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This paper describes the extraction of structured
data relevant to glaucoma diagnosis and progression
from visit notes typed as ‘“notational text” by
ophthalmologists during patient encounters. We
compared two text processing systems: a limited
pattern matching system called GDP (Glaucoma
Dedicated Parser) and MedLEE, a proven natural
language processing system which is in routine use
encoding findings from chest radiograph and
mammogram reports at the NewYork-Presbyterian
hospital’s Columbia-Presbyterian Center. We also
evaluated the use of GDP as a preprocessor program
to transform notational text into constructions
recognizable by MedLEE. These systems have been
evaluated according to their recall and precision in
the particular task of processing a corpus of
“notational text” documents to extract information
related to glaucoma disease.

Electronic medical record (EMR) systems
approach the problem of data capture from clinicians
in one or both of two general ways. The first consists
of using domain-specific user interfaces for capturing
data in a structured, and potentially code-able,
format. The second consists of collecting and storing
clinical information in computer systems in text
format. “Plain text” capture is often easier and
cheaper to implement, but in order to “unlock” the
information for sophisticated uses such as
computerized decision support and outcomes
measurements, it must be structured and coded.
Medical language processing (MLP) systems that
extract, structure and codify information from textual
patient reports have been developed to address this
problem [1-9].

A special kind of text in clinical documentation is
“notational text”, a terse form of written
documentation by clinicians that is full of
abbreviations and symbols, some of which may be
specific to a medical sub-domain, to an institution, or
indeed, even a clinician. Statements in notational
text are poorly formed according to usual
grammatical construction rules. However, domain
experts generally have little trouble deciphering
notational text due to familiarity and clinical context.

For example, the following notational text sample
3/1198 IPN
SOB & DOE 4
VSS, AF
CXR 6LLL ASD no A

1067—5027/00/$5.00 © 2000 AMIA, Inc.

51

WBC 11K

S/B Cx €6GPC c/w PC, no GNR

D/C Cef —PCN 1V
means: (date of) Intern Progress Note, the patient's
shortness of breath and dyspnea on exertion are
decreased, the patient's vital signs are stable and the
patient is afebrile, a recent new chest xray shows a
left lower lobe air space density that is unchanged
from the previous radiograph, a recent new white
blood cell count is 11,000 cells per cubic milliliter,
the patient's sputum and blood cultures are positive
for gram positive cocci consistent  with
pneumococcus, and no gram negative rods have
grown, so the plan is to discontinue the cefazolin and
then begin penicillin treatment intravenously.

The motivation for our current work came from a
need to extract clinical parameters of glaucoma from
ophthalmology visit notes written in notational text
format, then provide this data as input to an expert
system for predicting glaucoma disease progression.
Due to a dearth of published experience with
notational text processing, we report on the
comparative utility of an ad-hoc text processing
system for this task, and whether a proven MLP
system, effective in understanding transcribed
medical text, can be made to perform adequately on
notational text.

Backeround

Glaucoma is a common disease causing irreversible
visual field loss. It is strongly associated with high
intraocular pressure (IOP), but some persons with
"normal" eye pressure become afflicted while others
with intraocular hypertension remain spared of visual
field loss; thus other factors are at play. One model
suggests that certain physiologic parameters
determine an individual's intraocular pressure
tolerance (IPT) which can mitigate or potentiate the
effect of any given IOP in causing glaucoma. One of
us (MB) has developed a predictive system based
upon this model, and seeks clinical data with which
to validate it. Thus we sought clinical parameters
related to glaucoma from a large corpus of visit notes
created by ophthalmologists. Since these notes were
not dictated, but were typed by physicians during
routine patient encounters, they were full of
abbreviations and symbolic constructions, with a
dearth of punctuation. As such, they were more
characteristic of a "notational text" than transcribed
narrative text. Still, we decided to undertake the
challenge of extracting the following clinical



parameters from these notes: age, sex, intraocular
pressure, cup:disk ratio, visual fields, retinal vascular
status, and glaucoma diagnosis. Blood pressure is
also an important clinical parameter in this model,
but was rarely measured by ophthalmologists, and so
was not sought from this corpus of visit notes, but
was available from another source.

Since much of human knowledge is recorded in
linguistic form, computers that understand natural
language (NL) could ease the burden of knowledge
acquisition from experts, and automate the input and
encoding of information for use in computer systems.
Natural  language processing (NLP) and
understanding depends upon a computational model
of human language that uses knowledge about the
structure of (the source) language, including what
words are (morphological knowledge), how words
combine to form sentences (syntactic knowledge),
what words mean and how word meanings contribute
to sentence meanings (semantic knowledge), and how
previous discourse affects current interpretation
(discourse knowledge). Also important in natural
language is general world knowledge that helps to
resolve word and phrase references (pragmatic
knowledge), making language so flexible and
expressive. Phonetic and phonological knowledge is
concerned with how words relate to the sounds by
which they are vocally expressed.

NLP systems typically utilize distinct components
or processes for each of these different types of
language knowledge. Systems often utilize three
principal levels of knowledge representation that map
from one to another: syntactic processing, concerned
with the structural properties of sentences; semantic
processing, which computes a logical form that
represents a context independent meaning; and
contextual processing, which modifies meanings
according to their domain of expression. The process
that maps a unit of language, such as a sentence, to its
syntactic structure and logical form is called the
parser. It uses a lexicon, which provides knowledge
about words and word meanings, and a grammar,
which is a set of rules defining the legal structure of
sentences and their parts. Interestingly, for non-
medical text documents, the results of a previous
evaluation demonstrated that NLP systems utilizing
simpler pattern matching algorithms and only limited
linguistic knowledge performed well compared to
those containing more complex linguistic knowledge
[9].

A variety of techniques have been used by MLP
systems. Some, such as the LSP [2] system and
Ménélas [3], use comprehensive syntactic and
semantic knowledge. RECIT [4] uses syntax to
recognize the structure of local phrases, and
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interleaves phrase recognition with semantic
knowledge in order to assemble semantically relevant
groupings and representations. MedLEE [6,10] relies
heavily on general semantic patterns interleaved with
some syntax, and also includes knowledge of the
structure of the entire sentence. SymText [7] was
initially purely semantically driven, and worked by
selecting relevant semantic frames associated with
semantic information about the words in a sentence
and expectations about findings, locations, and
conditions. More recent versions integrated syntax
into the processing. Other MLP systems use methods
that are based on pattern matching and keyword
search [1].

MedLEE (Medical Language Extraction and
Encoding) is an MLP system that has been used to
extract, structure, and encode clinical information
from all chest radiograph and mammogram reports
for the past 5 years at the New York-Presbyterian
(NYP) hospital’s Columbia-Presbyterian Center
(formerly Columbia-Presbyterian Medical Center).
On average, MedLEE processes about 650 chest
radiograph and mammogram reports daily, and the
coded data are stored in the hospital's clinical
database. Coded data have been used for automated
decision-support, as well as formal and ad-hoc
analyses [10-11].

MedLEE consists of component software modules,
each of which processes the text in some way and
generates output used by subsequent components.
Each module results in a further “regularization”
(formal structuring) of input text without significant
loss of information. The first component is the
preprocessor, which utilizes tokenization rules to
determine word and sentence boundaries, resolve
abbreviations, and perform lexical lookup, which
finds semantic role-definitions of words and phrases
in the sentences. The second component is the
parser, which utilizes lexical definitions and grammar
rules to determine the structure of a sentence and
interpret relationships among sentence elements. A
third component is the phrase regularizer, which
further structures the target form by formally
composing multi-word terms that have been
separated in prior component output. Finally, the
encoding component maps regularized output to
coded vocabulary terms.

MedLEE tries to analyze the structure of an entire
sentence using a grammar that consists of patterns of
semantic and syntactic categories that are well
formed. For example, finding in bodyloc conj
bodyloc is a well-formed pattern corresponding to
sentences such as “pain in arms and legs”. If parsing
fails, various recovery modes are utilized in order to
achieve robustness, each of which is likely to
increase sensitivity but at the expense of decreasing



specificity and precision. The most specific method
is attempted first, and successively less specific
methods are used as needed. First, (1) the initial
segment is the entire sentence and all words and
multi-word phrases must be defined and fitted to a
well-formed pattern matching this sentence; failing
this, (2) the sentence is segmented at certain types of
words or phrases (e.g.: “consistent with”) and an
attempt is made to recognize each segment
independently; failing this, (3) an attempt is made to
identify a well-formed pattern for the largest prefix of
the segment, which might be successful when the
first part of a sentence contains a well-formed pattern
but the end does not; failing this, (4) undefined words
are skipped and an analysis is attempted starting
again with mode (1); and failing this, (5) the first
word or phrase in the segment associated with a
primary finding (i.e. “infiltrate”, “mastectomy”, etc.)
is identified, after which an attempt is made to
recognize the part of the segment starting with the
leftmost modifier of the finding and, if analysis fails,
recognition is again attempted starting at the next
modifier to the right, and continued thus until a
successful analysis is obtained. For (5), a
modification handles negation, which may have to be
distributed over all subsequent segments.

The task of extending a NL processor from its
original domain of expertise is generally easier if the
new domain is similar (such as another subdomain
within Radiology), perhaps requiring only extension
of the lexicon. A new domain of application,
however, may additionally require new preprocessing
rules, grammar patterns and semantic categories [6].
While MedLEE was never designed to process
(grammatically malformed) notational texts, we
hypothesized that, once abbreviation and symbol
recognition was achieved, semantic patterns in
notational text phrases would approximate those of
well-formed sentences, sans relatively meaningless
articles, prepositions, and connectives. Note that a
few important exceptions exists, e.g., a ‘,” often
means “and” in the middle of a notational text phrase,
and a ¢/’ can mean “and” or “or”, etc. Sample

content from an ophthalmology visit note follows.
vawc
od 20/ 60 ph 20/50-2
os 20-/100 ph ni stable
p 4-2 reactive ou no rapd
eom full
sle: lla mild blepharitis ou
c.s 1+ papillary rxn ou
kinf spk ou
ac d+qou
i rr ou no rubeosis
| 2+ ns ou brunescent
ta14 ou
pp m1/m2.5
c:d 0.3 ou
no bdr
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hyperpigmented scar at and inferior to macula os-
unchanged

Methods

A corpus of 12,839 ophthalmology visit notes,
described above, was obtained from the NYP clinical
data repository. The corpus was obtained in a
compacted ASCII format and was expanded so that
each encounter note consisted of a sequence of
characters (including spaces) separated by a carriage
return-line feed sequence.

After ad-hoc analysis of the corpus, a glaucoma-
dedicated parser (GDP) was designed and
implemented, utilizing pattern matching of words and
phrases representative of the clinical parameters
sought. The program also makes use of available
section identifiers (e.g. “PAST OCULAR
HISTORY:”, “IMPRESSION:”) for context
information, and tries to deduce the role of white
space as potential phrase and sentence delimiters.
After identification, glaucoma-related clinical
parameters are extracted together with their values
and output to a database in parameter-value tuples, or
(optionally) output to a file in short sentence format
(e.g. “The IOP in OD is 20.”).

One challenge facing our use of MedLEE was its
application .to a new domain, and another was the
lack of punctuation and abundance of
(grammatically) poorly formed constructions that
characterize notational text. MedLEE’s lexicon was
extended with definitions of words and phrases
representative of the clinical parameters sought.
These single and multi-word phrases were
semantically categorized (as a finding, location,
body part, etc.) and added to the lexicon with a
specification of their target form. For example, the
construction

wdef(scotomas,cfinding,[scotoma,[quantity,’>17])
defines ‘scotomas” as a finding with target form
“scotoma” and quantity greater than one. Common
abbreviations, symbolic  constructions, and
misspellings were similarly defined. MedLEE's
performance was tuned by defining new "sections",
identified by tags ("Impression:", "sle:", etc.) to
provide context sensitivity; by recategorizing the
semantic role of some words and phrases; and by
preprocessing the input to indicate "sentence"
boundaries via a '' (period). For example, by
recategorizing "OD" (ocular dexter = "right eye") and
"OS" (ocular sinister = "left eye") from bodylocation
to bodymeasurement, each token was allowed to be
associated with a parsed value, such as for visual
acuity ("Va"), which the parser assigns automatically.
By making "Va" a "section" tag, instances of "OD"
and "OS" with associated values were understood as
right and left eye visual acuity measurements.



Grammar rules were neither modified nor extended to
optimize MedLEE performance for this work.

Results

The corpus of ophthalmology notes was processed
by both GDP and MedLEE, each of which generated
structured output indicating the clinical parameters
found in the visit notes. One hundred (100) notes
were randomly selected for manual analysis. One of
us (MB) highlighted the desired clinical parameters
present in each of these 100 reports, and GDP and
MedLEE output was compared. For each clinical
parameter sought, an assessment was made whether
automatic retrieval was successful (TP) or not (FN),
and whether misunderstandings occurred (FP) or not
(TN). For each desired clinical parameter, recall
(TP/[TP+FN]), precision (TP/[TP+FP]), and accuracy
([TP+TN]/(TP+FP+TN+FN]) were calculated as a
measure of system performance. The performance of
GDP is summarized as follows:

Recall | Precision | Accuracy
| Age 0.95 0.99 0.94
[ Sex 099 ] 0.97 0.97
10P 1 0.98 0.99
Cup/disk ratio 1 0.96 0.98
Vascular status 1 0.92 0.97
Visual field 0.96 1 0.99
Diagnosis 0.96 0.89 0.96

MedLEE performance is summarized as follows:

Recall Precision | Accuracy

Age 0.88 1 0.89
[Sex 1 1 1

IOP 0.85 1 0.89

Cup/disk ratio 0.8 1 0.91

Vascular status 0.8 1 0.94

Visual field 1 1 1
|_Diagnosis .94 1 0.99

From the total number of 12839 visit notes, GDP
discovered 11,286 values for Age (in 88% of notes),
9468 values for Sex (in 74% of notes), 9979 values
for Intraocular Pressure in at least one eye (in 78% of
notes), 5338 values for Cup/Disk Ratio in at least one
eye (in 42% of notes), 2939 values for Retinal
Vascular Status in at least one eye (in 23% of notes),
3175 values for Visual Field in at least one eye (in
25% of notes), and a Glaucoma Diagnosis in 3830
(30%) of the notes. All needed parameters co-
occurred in only 267 (2%) of visit notes, but a single
patient often has all needed parameters collected over
more than one visit, so spanning a set of two or more
visit notes, and this latter count was not tallied.

Similar counts for MedLEE’s extraction of the
clinical parameters were not tallied, but based upon
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recall measurements they can be estimated as similar,
or slightly lower for some of the parameters.

Di .

For this domain of ophthalmology visit notes, for
this text type of “notational text”, and for the limited
task of extraction of specific clinical parameters (not
a general understanding of the text), the pattern-
matching and ad-hoc approach of GDP had better
recall than the NLP approach, but the NLP approach
of MedLEE had better precision. However, the
precision and recall of both systems were reasonably
acceptable for their intended use.

The fact that MedLEE worked at all for
understanding  notational text is somewhat
remarkable, since it was designed for use on well-
formed narrative text. MedLEE’s performance in
this regard can probably be attributed to its robust
recovery mechanisms, discussed above. One
observation, not reflected in the above data, was that

MedLEE’s performance apparently improved
significantly when the notational text was
preprocessed to indicate probable “sentence”

boundaries. The dearth of sentences, as delineated by
punctuation, is a typical feature of notational text.
Fortunately “phrases”, or “segments”, with which
MedLEE works well, are also characteristic of
notational text. Such phrases, however, are usually
separated by white space rather than punctuation, so
it makes some sense that MedLEE might perform
well on notational text once assisted with the segment
recognition task.

Another observation was the misinterpretation of
some tokens occurring in these ophthalmology visit
notes: ones that were homonymous with those used
in radiology reports.  For instance, MedLEE
interpreted the segment “glaucoma suspected started
on T1/2 OU” as “problem: glaucoma” with
“bodyloc: first thoracic vertebrae”. Here MedLEE
recognized “T1/2” as an anatomical reference to
thoracic vertebrae, such as discussed in chest xray
reports, rather than “treatment: Timoptic 0.5% drops
in both eyes” as would be correct. This is because
MedLEE had previously been trained mostly for use
in radiology reports, and our “retraining” for the
domain of ophthalmology was incomplete.

As if natural language understanding of narrative
text documents by computer systems is not difficult
enough, the understanding of notational text
documents is perhaps even more difficult due to lack
of punctuation and grammar, and frequent use of
terse abbreviations and symbols. However, a
significant and clinically useful portion of medical
documentation exists in notational text format, in



progress notes, in sign-out notes, on radiograph
jacket covers, and elsewhere. Clinicians who adapt
to clinical data entry via computers, particularly text
data entry via the keyboard, will take their terse
documentation style with them from paper to
electronic form, as evidenced here in our corpus of
ophthalmology visit notes. Unlocking the
information contained in this documentation provides
an interesting Informatics challenge for the new
millenium.

Conclusion

For our corpus of ophthalmology visit notes, in the
“notational text” format typed by physicians, a
pattern-matching and ad-hoc approach to structured
data extraction had better recall than an NLP
approach, but the NLP approach had better precision.
However, the precision and recall of both systems
were acceptable for their intended use. It is
remarkable that a proven NLP system trained for
well-formed narrative text had reasonable
performance at all. Efforts to unlock the clinical
information contained in notational text notes could
contribute significantly to the availability of clinical
data in computer systems for decision-making,
decision support, and process and outcomes analyses.
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