin%
Logical Observations Identifiers Names and Codes
(LOINC) and we are referring to external terminologies,
such as ICD-9, SNOMED, and Medispan GPI for use in
our medical record system. In addition, having been
influential in transforming the HL7 Reference Informa-
tion Model (RIM) to an abstract generic data model,”'
we are investigating the feasibility and costs of straight-
forwardly implementing this model in an RDBMS.

Example Problems

Throughout this paper we will use an example database
defined by the following SQL data definition (see also

Figure 1):

CREATE TABLE Concept (
id INTEGER NOT NULL PRIMARY KEY,
name VARCHAR (64) ,
text LONG VARCHAR) ;

CREATE TABLE Relationship (

type cd CHAR(8) NOT NULL,
source INT NOT NULL

REFERENCES concept (id),
target INT NOT NULL

REFERENCES concept (id) ,
CONSTRAINT pk PRIMARY KEY (

type cd, source, target));

This data model pattern underlies many generic data-
bases found in the literature, including the HL7 RIM.
Databases according to this model are directed graphs
with labeled nodes and arcs. In our example we call the
node “Concept” and the arc “Relationship”.

Attributes as Relationships

The generic relationship-table handles all relationships
between concepts, including those simple n-to-1 rela-

598

tionships that could be represented as direct attributes
(self-referential foreign keys) in the concept table with-
out using the relationship table.

The advantage of always using the link table is that
we can query our concept database for any kind of rela-
tionships between concepts. Thus, we can isolate
concepts in the database that are never used (and elimi-
nate those concepts), or we can focus the maintenance
effort on those concepts that are most frequently refer-
enced.

Transitive Closure Queries

The generalization relationship (‘ISA’) is probably the
most commonly used relationship in concept databases.
One common use case for querying ISA links is to test
whether a given concept matches an expected concept.
This requires querying the ISA relationship between the
two concepts.

The ISA relationship however is transitive. For ex-
ample, if gastric mucosa ISA columnar epithelia, and
columnar epithelia ISA epithelia, the gastric mucosa
ISA" epithelia (we note transitive relationships using a
superscript plus () after the relationship type symbol.)

With the SQL-92 standard," implemented by most

commercial RDBMS today, one cannot query the com-

plete transitive closure. Instead one would either write
complex queries that allow a transitive chain up to a
certain length, or one would need to write a program
that would walk the links to form the transitive closure.
Programmatically following links is not only cumber-
some (requiring programming instead of just ad-hoc
queries,) it is also slow since many queries and their
responses need to be communicated between the data-
base client and server.

In the new standard SQL-99'? (also known as “SQL
3”) transitive closure can be queried using named tem-
porary tables. For example, to find out if one concept
(spec) is the transitive specialization of another concept
(gen) we construct the successor set of the transitive
ISA relationship and test whether gen is in that succes-
sor set:

until no more items to are found to join. The final query
takes the completed temporary table and answers the
original question — in this case whether gen is among
the generalizations of spec.

This example shows that when querying the relation-
ship table, a join with the concept table itself is
normally not needed. Thus, the slight disadvantage that
we found when modeling attribute links with the rela-
tionship table is of no concern if we perform extensive
graph traversal.

Inheritance

The ISA link logically implies that the specialization
inherits all relationships from its generalizations. To
find all the transitively inherited relationships of a con-
cept spec we construct the successor set of the ISA*
relationship and then join with the other relationships:

WITH tmp(id) AS (
VALUES spec
UNION ALL
SELECT next.target
FROM tmp, Relationship AS next
WHERE next.type cd = 'ISA'
AND next.source = tmp.id
) SELECT link.*
FROM tmp, Relationship AS link
WHERE link.source = tmp.id;

WITH tmp(id) AS (
VALUES spec
UNION ALL
SELECT next.target
FROM tmp, Relationship AS next
WHERE next.type cd = 'ISA'
AND next.source = tmp.id
) SELECT * FROM tmp WHERE id = gen;

Transitive closure queries in SQL-99 use the WITH-
clause that defines a temporary table (here named
“tmp”) as the union of two queries. The first part con-
structs a starter set, while the second part joins the
current temporary table with other tables to add more
items into the temporary table. This process is repeated

Besides ISA relationships, other important transitive
relationships exist, such as PART-OF (e.g., the aortic
valve is PART-OF the heart and the heart is PART-OF
the cardiovascular system, hence is the aortic valve
PART-OF" the cardiovascular system.) The causal link
(CAUSES) is also transitive (“chain of causality”.)

Transitive Closure Optimization

Transitive closure queries are expensive, even with
support from an SQL-99 compliant RDBMS and for
online applications one must consider techniques for
optimization. Many transitive closure algorithms had
been described in the recent years," yet most of these
algorithms are most sensibly implemented in the core of
the RDBMS. As a client-side program, performance of
these algorithms is severely impaired by the fact that all
of those algorithms have to read the entire relationship
table at least once, and this is slowed down by both disk
access and network traffic.

Materialized Transitive Closure

One way of optimizing transitive closure is to material-
ize all transitive relationships in an “ancestor-
descendant-table.” To do this, we would add a column
to our relationship table distinguishing a direct relation-
ship from a cached transitive relationship:

ALTER TABLE Relationship
ADD COLUMN trans ind CHAR;

599

Figure 2: The interval method of transitive closure optimization al-
lows testing for the transitive relationship between L and E by testing
whether the interval 7..7 is in the interval 6..8.

If the trans_ind value is ‘+’ we know that the link is
materialized transitive link. One could update the transi-
tive links either on a regular basis or using a database
trigger that computes the transitive closure whenever a
new relationship is inserted or an existing relationship
deleted. One can build the initial transitive closure table
using a variant of the query above:

limited depth and limited breadth in each level of the
graph. On the other hand, OID type addresses are less
efficient to operate on and can easily grow quite long.

The Interval Method

The interval method assigns an integer-interval to each
link in the graph. For simplicity we require the graph to
be a proper tree, i.e., there must be a single root and
besides the root every node in the tree must have ex-
actly one outgoing link. A more general interval method
exists that works for all graphs,'* but with the tree
assumption the representation and algorithms become
very simple and practically useful."”

We can then assign an integer interval to all the links
in the tree as shown in Figure 2. Each link’s interval is
the union of the intervals of that link’s successor set.”
We cannot store the intervals in the concept node itself
because different intervals are assigned to each node,
one interval for each transitive link type. To support the
interval method, we add two columns to the link table

INSERT INTO Relationships
WITH tmp(type cd, source, target,
trans ind) AS (
SELECT Relationship.*, ''
FROM Relationship
WHERE type cd IN
(VALUES 'ISA', 'PART-OF!,
UNION ALL
SELECT next.type cd, next.source,
next.target, '+
FROM tmp, Relationship AS next
WHERE next.type cd tmp.type cd
AND next.source tmp.target
) SELECT * FROM tmp;

'CAUSES')

ALTER TABLE Relationship
ADD COLUMN tree low INTEGER
ADD COLUMN tree high INTEGER;

CREATE INDEX ON
Relationship(tree low, tree high);

The transitive closure query to find all the generaliza-
tions of a concept x is then as simple as:

The materialized representation is simple, and queries
written against the simple relationship table will con-
tinue to work against the transitive relationship table.
The disadvantage, however, is that the materialized
transitive closure can grow very large and may be im-
practical with large concept databases.

Tree Addresses

Many hierarchical coding systems use tree addresses to
encode transitive relationships (e.g., HELP, MeSH, or
ICD-9.) A tree-address is an encoding of the path lead-
ing from the root to the so addressed node. For
example, node “H” in Figure 2 would have a tree ad-
dress like “A.D.H”, which immediately reveals that “H”
is a descendent of “A”.

ISO Object Identifiers (OID) or IP addresses are the
two prototypical examples of tree-address encodings:
OIDs are simply dotted lists of numbers with no limita-
tion to the size of each number or the length of the list.
IP addresses are fields of 32 bit, where the bits are
grouped to address each step in the path. Such bit-fields
are efficient to compare and operate on but allow only a

SELECT gen.*
FROM Relationship spec,
Relationship gen

WHERE spec.type cd =/ VISA!
AND gen.type cd = spec.type cd
AND spec.source = X

AND gen.tree low <= spec.tree low
AND gen.tree high >= spec.tree high;

This query can be answered rapidly using only two in-
dex scans: one quick lookup to find the first ISA link
for the concept X followed by an index scan to find only
the concepts which include the given concept’s interval.

Discussion

The interval method is a very efficient transitive closure
optimization, because unlike tree addresses the inter-
vals’ storage requirements depend only on the number
of nodes in the graph, independent of the depth or bal-
ance issues. Both tree addresses and the interval method
have some limitations. First, the graph must be a proper
tree with a single root. Completing a poly-tree
(“forrest”) structure to a singly rooted tree is easy, we
just add a root concept (with id = —1). For each transi-

* An algorithm for assigning the intervals is described by
Kamfonas'®, we found a way to assign the intervals using only
SQL statements but we still require an explicit iteration.

600

tive relationship type we link all concepts that are not
the source of such relationship directly to this root node.
We require these root links to store the interval numbers
for the concepts at the source of each link.

In the simple form shown here, the interval method
does not work for cyclic graphs and it does not support,
multiple outgoing links per concept (no multiple inheri-
tance.) For concept relationships, we believe multiple
inheritance to be much less valuable than it might seem
from the many uses of the ISA relationship reported in
the literature. For example, it is tempting to define heart
ISA cardiovascular organ when in fact what’s being
said is that the heart is PART-OF the cardiovascular
system.

We think the ISA link should be restricted to ex-
pressing only substantial relationships defined by the
very nature of primary concepts. To that end, concepts
that essentially are groupings of other concepts should
not be defined as abstract concepts at all. For example,
one should define the cardiovascular system (concrete
concept) but not cardiovascular organ (abstract con-
cept), whose only definition is: an organ that is PART-
OF the cardiovascular system. The same argument can
be made for diseases; instead of defining myocardial
infarction (M.I) ISA cardiovascular disease, one
should say that M.I. is CAUSED-BY ischemia of the
myocardium, which is PART-OF the heart, etc. Inter-
estingly, while the anatomy section of SNOMED RT is
quite well designed regarding our criterion, the disease
section unnecessarily uses the ISA relationship; e.g.,
M. I ISA ischemic heart disease.

While one can create arbitrary classifications of con-
cepts based on any attribute or relationship, the ISA link
should be reserved for substantial relationship only.
Hence, we do not believe that abandoning the option for
multiple inheritance is a great loss. When we encounter
a concept with two ancestors, we ask whether this is due
to arbitrary classification. If both relationships appear
substantial, we ask whether the two ancestor concepts
might themselves be related (thus the multiple ISA links
might be a materialized transitive relationship.)

Interactions between Relationships

Different kinds of relationship types may interact with
each other. As noted earlier all relationships are inher-
ited through ISA links. Sometimes, however,
relationships are conducted through other links. Hor-
rocks et al.'® give the example of the HAS-LOC][ation]
link that transfers through PART-OF links (e.g., if frac-
ture of femur-shaft HAS-LOC femur-shaft and femur-
shaft is PART-OF femur, then a femur-shaft-fracture
HAS-LOC femur.) The authors go on to propose that
relationships can be chained. For example (HAS-LOC °
PART-OF") is the composed relationship that expresses
this rule of the conducted relationship.

long |,5a HAS-LOC [bone |
vone_[ISA>fpons [« TASL0C KO0

2.2 ISA
femur |1
fracture| 3..3 fracture
S ISA 2.4
ISA
ISA \ . — 4.4
fomur |HiAS-Loc [lemu
shef |fracture

Figure 3:.Example conceptual graph with multiple interacting rela-
tionship types.

To test for such composite relationships in our repre-
sentation we combine the intransitive HAS-LOC
relationship with the transitive closure query for the
transitive PART-OF relationship and the inheritance
through ISA links. Given the conceptual graph in Figure
3 to test whether a femur-shafi-fracture (fsf) is a fracture
(frac) of the femur (f) we have to find whether f5f ISA*
frac and fsf (HAS-LOC ° PART-OF") femur, i.c., that
there exist two concepts x and y where f5f ISA* x which
HAS-LOC y which is PART-OF" femur.

SELECT Px.*, Py.*

FROM Relationship Ifsf,
Relationship Ifrac,
Relationship Ix,
Relationship Lx,
Relationship Py,
Relationship Pf,

WHERE Ifsf.type cd = 'ISA'
AND Ifsf.source = Faf
AND Ifrac.type cd = 'ISA'
AND Ifrac.source = frac

>

AND Ifsf.tree low
AND Ifsf.tree highc
AND Ix.type cd =
AND Ifsf.tree low >
AND Ifsf.tree_highc<

Ifrac.tree_low
Ifrac.tree high
'ISA!

Ix.tree low
Ix.tree high

non

AND Lx.type cd = 'HAS-LOC'
AND Lx.source = Ix.source
AND Py.type cd = 'PART-OF'!
AND Py.source = Lx.target
AND Pf.type cd = 'PART-OF'
AND Pf.source =k

AND Py.tree_low
AND Py.tree high

>= Pf.tree_low
<= Pf.tree high);

This query is a join of the same relationship table re-
peated six times. The complexity however is not as high
as it seems, since all but x and y are bound to specific
concepts, so the search space is not large and all
searches are efficient index lookups.

Consider the question “is femur-shaft-fracture a frac-
ture of a bone?” The first part of the question is
answered as shown above, i.e. f5fISA* frac and fsf ISA*
x where x HAS-LOC y. However, answering whether y

601

is part of a bone requires the transitive closure over the
combination of at least one PART-OF link and optional
ISA links in any order. For example, possible paths
between y and bone could be “y ISA* diaphysis PART-
OF" long-bone ISA* bone”; and “y PART-OF" long-
bone ISA* bone.” This query cannot be answered in a
simple join but requires recursion again:

WITH tmp AS (
SELECT * FROM Relationship
WHERE type cd IN ('ISA', 'PART-OF')
AND source = y
UNION ALL
SELECT link.*
FROM tmp, Relationship this,
Relationship next
WHERE this.type cd IN
('ISA', 'PART-OF')
AND this.source = tmp.target
AND next.type cd = this.type cd
AND next.tree low <= this.tree low
AND next.tree high>= this.tree high
) SELECT * FROM tmp WHERE target = bone;

The above query is only a sketch of the working query;
in reality we need a longer query statement preventing

_ infinite recursion and testing whether the path really

contains at least one PART-OF link.!”

Conclusion

We have shown that modern RDBMS that support re-
cursive queries are capable of querying certain
conceptual graphs structures with only reasonable
restrictions. We have further shown a simple but
efficient indexed representation of transitive closure.
The restrictions on the graph structures (tree-
requirement) are no severe shortcoming, in part because
the total graph is partitioned per each relationship type.
Many more transitive closure optimizations are
available, yet none of them is as simple as the one
shown. Although there is still much potential left for
improving the storage and query optimizers for transi-
tive relational structures in RDBMS, we could confirm
that even challenging combined relationships can be
managed and queried in a commercial grade RDBMS.
We do not pretend to have implemented a sophisticated
subsumption and classification algorithm; however our
current EMR system does not depend on such algo-
rithms and classifiers. For us and at this time it is more
important to free the data from specialized applications
and into an open industry supported data architecture.

Acknowledgements

This work has been performed at the Regenstrief Insti-
tute for Health Care with support in part by the National
Library of Medicine (Contract #N01-LM-6-3546).

! Rector AL, Bechhofer S, Goble CA, Horrocks I, Nowlan
WA, Solomon WD. The GRAIL concept modelling language
for medical terminology. Artif Intell Med. 1997 Feb;9(2):139-
71.

2 Musen MA, Gennari JH, Eriksson H, Tu SW, Puerta AR.
PROTEGE-II: computer support for development of intelli-
gent systems from libraries of components. Medinfo. 1995;8
Pt 1:766-70.

3 Schulz S, Romacker M, Hahn U. Knowledge engineering
the UMLS. Stud Health Technol Inform. 2000;77:701-5.

4 Codd EF. A relational model of data for large shared data
banks. Communications of the ACM. 1970 Jun;13(6):377-
387.

5 Date CJ, Darwen H. Foundations for object/relational data-
bases: The third manifesto. Reading, MA; Addison-Wesley,
1998.

6 Zhe L, Ross KA. On the cost of transitive closures in rela-
tional databases [technical report CUCS-004-93]. 1993 Feb.
New York; Computer Science Department, Columbia Univer-
sity.

7 McDonald CJ, Overhage JM, Tierney WM, Dexter PR, Mar-
tin DK, Suico JG, Zafar A, Schadow G, et al. The Regenstrief
Medical Record System: a quarter century experience. Int J
Med Inf. 1999 Jun;54(3):225-53.

% Huff SM, Rocha RA, McDonald CJ, De Moor GJ, Fiers T,
Bidgood WD, Forrey AW, Francis WG, et al. Development
of the Logical Observation Identifier Names and Codes
(LOINC) vocabulary. J Am Med Inform Assoc. 1998 May-
Jun;5(3):276-92.

% Schadow G, Russler DC, McDonald CJ. Conceptual integra-
tion of guidelines and workflow into the electronic health
record. Stud Health Technol Inform. 2000;77:807-11.

19 Russler DC, Schadow G, Mead C, Snyder T, Quade LM,
McDonald CJ. Influences of the Unified Service Action
Model on the HL7 Reference Information Model. Proc AMIA
Symp. 1999;:930-4.

! International Organization for Standardization: Information
technology — Database languages — SQL [ISO/IEC
9075:1992]. 1992, Geneva, Switzerland; The organization.

12 International Organization for Standardization: Information
technology — Database languages — SQL — Part2: Foundation
[ISO/IEC 9075-2:1999]. 1992, Geneva, Switzerland; The
organization.

3 Nuutila E. Efficient transitive closure computation in large
digraphs [dissertation]. 1995. Helsinki, Finnland; Helsinki
University of Technology.

14 Agrawal R, Borgida A, Jagadish HV: Efficient management
of transitive relationships in large data and knowledge bases.
ACM-SIGMOD 1989 Int'l Conf. on Management of Data,
Portland, Oregon, 1989.

15 Kamfonas MJ. Breaking the relational taboo [online]. Intel
Enterp Database Progr Design. URL: http://www.dbpd.com/
yault/9811/kamfn.shtml.

16 Horrocks I, Rector AL, Goble C. A description logic based
schema for the classification of medical data. 1996. Proceed-
ings of the 3rd Workshop KRDB'96:24-28.

17 All queries discussed here are available from: http://aurora.

602

