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The interpretation of a mammogram and decisions
based on it involve reasoning and management of
uncertainty. The wide variation of training and
practice among radiologists results in significant
variability in screening performance with attendant
cost and efficacy consequences. We have created a
Bayesian beliefnetwork to integrate thefindings on
a mammogram, based on the standardized lexicon
developed for mammography, the Breast Imaging
Reporting And Data System (BI-RADS). Our goal
in creating this network is to explore the
probabilistic underpinnings of this lexicon as well
as standardize mammographic decision-making to
the level ofexpert knowledge.

INTRODUCTION

Breast cancer is the most common non-skin cancer
affecting women in the U.S.1 Early diagnosis
through screening mammography is the most
effective means of decreasing the death rate from
this disease. At this time, approximately 61% of
women over 50 have had a mammogram in the last
2 years.2 Based on incidence and population
estimates in the year 2000, this statistic translates
into 20 million mammograms per year in the U.S.3'4

Radiologists oversee all mammograms. Some
radiologists have subspecialty training in
mammography and read these studies exclusively.
These individuals are the experts in the field.
Community radiologists read the majority of
mammograms in the context of a diverse general
practice. Community radiologists have higher
biopsy rates and thus a lower positive predictive
value of malignant disease. 5

The American College of Radiology (ACR) is
addressing this problem by working to standardize
decision-making in mammography screening. For
example, the ACR has developed a lexicon, BI-
RADS, which standardizes mammogram feature
distinctions and the terminology used to describe
them.6 BI-RADS arose in part from a study of the
common terms used to describe mammography
abnormalities. That study used a linear
discriminant analysis to analyze these descriptors.

The descriptors most highly associated with a
benign or malignant diagnosis were considered the
most predictive.7 Subsequently, they were
incorporated in the BI-RADS lexicon. Therefore,
the BI-RADS lexicon represents a good foundation
on which to build an expert system.

Although the mammography community does not
yet uniformly use either the BI-RADS lexicon or
formal probability calculations, radiologists have
recently begun to use probabilistic information in
one context. Sickles8 showed that several
mammographic scenarios have a small probability
of malignancy. For example, a circumscribed mass,
which is not a new finding as compared to prior
films, has a 2% chance of malignancy. These types
of abnormalities are considered "probably benign".
The standard management of a "probably benign"
finding is short-term follow-up (in 6 months) to
reevaluate the area of concern. The ability to express
findings in probabilistic terms has allowed
management decisions less invasive than biopsy but
more aggressive than routine follow-up to become
the standard of care. Our hope is to facilitate
increased management based on probabilistic
interpretation.

MODEL

Our first task in building our model was to construct
a belief network. Another Bayesian network has
been developed previously in this domain and we
will examine the differences between it and our
model.9 From the literature, we identified 22
diseases of the breast. Ten of these diseases are
malignant and ten are benign. Two of the diseases
are pathologically benign but have a high
association with or tendency to progress to
malignancy. The standard of care for these two
diseases is surgical excision. We consider these two
diseases, papilloma and radial scar, to be
"premalignant."(Table 1)

BI-RADS consists of 43 descriptors organized in a
hierarchy. (Figure 1) We used 38 of the descriptors.
We excluded five: skin thickening, trabecular
thickening, nipple retraction, skin retraction, and
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asymmetric breast tissue because they are rare, late,
or non-contributory findings on screening
mammography.

Malignant
Invasive Ductal Carcinoma

Ductal Carcinoma in situ

Lobular Carcinoma

Lobular Carcinoma in situ

Tubular Carcinoma

Papillary Carcinoma

Medullary Carcinoma

Colloid Carcinoma

Phylloides Tumor

Metastasis

*Radial Scar

symbol

DC-NOS

DCIS

LC

LCIS

TubCA

PapCA

MedCA

CoICA

Phy

Mets

RS;

Fil

Si

Pos

Benign symbol
Cyst Cy

Fibroadenoma FA

brocystic Change FC

Hamartoma Ham

Focal Fibrosis FF

Fat Necrosis FN

ecretory Disease SecDis

;t-operative change POC

Skin Lesion

Lymph node

*Paplonma

SL

LN

Papa

Table 1: Breast Diseases
*Radial Scar and Papilloma are considered premalignant

To construct our belief net and perform inference
we used the GeNIe modeling environment
developed by the Decision Systems Laboratory of
the University of Pittsburgh

(hjttD:www.sis.pitt.edu/-dsl. We began
construction of the global belief network assuming
that all of the BI-RADS descriptors except breast
density would be children of the disease node.
(Figure 2) We modeled the calcification descriptors
as conditionally independent manifestations of
disease. The distribution, or spatial orientation,
descriptors of each type of calcifications are the
mutually exclusive states of the corresponding
calcification nodes when appropriate. For example,
punctate calcifications can be clustered, linear,
segmental, regional, diffuse/scattered, or absent.
We modeled special cases and associated findings as
conditionally independent expressions of disease.
The deterministic (double bordered) node in the
belief network (Figure 2) has three states, "benign,"
"malignant" and "premalignant." The final decision
to biopsy is based on the value of this node which is
a deterministic finction of the disease node.

The hierarchical structure of the BI-RADS lexicon
elicits progressively more detailed descriptors for
identified findings. For example, once a mass is
identified, the user can describe the margins or
shape of that mass. We incorporate the hierarchical
structure of the lexicon into the beliefnetwork. This
also models the conditional dependence among
different mass-related findings.

Figure 1: BI-RADS lexicon
(general categories are in bold)
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Figure 2: Bayesian Network
Ca=calcifications, LN=lymph node,
P/A/O=present, absent, obscured

The pathophysiology of breast disease presented a

challenge in building the model. The transformation
of benign cells to atypical cells to malignant cells
challenges the mutual exclusivity assumption in our

model. For example, the most common breast
malignancy, ductal carcinoma not otherwise specified
(DCNOS), is generally thought to develop from non-

invasive but neoplastic cells termed ductal carcinoma
in situ (DCIS). Though the rate of transformation is
not well known, the causal relationship between these
entities is accepted. We therefore represent these two
diseases in our model as three mutually exclusive
states in the disease node: DCIS, DCNOS, and
DCNOS/DCIS. The third state represents a case in
which DCNOS and DCIS are both present in the
lesion seen on mammography. Our canonical case of
DCNOS/DCIS is based on the pathology literature,
which describes an entity termed 'ductal carcinoma,
with a predominant intraductal component."
Similarly, lobular carcinoma and its noninvasive
counterpart lobular carcinoma in situ (LCIS) exibit
the same pathophysiology. In this way, we represent
the spectrum of breast neoplasm in our model.
(Table 2) We assume that no other violations of
mutual exclusivity between diseases will exist in a

single area of the breast. We consider these 24
diseases (and the "normal" state) conditionally
exhaustive.

We made probability assessments from the medical
literature and expert opinion. We obtained pretest
probabilities, the age specific and risk factor specific
distributions of diseases from census data and large
randomized trials. We derived many of the joint
probabilities from studies of the radiologic/pathologic
correlation of individual breast diseases.

RESULTS

We have tested several standard cases to evaluate the
behavior of the model. Table 3 shows the entire
probability distribution for the following cases as

well as the summation of benign, malignant, and
prdmalignant diseases. Boldface type indicates the
most likely diagnoses. No probability is truly zero

but many are rounded to zero when we only display
four decimal places.

Case 1: A 40 year old female with no family history
or hormone use has a mammogram which
demonstrates a spiculated mass with associated linear
and branching calcifications. According to literature
and expert opinion, a spiculated mass is typical for
ductal carcinoma. The branching calcifications
suggest an intraductal component. In this case our

model generates the following probabilities:
DCNOS/DCIS diagnosis in most likely with a 95%
post-test probability. DCNOS alone has a post-test
probability of 4.5%, and DCIS alone is unlikely.
Variations of this scenario illustrate how the
probabilities change as features differ.

Case 2 A patient with similar demographic
characteristics may have a spiculated mass without
calcifications detected on her mammogram. This
finding elicits an increased post-test probability of
DCNOS to 88%. DCNOS/DCIS decreases to 2.9%,
and again DCIS is unlikely.

Case 3: If the only finding, in a similar patient, is
linear calcifications in a clustered distribution the
post-test probability for DCIS increases to 70%.
DCNOS/DCIS has a post-test probability of 8.9%
and DCNOS alone is .001%. These probabilities
are consistent with the pathophysiology of the disease
as described above.

Case 4: A 50 year old patient has a mammogram

which demonstrates a round, circumscribed mass.

This is our example of a "probably benign" finding.
Our system reveals that with these findings there is a

1.3% chance of malignancy in this setting. This is
consistent with the radiology literature.8
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Malignant (lMiixed) symbol
Ductal Carcinoma in situ/ DCNOSI DCIS
Invasive Ductal Carcinomna
Lobular Carcinoma in situ/
Invasive Lobular Carcinoma LC/ LCIS

Table 2: Additional mixed diseases



Table 3: Differential diagnosis as well as summation
into management categories with associated post-test

probabilities for example cases

For a more systematic evaluation, we used a teaching
atlas" , which contains sufficient clinical information
and mammographic descriptors to enter into our

Bayesian network. This evaluation methodology is
similar to that used in a Bayesian network developed
in the same domain. 9 We did this order to facilitate
the comparison of our modeling decisions to those of
the previous model. We entered 105 cases from the
mammography atlas into our model and constructed
an ROC curve from the resulting posterior
probabilities. To construct the ROC curve we used
the ROCKIT 0.9B program (hjt://lww,-
radiology.uchicago.edu/krl/topnagel .htm). This
analysis generated an area under the curve (Az ± SD)
of .953 ± .0409. (Figure 3)
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Figure 3: ROC analysis of 105 teaching cases

DISCUSSION

Our Bayesian network uses a Web-based interface to
elicit mammography findings. The structured entry
system mandates the use of BI-RADS descriptors.
Given mammography findings, our system provides
post-test probabilities formulated as a differential
diagnosis. In order to facilitate management
decisions, it also provides the probabilities associated
with benign, pre-malignant, and malignant disease.

A previous attempt to model the mammography
screening process with a Bayesian network used a

different approach. 9 Disease entities were not used in
this model. The ultimate disease state, breast cancer

(present or absent), also served as the management
decision. Our more granular approach using the
individual diseases commonly encountered in the
breast helped us assess the conditional probabilities
in the causal and pathophysiologic direction. We base
our management decision on the summation of the
disease probabilities. We believe that our more

granular and causal approach will output more

accurate post-test probabilities. Our preliminary
results are promising.

The Az value of our model, .953, exceeds that of the
earlier model, .881.9 In fact, our system compares

favorably with several computer diagnostic aids
developed in the domain of screening mammography.
A similar area under the ROC curve methodology has
been used to evaluate many of these systems. We
realize that the composition of the test set is
important in the Az value and have included this
parameter to facilitate comparison. Two neural nets
(NN) have been developed to aid in the diagnosis of
breast malignancy. One used BI-RADS descriptors
and eight variables from the patient's medical history
as inputs into the NN. Their test set contained 56%
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Disease Pre-test Case 1 Case 2 Case 3 Case 4
DC-NOS 0.0090 0.0451 0.8851 0.0011 0.0047
DCIS 0.0019 0.0003 0.0000 0.7053 0.0000

DCNOSI DCIS 0.0012 0.9502 0.0285 0.0892 0.0001
LC 0.0009 0.0000 0.0000 0.0007 0.0000
LCIS 0.0008 0.0000 0.0000 0.0007 0.0000

LCI LCIS 0.0001 0.0000 0.0000 0.0001 0.0000
TubCA 0.0001 0.0005 0.0093 0.0000 0.0000
PapCA 0.0002 0.0000 0.0009 0.0014 0.0004
MedCA 0.0001 0.0000 0.0002 0.0000 0.0040
Co//CA 0.0001 0.0000 0.0002 0.0000 0.0040
Phy 0.0010 0.0000 0.0000 0.0000 0.0005
Mets 0.0010 0.0024 0.0474 0.0001 0.0001
RS 0.0010 0.0000 0.0000 0.0008 0.0000
Cy 0.0700 0.0000 0.0002 0.0122 0.7749
FA 0.1200 0.0014 0.0274 0.0218 0.1815
FC 0.1300 0.0000 0.0003 0.1098 0.0000
Ham 0.0001 0.0000 0.0000 0.0000 0.0000
FF 0.0050 0.0000 0.0000 0.0014 0.0137
FN 0.0050 0.0000 0.0000 0.0042 0.0000

SecDis 0.0010 0.0000 0.0000 0.0008 0.0000
POC 0.0010 0.0000 0.0000 0.0008 0.0000
SL 0.0230 0.0000 0.0000 0.0181 0.0130
LN 0.0300 0.0000 0.0000 0.0253 0.0026
Pap 0.0020 0.0000 0.0002 0.0000 0.0004

Normal 0.5945 0.0000 0.0002 0.0051 0.0000

Benign 0.9708 0.0014 0.0282 0.1996 0.9864
Malignant 0.0262 0.9986 0.9716 0.7973 0.0133

PreMalignant 0.0030 0.0000 0.0002 0.0031 0.0004
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malignant cases. The Az value of their ROC curve
was .85.12 The second NN used eight features of
calcifications as inputs. The evaluation, done on 104
cases of which 46 were malignant (44% malignant),
revealed an Az value of .76.13 Another group used
computer assisted diagnosis for masses. They used
253 mammograms (103 patients) of which 127 were
malignant (50% malignant). The Az values were .92
and .96 for one or two views respectively.'4 Finally,
the survey of US radiologists evaluating performance
used a test set containing 79 cases of which 45 were
malignant (56% malignant). The average Az value
for these radiologists was .85. Despite possible
differences in these studies, we believe this
comparison is encouraging. Our Bayesian approach
appears to be powerful in isolation, and we might be
able to enhance our diagnostic power by
incorporating some of these other tools in our model.

The radiology community has only incorporated a
small portion of the BI-RADS descriptors into the
decision-making process in this field. The entire
lexicon, when coupled with our Bayesian model, has
great potential to communicate quantitative
probabilistic information that will aid management
decisions. Our model relates the benign and
malignant breast diseases to BI-RADS descriptors
and allows us to integrate radiological observations in
a principled fashion. We hope that with further
testing and use our model will help to elevate the
standard of all mammography practice to the level of
the expert.

We are looking forward to evaluating and refining
our model in the future. We plan a formal evaluation
comparing the system to experts as well as general
practice radiologists. We also plan to evaluate the
software design aspects of our web-based approach
as we test the system with clinicians to gauge the
usability of our interface. We will also incorporate
value of information capabilities to guide the
collection of observations and enhance the benefits of
this system. In the future, we hope that radiologists
of all levels will use this system not only as a
decision tool but also as an educational aid for those
interested in learning the BI-RADS lexicon from a
probabilistic perspective. Our system has the
potential to aid in both normative decision-making
and education.
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