Easing the Transition between Attribute-Value Databases and Conventional .

Databases for Scientific Data
Prakash Nadkarni, MD and Luis Marenco, MD
Yale Center for Medical Informatics, New Haven, CT

Abstract: We have previously developed and
described a modeling and development framework
called EAV/CR, which is appropriate for designing
databases containing highly heterogeneous and
evolving data, as in the case of scientific databases
for rapidly advancing domains. The use of EAV/CR
has been hampered by the lack of generic tools for
non-procedurally transferring data into or out of
legacy systems or analytical packages: the transfer
task is complicated by the different representation of
EAV vs. conventional data, which is not addressed by
commercial data-transfer programs. We have
therefore created such a tool, which works with a
wide variety of data sources that are accessible via
Microsoft OLE DB technology. The data transfer tool
requires minimal programmer intervention to set up,
and no programming to use on a regular basis.
Current limitations of the tool are also noted.

INTRODUCTION

An Entity-Attribute-Value (EAV) design is useful for
managing highly heterogeneous data within a
database. EAV is used extensively for clinical data,
where the number of potential parameters that can
apply to a patient across all specialties of medicine is
typically much greater than the number of parameters
applying to an individual patient [1-3]. In EAV
design, we conceptually have a table (or datatype-
specific tables) with three sets of columns: an Entity
or Object (e.g., the patient being described, along
with one or more timestamps), an Attribute (the
parameter being recorded), and a Value (of the
parameter). As opposed to a complex traditional
schema where facts may be segregated into dozens or
even hundreds of tables (e.g., organized by clinical
specialty), EAV designs readily support generic
browsing interfaces where the commonest type of
query is “tell me everything about this object
(patient).” For rapidly evolving scientific domains, an
advantage of EAV design is schema stability as
knowledge evolves: only the metadata (the
developer-supplied data describing the conceptual
database schema) needs to change.

Clinically related EAV implementations have
generally assumed that the values are atomic or
simple. For scientific data, however, one must
support values that are IDs of objects (which
themselves have attributes and values, nested to an

1067—5027/01/$5.00 © 2001 AMIA, Inc.

483

arbitrary degree of complexity.) Our model to
support complex values (classes), which overlays
object-oriented concepts on to the basic EAV model,
is called EAV with Classes and Relationships
(EAV/CR) [4]. This model was originally created for
SenseLab [5], a neuroscience database that is
supported by the NIMH’s Human Brain Project and

Web-accessible via http://senselab.med.yale.edu.

Despite its name, EAV/CR permits conventional
tables to coexist with EAV tables. (Certain classes of
data, e.g., patient demographics and genotyping, are
inappropriate for EAV representation because the
same facts, or types of facts, are recorded for all
patients.) However, the metadata describing classes
and attributes is extremely detailed, going well
beyond the built-in metadata (“data dictionary”) of
database management systems (DBMSs). The
metadata is the basis of generic routines that
automatically generate robust Web-based interfaces,
as previously described in [6]. It must therefore
record schema-type descriptions as well as how
classes are physically represented, how individual
attributes are displayed and how the user interacts
with them. The generated interfaces adhere to the
principle that end-users should not know nor care
what EAV is: to them, all data should appear as if it
were conventional.

A well-known drawback of EAV design is that much
of the functionality of DBMS-vendor or third-party
development tools must be reinvented, because these
tools were never designed for EAV data. One such
function is data conversion. When a large volume of
conventionally structured data already exists,
conversion to EAV/CR, which requires creating the
metadata followed by data conversion, can be
laborious. Further, data conversion is not a one-time
process: e.g., SenseLab periodically receives bulk
submissions from collaborators with existing
electronic data, and one must not force data reentry
on them. Periodic data export is also needed: it is
well known that EAV data must be transformed to
conventional (one-column-per-attribute) format
before it can be handled by statistics or graphing
packages. Conversion of EAV data to conventional
structure involves transforming rows into columns, in
a manner similar to generating the “cross-tabs” of
spreadsheet packages. The reverse process is
somewhat simpler in concept: complications arise,

however, due to foreign-key references, as discussed
later.

In a research consortium where programming
expertise may not be widely distributed (and where
many labs use spreadsheets to manage data rather
than DBMSs), the onus of bulk data conversion lies
with the team that is administering the shared
database. Clearly, writing very similar per-request
conversion programs is not an efficient use of this
team’s resources. In this paper, we describe a generic
tool for bi-directional data conversion, which is
scheduled for imminent production deployment in
SenseLab. (The tool will be distributed freely to
anyone making a written request.)

METADATA CREATION: SCHEMA
EXTRACTION

To function as desired, an EAV/CR application is
critically dependent on the correctness of its metadata
(in terms of the designer’s intentions). When
populating an EAV/CR database for the first time
from an existing conventional database, the first step
is to create the schema metadata. The tables, columns
and rows of a conventional database are equivalent to
the classes, attributes and objects of EAV/CR, and it
is highly desirable to capture basic class/table
definitions as well as inter-table relationships
automatically. This process, schema extraction,
reduces the developer’s workload significantly. (Note
that some metadata, e.g., specification of how
attributes are to be displayed, must be manually
specified in a second pass.) Because every DBMS
vendor’s data dictionary has a different structure, we
use Microsoft’s Active Data Objects Extensions for
Data Definition and Security (ADOX) to achieve a
measure of portability in our schema extraction code.
ADOX currently has some limitations, e.g., one
cannot determine whether a primary key field in a
table is auto-incremented each time a new record is
inserted.

A practical point here is that, when someone else has
developed the conventional database, it is strongly
recommended that one critically inspect and
understand its schema. EAV/CR does not exempt the
developer from applying the well-known principles
of database normalization: it is only the physical
storage mechanism that is different from a
conventional database. Any flaws in the conventional
design would therefore translate into a flawed
EAV/CR design.

TRANSFERRING THE DATA: MAPPINGS

Once metadata has been defined, data transfer can
operate in one of two modes as previously described:
one-time (import) or repeated (import-export). In

484

either case, it is highly preferable that this operation
should require minimal or no programming expertise.
Our tool relies on a special kind of metadata called
mapping metadata, which stores the correspondence
between classes/attributes in the EAV/CR schema
and tables/columns in the source/destination data.
(For repeated data transfer, this metadata is created
by data administrators or lead users through the
interface illustrated in figure 1. For one-time import,
it is automatically generated by the system.) Note
that, in the repeated-transfer scenario, the names of
the two respective sets may not correspond exactly,
and one may not necessarily want to import all
columns, or export all attributes. The point-and-click
interface therefore allows correspondence to be
specified visually. In circumstances where many
names do in fact match, the interface provides an
option, illustrated in the figure, to automatically map
tables/columns to classes/attributes with the same
name. We use Microsoft’s OLE DB to extract
table/column names from the source data: OLE DB
allows access to non-relational data sources such as
XML, spreadsheets, or even tab-delimited files. (For
the last two, column names must be specified in the
first row of the data.)

Populating the Object Dictionary

One requirement of EAV/CR databases is that
common information on all objects across all classes
(such as name, brief description and the class an
object belongs to) be recorded in an Objects table,
which is shown on the left of figure 2. (The figure is
discussed in detail later.) This Object Dictionary
(OD) approach was pioneered in bioinformatics by
Tom Slezak in 1992 for the chromosome 19 project
at Lawrence Livermore Labs [7]: it is also used by
the NCBI family of databases (Genbank, PubMed,
OMIM, etc.) Information specific to the class of the
object may be stored either in class-specific tables or
as attribute-value pairs if EAV is used.

In the presence of highly heterogeneous data, the OD
approach confers a significant advantage when
creating a browsing-oriented search service intended
for both end-users as well as external Web
applications that can potentially hyperlink to this
database. It provides a single, centralized point of
reference for a user to search for an object by ID,
name, description, keywords, or synonyms,
irrespective of which class it happens to belong to. It
is possible to program a “dispatcher” that operates on
this table to implement the browsing operation “tell
me everything about this object”. The
implementation details— the “Display Method”, in
object-oriented parlance—depends upon the object’s
class, but the details are transparent to the external

calling application, which only needs to reference the
object’s unique ID. The object’s data may be returned
in program-code-friendly ‘“pure-content” formats
such as XML or as human-friendly formats like
HTML, which combine content with formatting
markup.

Before the attributes of an object can be imported
into the schema, the object itself must first be created
so that its ID can be referenced elsewhere. In
EAV/CR, object IDs are referenced in two places: as
the “Entity/Object” column of EAYV tables (illustrated
with the “EAV” prefix at the bottom of figure 2), and
as the “Value” column in the EAV_Objects table.
The role of the latter is now described. In a
conventional schema, individual tables/classes are
related to each other through foreign-key / primary-
key links. In EAV/CR, foreign key values are
represented as values that contain Object IDs. (That
is, all foreign-key attributes point to a single place,
the Objects table.) When importing data from a
relational database in conventional form, it is
necessary to transform the original foreign key values
of the source data into the newly created object IDs

B Data_Mapper : Form

w

Specification_ID: 1
Name: [Bootstrap_Schema_Spec

Created_By:

Relling s

of EAV/CR. Import of data from a multi-table
database must therefore occur in two phases. In the
first phase, the name and/or description of every
object in every table is imported, and the common
object information is created. (The buttons “Set as
Name” and “Set as Description” on fig. 1 allow
specifying of which columns in the source table serve
these functions.)

The original primary key value of every row is also
stored in the Objects table, in order that we can
programmatically perform a lookup of the Objects
table whenever we encounter a foreign key value of a
particular class in the source data. (Since primary key
values can be of any data type, they must be
converted into least-common-denominator string
form: in case of multi-field primary key values, the
value of each field is concatenated with a non-
printing character. The mapping metadata, described
later, stores the list of fields that constitute the
primary key of every table that is to be imported, so
that the key value may be programmatically
composed for each row.)

L
1/10f2001

Date_last_Modified:

_ [Description:

This schema imports all the data from an existing schema at St. Jude's. all tables except the metadata tables are present in thi

Connection
String:

Create A Mapping Specification. Show Maor

Patients

| Patients_Diseases

| Preparation_Methods
Projects
Sources
Specimen_Types

| specimens
Specimens_Projects

i Tissues

Biospecimens
Diseases

Genes
Genotypes

Attributes for Chosen Class

Sample_sender
Sending_Institution
specimen diseased
specimen report
specimen_current_wt_vol
specimen_ID
specimen_original_wt_vol
specimen_type

receiver
sender
subject

diseased
Path_report
snacimen. tvne

tecord: 14] r vifpeforr

Provider=5QLOLEDB. 1;Data Source=cipolo;Initial Catalog=Specimens;;Persist Security Info=true

Genotyping_Final
Genotyping_Rawdata

Source_Institution

specimen_ID

Figure 1: Creating a Mapging Specification: User Interface. Within a specification, tables in external data are
mapped to classes in the database, and columns in the external table are mapped to attributes in the database. A

specification can be saved for later reuse after it is created, and a saved specification can be modified if needed.

485

Figure 2: Schema used to support data transfer. Tables labeled “Meta-“ indicate metadata describing the system
and are used during data display, entry and form generation. (All details of these tables have not been shown.) The

Objects and EAV- tables hold the data: the Objects table holds the name and description of the object, as well as the
primary key value of the object in the external data (if it was imported). The EAV tables hold details of the
attributes. (All EAV tables have not been shown.) The tables with the “Mapping-“ prefix record mapping metadata

in the form of specifications, which are stored for later reuse

S

{Class_Name
Class_Caption
Description

{EAYV_Flag
{Class_Type

| Attribute_Caption
Attribute_Description

Serial_Number
Object_Class . 'E_)‘a lfatype
1Object_Name
10bject_Description
Date_Created
Date_last_Changed
Invisible
UMLS_Concept_ID
External_DB_Pkey_Value

object_id
Attribute_ID
{value

In the second phase, the attributes of every row in
each class are imported (with the exception of the
previously imported name/description columns).
Based on the datatype of each attribute, it is stored in
the appropriate table (e.g., integer values are stored in
the EAV_Int table of figure 2). In case the field/s
represent foreign keys, the newly created Object ID
corresponding to the key value is computed by
searching the Objects table, and stored in the
EAV_Objects table.

The two-phase import described above greatly
simplifies the well-known task of dealing with
referential inconsistencies in the source data when
referential integrity has not been strictly enforced (a
common situation when spreadsheets are used for
data management.) Our code traps and reports these
errors in a single place.

Extending the Power of Mappings: Reuse and
Transformations

Once a set of mappings has been created for several
tables from an external source, we permit the saving
of all those mappings together as a single

486

= m

{Specification_name

Date_last_Maodified
Connection_String

Specification_ID
Class_ID
Mapped_Tablename
Primary_Key_Expr
Name_Column
Description_Column
Date_last_Exported
Date_last_Imported

{Mapped_Column
{Transformation_to_Attribute
Transformation_to_Column

specification. The subschema for this is contained in
the tables with the “Mapping” prefix of figure 2,
which also shows part of the EAV/CR schema
previously described in [4]. Mapping_Specifications
stores the name and description of a specification (to
allow searching for reuse), and an OLE DB
connection string (which tells the EAV/CR database
how to access the external data source).
Mapping_Classes records mapping of tables to
classes. All tables within a specification may not
necessarily be imported from, or exported to, at the
same time: the date last imported/exported records
the date of last transfer for that class/table pair. For
each class, the Mapping Attributes table stores
attribute/ column correspondence.

Transforming an attribute into a column often
requires a modest amount of code. For example,
suppose we need to export a set of sequences into a
text file in FASTA format for submission to the
BLAST service of the National Center for
Biotechnology Information (NCBI) for determining
similarity of the sequences to known sequences in
Genbank. This format involves placing a “>” symbol

before the sequence name, a new-line after the name,
and a new-line after the sequence itself. Similarly,
importing data may also require some data
conversion. The columns “Tranformation to Column”
and “Transformation to Attribute” in the Mapping
Attributes table store Visual Basic expressions that
record the nature of the transformation in each case.
(Creating these expressions is the only aspect of the
tool that requires programmer intervention.) These
expressions are evaluated dynamically at runtime
using the powerful EVAL() function, which evaluates
data as though it were code, executing it and
optionally returning a value. The expression can be
arbitrarily complex, and can contain calls to built-in
and programmer-defined functions.

IMPLEMENTATION: LIMITATIONS,
FUTURE DIRECTIONS

The data transfer tool is implemented on the
Windows platform with a Microsoft Access client.
(Since its use is to be restricted to the database’s
administrators, there is little to be gained by making
it Web-accessible, even though SenseLab itself
delivers content over the Web.) The back-end
SENSELAB database is implemented with Oracle: it
should be readily portable to other DBMSs, since we
have avoided the use of Oracle-specific SQL in our
code.

The tool does not currently support import/export of
hierarchical data- specifically, hierarchical XML,
where attributes are nested within other attributes.
(By contrast, “rectan, ” or “flat” XML without
nested structures is readily managed through the OLE
DB interface, without even needing to write any
XML-specific code.) An example of hierarchical
XML is that used for interchange by the Gene
Ontology consortium, http://www.geneontology.org/
Hierarchical data formats, while somewhat more
compact than the equivalent flat formats, are double-
edged: their appropriate use requires careful
judgment, and is justified only when the relationship
between the nested information and the outer block
of data that contains it is strictly many-to-one. For
such data, however, transfer to/from hierarchical
format would be highly desirable. The algorithm for
export into such a format is fairly straightforward,
and we should be implementing it shortly after
enhancing the mapping metadata to track the classes
whose objects are to be nested within objects
belonging to other classes. Import from a hierarchical
XML structure, on the other hand, requires using the
XML Document Object Model (DOM). Robust
validation, in terms of reporting useful diagnostics if
there is an error in the hierarchical data, will also be a
relatively involved task.

487

Acknowledgments: This work has been supported
by NIH grants U0O1 ES10867 from the National
Institute of Environmental Health Sciences
(Nadkarni) and RO1 DC03972 from the National
Institute of Mental Health (Marenco). The principal
investigator for the SenseLab project is Dr. Gordon
Shepherd of the Section of Neurobiology at Yale
Medical School.

REFERENCES

1. Huff SM, Haug DJ, Stevens LE, Dupont CC, Pryor
TA. HELP the next generation: a new client-server
architecture. In: Proc. 18th Symposium on
Computer Applications in Medical Care; 1994;
Washington, D. C.: IEEE Computer Press, Los
Alamitos, CA; 1994. p. 271-275.

2.Friedman C, Hripcsak G, Johnson S, Cimino J,
Clayton P. A Generalized Relational Schema for an
Integrated Clinical Patient Database. In: Proc. 14th
Symposium on Computer Applications in Medical
Care; 1990; Washington, D. C.: IEEE Computer
Press, Los Alamitos, CA; 1990. p. 335-339.

3.Nadkarni PM, Brandt C, Frawley S, Sayward F,
Einbinder R, Zelterman D, et al. Managing
attribute-value clinical trials data using the
ACT/DB client-server database system. Journal of
the American Medical Informatics Association
1998; 5(2): 139-151.

4.Nadkarni PM, Marenco L, Chen R, Skoufos E,
Shepherd G, Miller P. Organization of
Heterogeneous Scientific Data Using the EAV/CR
Representation. Journal of the American Medical
Informatics Association 1999; 6(6): 478-93.

S.Shepherd G, Mirsky JS, Healy MD, Singer MS,
Skoufos E, Hines MS, et al. The Human Brain
Project: Neuroinformatics tools for integrating,
searching and modeling multidisciplinary
neuroscience data. Trends in Neurosciences 1998;
21(11): 460-8.

6. Nadkarni PM, Brandt CA, Marenco L. WebEAV:
Automatic Metadata-driven Generation of Web
Interfaces to Entity-Attribute-Value Databases.
Journal of the American Medical Informatics
Association 2000; 7(7): 343-356.

7. Slezak T, Wagner M, Yeh M, Ashworth L, Nelson
D, Ow D, et al. A Database System for
Constructing, Integrating, and Displaying Physical
Maps of Chromosome 19. In: Hunter L, Shriver
BD, editors. Proceedings of the 28th Hawaii
International Conference on System Sciences;
1995; Wialea, Hawaii: IEEE Computer Society
Press, Los Alamitos, CA; 1995. p. 14-23.

