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Fuzzy K-means clustering algorithm is a popular approach
for exploring the structure of a set ofpatterns, especially
when the clusters are overlapping or fuszy. However, the
fuzzy K-means clustering algorithm cannot be applied
when the data contain missing values. In many cases, the
number ofpatterns with missing values is so large that if
these patterns are removed, then the number ofpatterns to
characterize the data set is insufficient. This paper
proposes a technique to exploit the information provided
by the patterns with the missing values so that the
clustering results are enhanced. There are various
preprocessing methods to substitute the missing values
before clustering the data. However, instead of repairing
the data set at the beginning, the repairing can be carried
out incrementally in each iteration based on the context. It
is thus more likely that less uncertainty is added while
incorporating the repair work. Fine-tuning the missing
values using the information from other attributes further
consolidates this scheme. Applications of the proposed
method in medical domain have produced good
performance.
Keywords: Fuzzy K-means clustering and missing values.

1. Introduction

Motivation: In medicine and biology, we often need
exploratory analysis like grouping the patterns such that
the patterns within the same cluster have a high degree of
similarity, and the patterns from different clusters have a
high degree of dissimilarity. Clustering can be formally
defined as follows [1]: Given a set of data
X = {x,,x2,...,xn} c:RN, find an integer K
( 2 < K < n ) and K number of partitions of X that
exhibit categorically homogeneous subsets.

Importance of clustering: Some tasks for which the
clustering algorithms can be employed are as follows:
1. Clustering can abstract or compress certain properties

of the data set.
2. A classifier can be constructed through clustering. To

build a classifier, we group a data set, and
subsequently assign a class label (crisp or fuzzy) to
each cluster. The class label of a new pattern is
determined based on the cluster in which the pattern
falls.
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3. Clustering can be applied to decide whether the
representation of a problem on computers is
appropriate for processing. If the representation is not
appropriate, then the data set behaves like a set of
random numbers without any underlying regularity. In
that case, the bad clustering results indicate that the
user needs to modify the representation of the
problem

Basics of clustering: Three types of clustering approaches
are commonly used [1]. They are (1) hierarchical
approach, (2) graph theoretic approach, and (3) objective
function-based approach. The objective function-based
approach is very popular. One extensively used objective
function-type clustering algorithm is hard K-means
clustering algorithm [1]. It assigns each pattern exactly to
one of the clusters assuming well-defined boundaries
between the clusters. However, there may be some
patterns that belong to more than one cluster. In order to
overcome this problem, the idea offuzzy K-means (FKM)
algorithm has been introduced. Unlike the hard K-means,
in the FKM each input pattern belongs to all the clusters
with different degrees or membership values.
Incorporation of the fuzzy theory in the FKM algorithm
makes it a generalized version of the hard K-means
algorithm From the psycho-physiological point of view,
the problem of pattern clustering is unsuitable for
approaches with precise mathematical formulations.

However, the FKM algorithm cannot be applied to the
real-life clustering problems when the data contain
missing values. The missing values in a pattern imply that
the values of some of the attributes of the pattern are
unknown. Missing values can occur due to various reasons
like (a) patient entries for some attributes are irrelevant or
unknown, (b) in the questioning session, the patient did
not want to provide the values, (c) errors have led to
incomplete attributes, (d) random noises have led to some
impossible values, and they have been removed
intentionally, (e) patients have died before an experiment
was finished.

Problem definition: This paper addresses how to apply
the FKM algorithm efficiently in the presence of missing
values. It is assumed that the values are missing at random,
i.e., the probability of missing a value does not depend on
the quantity ofthe value [6].
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Related work: The approaches to deal with missing
values can be categorized into the following groups [3]
[4][5][6][7]:
Deductive imputation: Missing values are deduced with
certainty, or with high probability from the other
information of the pattern.
Hot-deck imputation: Missing values are replaced with
values from the closest matching patterns.
Mean-value imputation: The mean of the observed values
is used to replace the missing values.
Regression-based imputation: Missing values are replaced
by the predicted values from a regression analysis.
Imputation using Expectation-Maximization: Missing
values are repaired in two steps. In the E-step, the
expected value of the loglikelihood is calculated, and in
the M-step, the missing values are substituted by the
expected values. Then the likelihood function is
maximized as if no data were missing.

Overview of the proposed method: Most of the current
methods repair or impute the missing values before the
clustering starts. This paper attempts to repair the missing
data while performing clustering. Exploiting this trick is
difficult because while updating a cluster center, the
distance between the pattern with missing values and the
cluster center cannot be measured. Using the law of large
numbers, if we assume that the distances between the
cluster center and the patterns form a Gaussian
distribution, then the distance between a pattern with
missing values and the cluster center can be replaced by
the weighted mean of the distances between the cluster
center and the complete patterns. The missing values are
further fine-tuned by exploiting the information from the
other attributes.

2. Background

2.1 Fuzzy Sets
In traditional two-state classifiers, where a class C is
defined as a subset of the universal set X, any input pattern
x E X can either be a member or not be a member of the
given class C. This property of whether or not a pattem
x of the universal set belongs to the class C can be
defined by a characteristic function pc : X -+ (0, 1} as
follows:

x
1 iffxE C
0 otherwise

(1)

In real-life situations, boundaries between the classes may
be overlapping. Hence, it is uncertain whether an input
pattern belongs totally to the class C. To consider such
situations, in fuzzy sets [1] the concept of the
characteristic fimction has been modified to the fuzzy
membership function uc : X -+ [0,1]. This fimction is

called membership function because larger value of the
function denotes more membership of the element to the
set under consideration.

2.2. Fuzzy K-Means Clustering
Clustering a data set X c RN implies that the data set is
partitioned into K clusters such that each cluster is
compact and far from other clusters. One way to achieve
this goal is through the minimization of the distances
between the cluster center and the patterns that belong to
the cluster. Using this principle, the hard K-means
algorithm minimizes the following objective function [8]:

K

J=X >Jd(mkxIX)
k=l xieFk

(2)

where d(mk,x3) is a distance measure between the

center mk of the cluster Fk and the pattern xi E X.
Eqn. (2) can be rewritten as

K n

J jZ k(xi)d(mkxIX) (3)
k=1 i=l

where Pk (xi) e {0,1} is the characteristic function, i.e.,

Pk(xi) =0 if xi,! Fk, else Pk(xi) = 1. When the
clusters are overlapping, each pattern may belong to more
that one cluster, i.e., /Uk (xi) E [0,1]. Hence, Uk(xi)
should be interpreted as a membership function rather than
the characteristic function. Therefore, the objective
function (3) can be modified to the following:

K n

J = I>EkZ(xi)d(mk Xi) (4)
k=l i=1

where Uk (xi) E [0,1] is now a fuzzy membership
function, and q is a constant known as the index of
fuzziness that controls the amount of fuzziness. Since the
minimization of the objective function (4) may lead to a
trivial solution, the following two constraints are satisfied
while minimizing the objective function:

Xnlh/uk(xi)>0 VkE{1,2,...,K} (6)

K-1Uk (Xi) = I Vi E 11,2, ...........n} (6)
The first constraint guarantees that there is no empty
cluster, and the second constraint imposes the condition
that each pattern needs to share its membership with all the
clusters such that the sum of memberships is equal to one.
Differentiating the objective function (4) with the
constraints (5) and (6), we obtain

PkK(Xi)=x1 2/ q-1 Vi E {1,..,n},k E{1,...,K} (7)
Khl d(mk x,))
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mk = 01 k = 1,2,...,K (8)

Eqn. (7) and (8) are used in an iterative fashion to update
the memberships and the cluster centers. The updating
continues until the changes in the membership values of
all the patterns become negligible or the required number
of iterations is over (Fig. 1).

The worst-case time complexity of the algorithm is as
follows: To find the distance between the cluster center
and all the patterns, we need O(nN) computations. For
all the clusters, the number of computations needed is
O(nNK). If the clustering needs T iterations, then the
worst-case complexity is O(nNKT).

ELSE Pk(Xj) = 0 Vk E {1,2,...,K}-IIk
and kEIkPk( Y 1

ENDIF
ENDDO UNTIL U,-U,+,, > s OR t < T

OUTPUT:

(1) Pk(xi) Vi, k, i.e., the belongingness of the
patterns in the clusters.
(2) u =argnaXJ(XI) . u denotes the cluster in

k

which xi belongs to when the membership is
considered crisp.

Fig. 1: Fuzzy K-means algorithm.

INPUT:
(1) A set of input data X.
(2) The value of the fuzziness index q e (1,oo).
(3) Number of clusters K.
(4) A distance measure d(m,,x,) = (mk - x,) Ai'(mk -x,)

between mk and xi, where A is a positive definite
matrix.
(5) A small, positive constant 6, and an appropriate
matrix norm .|.
(6) Maximum number of iterations T.
(7) An n xK matrix U, where the element of the ith
row and the kth column indicates pk(xi).

ALGORITHM:
Assign t=0.
Randomly initiate the fuzzy K-partition of UW.
DO

Set t =t+1.
FOR k=1,2,...,K

Calculate the cluster center mk using

E qt(Xi)XI
mk= 4(X)

ENDFOR
Update U'+1 by calculating U' as follows:
Determine the content of the following set:

Ik ={k 1< k<K; d(mk',xi)=O}
IF Ik =0,

1
Pk(Xi) K (d(m , ) 2/(q-1)

h=l d(mkx,)

3. Proposed Method

Algorithm: Let all the missing values in the data set X
occur in the dth attribute. We shall relax this constraint
later. Let us call the set of all the patterns with missing
values Z, and the set of all complete patterns Y (i.e.,
X=YUZ). Each pattern
Z= [Zjl1zJ2 ...zj(d-1),?Zj(d+l)...,ZJN]j I Z can be

made complete by substituting Zjdby YfEYYd'

where IYI indicates the cardinality of the set Y and [u]'
idicates the transpose of [u]. Subsequently, the standard
FKM can be applied to the data set since there is no
missing value in the data set.

However, we can modify the clustering algorithm so that
the substitution operation is more context dependent. In
the clustering, we need the substitution operation while
finding the distance between a cluster center (say kth) and
an incomplete patterm. We can fill the pattem at that point
of fime, and thus, we fill the pattem differently and
incrementally for each cluster center. Therefore, instead of

filling zjd by J
ey
yYd ,we fill (Zjd -m )2 by the

mean of {(yid-mkd)2 I i = 1,2,...9I YI}, i.e.,

[y (E1 ,yj -m_ )] . Here the assumption is that the

members of {(y d-m4)21 i=1,2,...,IZ |} are i.i.d.

(independent and identically distributed), and hence, from
the law of large numbers, they form a Gaussian
distribution. In the above procedure, we treat each
complete pattern Yi equally. However, the

complete patterns that are close to m,, should influence
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the update of the cluster center more. In other words, we
can use the concept of weighted mean instead of a simple
mean. Hence, we choose the weights as the membership
values. Thus, (Zid -Md )2 is substituted by

El11l ^k()(Yid_Mkd1)2
E"A(Yf) 2[

(JIIYl(^)(Yid _Mkd)2)The substituted value E l becomes

same for all patterns with missing values although some of
the patterns with missing values are very close to the
cluster center m., and some are far away from mkdr. If

we assume that the weighted distance (Zjd - Mkd )2 /a
linearly depends on the weighted distance between
zd ViVij, and Mk, then we can estimate

(Zjd - mkd )2 / o using the following linear regression
or weighted mean:

(Zjd -rn )2 /
2
= W1(Zj -_rn )2 /c2 +

+ W(d1) (Zj(d-1) -mj(d-l)) Crh(d-1)

+Wd k(i X Yid (9)

+ W(d+i) (Zj(d+l) - Mj(d+l)) '7k(d+1)

+...+WN(ZjN mjN)2k.CI
where wh indicates the importance of the hth attribute,

mk= M( and

aL E k(Y(Yi). The importance wh

can be determined by using some a priori knowledge or by
using some feature extraction algorithms (when the data
are labeled). In this paper, we are not assuming that we
know the importance of the attributes, and hence we are
distributing the importance equally among all the
attributes by maingWh=1/N hE{1,2,...,N}.
Till now we have shown all the derivations when the
values are missing only in the dth attribute. Similar
procedure can be adopted when we have patterns with
missing values in more than one attribute. Thus, the
modified FKM needs some extra steps to consider the
incomplete patterns.

Particular case: The mean-value imputation, in which the
missing value Zjd of the pattern Zj is replaced by

i L Yid' can be derived from the proposed method

when (a) the cluster centers are assumed to be at the
origin, (b) all the patterns receive equal importance, and
(c) Wh = 0, Vh.d, wd = 1, and (d) the repairing is
done only in the first iteration. Moreover, if wd =O and

all a bVh E {1,2,...,N} are equal, then the proposed
algorithm reduces to that of [8].

Convergence: When the missing value occurs only in the
dth attribute, we partition the data set into the two sets Y
and Z. If we use the proposed algorithm for this type of
data set, we actually minimize the following objective
function:

K

J - :g (y )[d(mi,y,)1
i=1 k=1 (10)

K

+ kg (zi)[d(mi,;)]2
f-1 k=1

It is straightforward to show that the objective function
(10) under the constraints (5) and (6) is monotonically
decreasing, and hence, the iterative minimization
guarantees the convergence. The same result holds if the
values are missing in more than one attribute.

Time complexity: Let us first look at the time complexity
when the values are missing only in the dth attribute. For
finding the mean and variance of all complete patterns, we
need °(IYI) computations in each iteration. For each

iteration and cluster center, we require O(IZ N)
computations to do the regression. Since
n=IXI=IYUZI, the time-complexity for all the
cluster centers and iterations is bounded by O(nNTK).
When the missing values occur in more than one attribute,
then the worst-case time complexity becomes
O(nN2TK). Since in practical cases N<< n, the
repair work does not significantly change the order of the
tme complexity of the original FKM algorithm.

Quality of clustering: The quality of the clustering can be
measured in two ways: directly or indirectly. In the direct
method, we can apply some cluster validity measures to
check whether the quality of the clustering is improving.
In the indirect method, we cluster the data using the
proposed method, and then the clusters are utilized to build
the classifiers. The classifier performance is used as an
indirect way to quantify the quality of the clustering. Note
that this is possible only when the data are labeled.
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4. Results and Discussion

We have conducted the experiments on the Wisconsin-
Madison breast Cancer data from UCI machine learning
repository [2]. We have compared the result of the
proposed algorithm with that of mean substitution, hot
deck, regression, EM and C4.5 algorithms. The presence
of a breast mass may indicate (but not always) malignant
cancer. The University of Wisconsin Hospital has
collected 699 samples using the fine needle aspiration test.
Each sample consists of the following ten attributes: (1)
Patient's i.d., (2) clump thickness, (3) uniformity of cell
size, (4) uniformity of cell shape, (5) marginal adhesion,
(6) single epithelial cell size, (7) bare nuclei, (8) bland
chromatin, (9) normal nucleoli and (10) mitosis. Except
the patient's i.d., all other measurements are assigned to an
integer value between 1 and 10, with 1 being closest to the
benign and 10 the most anaplastic. Each sample is either
benign or malignant.

The data set contains 16 samples each with one missing
attribute. Since the number of missing values is small, we
introduced more missing values with probability 0.25 to
all attributes of each pattern. Using the t-test, we first
ensured that the data are missing at random We find the
quality of the clustering through indirect way, i.e., through
classification performance. We partition the data set into
taining and test sets. The training set consists of some
patterns with missing values, but the test set contains only
complete patterns. Using the proposed technique, the
training set is grouped into K clusters, and each cluster is
fuzzily labeled. Next, each pattern of the test set is
classified based on which fuzzy clusters it falls in. Similar
scheme is also used with four other imputation techniques,
and the classification performances of these techniques are
shown in Table 1. The proposed method performs better
than the other methods.

The advantages of the proposed method are: (a) the
substitution of a particular missing value is carried out
differently for different cluster centers, (b) the substitution
is carried out incrementally so that better clusters are
formed. The limitations of the proposed method are
appearing from the assumptions that it requires: (a) the
members of {(Zjd-md)2 |j = 1,2,...,I Z I} to be i.i.d.,
and (b) the attribute with missing values linearly depends
on the other attributes. In future, we would attempt to relax
these assumptions. In addition to medical problems, we
intend to apply the proposed technique to cluster the
microarray genomic data, where missing values are
encountered quite often due to the limitations of the
experiments.

Table 1: Comparative results ofthe proposed method with
respect to other methods.

FKM withhot deck 92.67%
FKM with mean substitution 93.18%
FKM with regression 95.67%
FKM with EM algorithm 96.34%
FKM with the proposed method 98.43%
C4.5 afterpruning 94.31%
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