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ABSTRACT
The American Board ofFamily Practice is developing a
patient simulation program to evaluate diagnostic and
management skills. The simulator must give temporally
and physiologically reasonable answers to symptom
questions such as "Have you been tired?" A three-step
process generates symptom histories. In the first step,
the simulator determines points in time where it should
calculate instantaneous symptom status. In the second
step, a Bayesian network implementing a roughly
physiologic model ofthe symptom generates a value on
a severity scale at each sampling time. Positive, zero,
and negative values represent increased, normal, and
decreased status, as applicable. The simulator plots
these values over time. In the third step, another Baye-
sian network inspects this plot and reports how the
symptom changed over time. This mechanism handles
major trends, multiple and concurrent symptom causes,
and gradually effective treatments. Other temporal
insights, such as observations about short-term symp-
tom relief, require complimentary mechanisms.

INTRODUCTION

The American Board of Family Practice plans to begin
using a patient simulation program as part of its recerti-
fication process by 2004. The program stochastically
simulates patients from a knowledge base in an effort to
meet security and reusability goalsl13. Bayesian net-
works define health states, control queries, and main-
tain consistency during stochastic operations.

To support testing of fine diagnostic and management
skills, the simulator must report temporally and
physiologically reasonable symptom histories. For in-
stance, a simulated patient should report on demand the
duration of fatigue, the onset of a fever, or the progres-
sion of pain. The simulator design intended to support
temporal reasoning4 5 by plotting the presence and ab-
sence of diseases, findings, and interventions over time.
Attaching these data to a patient would allow the simu-
lator to directly inspect durations of events, and then to
produce temporally reasonable reports. For instance,
the simulator could check the duration of hypothyroid-
ism or depression, and cause the patient to report feel-
ing fatigued for that amount of time.

Proliferating findings
As the project progressed, we found it expedient to
simplify disease definitions and create increasingly

complex queries. For instance, clinical findings in hy-
pothyroidism include fatigue and mood disturbance, but
depression may cause the same clinical findings.
Knowledge acquisition teams defining health states
routinely draw Bayesian networks6 with multiple find-
ing nodes as shown at the top of figure 1, some sharing
the same names. However, to model diseases concur-
rently, the knowledge base and simulator must distin-
guish the fatigue findings resulting from each disease.
In addition, the simulator must distinguish the treatment
implications of different fatigue findings. Fatigue from
hypothyroidism resolves with thyroid replacement, but
not with selective serotonin reuptake inhibitors. Con-
sequently, if we model fatigue as a direct consequence
of a health state, the model may require multiple fatigue
findings. Queries about fatigue must survey the patient
for all possible fatigue findings and corresponding
treatments, as shown at the bottom of figure 1.

Disconcerting consequences for the knowledge base
follow. Disease generation requires multiple findings
named after "fatigue" and, more generally, a plethora of
findings represent specific causes of multi-factorial
symptoms. Similarly, a fatigue query replicates the list
of fatigue findings and corresponding interventions.
This approach is awkward, in spite of the initially ap-
pealing complete health state definition. Fatigue should
not be many findings and a question.

Figure 1

AMIA 2002 Annual Symposium Proceedings 747



Semi-physiologic models
A more physiologic approach might be simpler. We
could consider the defining finding in hypothyroidism
to be a low thyroxine level, without pituitary or hypo-
thalamic defects. The thyroxine level, adjusted for any
supplementation, is one determinant of fatigue. Al-
though less precisely defined, depression is another
determinant of fatigue, requiring adjustments for anti-
depressant treatment. Queries about fatigue still must
survey all possible causes and corresponding treat-
ments, but explicit fatigue findings are irrelevant, and a
readable Bayesian network realistically describes what
might cause fatigue. In addition, very simple Bayesian
networks can define many health states. Fatigue is not
a finding at all, only a question.

However, physiologic queries bring a temporal de-
scription problem into sharp relief. Falsely reassuring
temporal histories of findings in the previous approach
obscured the difficulties in combining related findings
and treatments to create histories. The complexity of
most symptom queries guarantees that they can only
describe the instantaneous status of a symptom. The
variable duration of concurrent causal diseases, reliev-
ing treatments, and exacerbating treatments often defy
combination in a single readable Bayesian network.
Thus, obtaining temporal information about fatigue

from the Bayesian network in figure 1 is extraordinarily
difficult, even though temporal information about each
contributing patient feature is readily available. Figure
2 illustrates the revised architecture, in which disease
definitions are very sparse, and the first level of query
calculates instantaneous symptom status. Additional
steps must produce the temporal description.

METHODS

Figure 3 illustrates a symptom history algorithm with
three major steps. The first step establishes time points
to "remember," adjusted for patient characteristics as
necessary. The second step calculates an instantaneous
symptom status score at each of these time points, ad-
justed for the treatments and diseases that pertain at that
moment. The third step evaluates a plot of symptom
scores over time to produce a general description of the
symptom history.

Sampling patterns
The first step obtains a series of time points appropriate
to the query. During simulation, the simulator receives
a query from the user. For queries about symptom his-
tory, the knowledge base stores a list of sampling time
points representing offsets from the current time. The
list may be context sensitive. For instance, a Bayesian
network could select a list after inspecting the patient
for health problems that impair memory. The simulator
subtracts each offset from the current age to find the
age for the next symptom status query. For instance, if
the sampling times are 0, 0.1, 1, 2, and the current age
is 40, the ages to sample are 40, 39.9, 38.9, and 36.9.

Next, the simulator locates any previously calculated
data about the same concept. For instance, all queries
about fatigue and energy could generate data about a
concept called "energy level", regardless of the time
horizons inspected by the individual queries. For each
concept, a patient has at most one plot of symptom
status over time. The simulator obtains this plot, if
available. It compares the point list with times already
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plotted, and discards points close to previously estab-
lished points. The simulator calculates closeness rela-
tive to the intervals in the sampling pattern. For in-
stance, an existing point at 39.95 need not change the
sampling pattern, but existing data at age 39 would
cause deletion of the new sampling point at 38.9. For
each remaining point, the simulator calculates and plots
the instantaneous symptom status at that age.

Instantaneous symptom status
Calculations of instantaneous symptom status typically
require information about interventions and findings.
Users select interventions to apply to their simulated
patients. Interventions include prescriptions, which in
turn hold dose and frequency information. The simu-
lator can convert this information to administration
events on demand, e.g. to specify that at age 39.8987
the patient consumed 50 micrograms of levothyroxine.
Interventions do not hold information about their con-
sequences, and interventions generally have no effect
on the simulation until time elapses and a query occurs.

Findings normally specify a baseline value and describe
what other events can perturb the value and the tempo-
ral course of the perturbation. For instance, a finding of
normal thyroid function may set a baseline value be-
tween 3 and 5, specify a circadian or lunar fluctuation,
and illustrate the rises and falls expected after giving 20
and 200 microgram doses of levothyroxine to a 70 kg
person. That is, the finding object enumerates medica-
tions and a few representative doses that trigger defined
responses in the finding's value. For instance, the dose-
response curve for 200-micrograms of levothyroxine
might show a rise in thyroxine levels for 2 days, with a
peak level on the first day. An intervention can trigger
any number of dose-response curves to represent serum
levels, tissue levels, or clinical efficacy.

Bayes Nodes

Get Baseline Value

Get Medication Effect

Calculate Net
Contribution l

|Infer Energy Status |

Values from simulator

Baseline .-.M_ow (N)
FreeT4

L
---

Age
This AM (T)

Exogenous+ Yesterday (Y)
T4

r- _ k
Time since dose

Subtotal = f(N, T, Y)

Status = f(disease subtotals)

Figure 4

The knowledge base stores a Bayesian network that
specifies how to generate the instantaneous symptom
status, as figure 4 illustrates. Many nodes in this net-
work are continuous rather than discrete. These either
obtain raw data from a simulated patient at run time, or
calculate values from raw data and previously calcu-
lated values. The raw data for some nodes will be the
baseline value of a finding, for instance the baseline
thyroxine level. Other nodes will obtain the current
contributions of perturbing rhythms and interventions,
for instance, the rise in thyroxine level caused by recent
levothyroxine doses.

When the simulator encounters such a node, it makes a
series of calculations to ensure consistency between
queries. First, it determines the duration of the pertur-
bation caused by the intervention, which is 2 days in
this levothyroxine example. The window of opportu-
nity for an intervention to affect the instantaneous value
of this node is the 2 days prior to the sampling time.
For instance, doses of levothyroxine taken between
ages 39.8945 and 39.9 influence the fatigue symptom
status at age 39.9. Second, it inspects the patient to
determine whether the relevant intervention occurred
during this window of opportunity. If so, its third step
uses the signature information to calculate the patient's
age at any missing dosing events during that window of
opportunity. For instance, if a dose at age 39.8987 al-
ready exists, the simulator adds a dose of levothyroxine
at 39.8960. These instances of doses become a perma-
nent part of the simulator's record of the patient's inter-
ventions. If subsequent queries require information
about levothyroxine doses, the simulator will re-use
previously recorded dosing instances as necessary.

Next, the simulator must add the contributions of all
doses in the window of opportunity to the finding value
at the sampling time. First, it generates a dose-response
curve for the dose actually given. For instance, it inter-
polates between the dose-response curves following 20
and 200-microgram doses to estimate the effect of a 50-
microgram dose. Second, the simulator uses the new
dose-response estimate to calculate the contribution of
each dose taken during the window of opportunity on
the dose-response at the sampling time. For instance, at
the sampling age 39.9, the levothyroxine dose at
39.8987 is within the past 24 hours, and contributes
more to the exogenous thyroxine rise than the dose at
39.8960. This provides a crude approximation of
pharmacokinetic behavior of drugs or drug effects. For
instance, a knowledge editor can use a shallow, two-
week long dose-response curve to model a gradual on-
set of antidepressant action. A shorter, taller dose-
response curve can model the same drug's anticholiner-
gic actions.
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A second tier of nodes in the Bayesian networks com-
bines raw data to calculate intermediate results, such as
net thyroxine level. Eventually, cascading calculations
or Bayesian revisions and stochastic selections establish
the state and value of a node that specifies the symptom
score at the specified moment in time. In a query about
fatigue, the value represents an energy level on a -10 to
10 scale, where 0 is a normal energy level, and positive
and negative numbers are elevated and depressed en-
ergy levels, respectively. If the 50-microgram dose of
levothyroxine was too low for the hypothyroid patient
at age 39.9, the numeric energy status may be -3. Fi-
nally, the simulator adds the points for each pair of
sampling time and symptom status to the plot of symp-
tom status over time. For instance, it would add the
point (39.9, -3) to the plot of energy status.

Temporal History
The final step inspects the plot of symptom status over
the time interval specified in the original query to pro-
duce a report about symptom status during the interval.
A report-generating Bayesian network collects infor-
mation about the shape and the patient as primary evi-
dence, then revises state probabilities and stochastically
selects states for unspecified nodes. The node states in
the solved network specify a report to return to the user.

The report-generating Bayesian network can use a
number of simple attributes of the plot, such as dura-
tion, average value, and number of slope sign changes
to create a report. Forty reusable Bayes nodes provide
access to these attributes. For instance, the plot's dura-
tion, average value, time spent below zero, and slope of
a linear regression suffice to create a report that the
symptom has had a general level of severity, frequency
of fluctuation, and trend over the specified interval. For
instance, the report on fatigue could be "I have been
tired most of the time for the past few years. I am im-
proving a little." The average value drives selection of
the phrase "tired," duration selects "the past few years,"
time spent below zero drives selection of "most of the
time," and regression slope selects "improving a little."

Others' experience with temporal abstractions suggests
that we will find the current list of plot attributes in-
complete.4 5 7 8 We expect to add other abstractions
about temporal trends as new reusable Bayesian nodes,
and anticipate that these networks could become quite
elaborate. These Bayes nodes require no adjustments
for use in shape interpreting Bayesian networks.

These Bayes nodes only operate on the portion of the
plot that the simulator obtained from the sampling point
list specification. The simulator may truncate distant
points in the shape if the sampling pattern specifies too

many points. The nodes anticipate a shape with -10 and
+10 Y-axis boundaries and 0 to 100 X-axis boundaries.

RESULTS

Initial experiments with a hypothyroidism model dem-
onstrate that this process permits the simulator to pro-
duce a variety of general reports about the temporal
course of a patient's symptoms. The hypothyroidism
model lacks an explicit fatigue finding, and generates
only the free thyroxine and drug responses, as described
in methods. We generated a series of mildly hypothy-
roid patients and left them untreated for one month.
Each patient then received 200 micrograms of levothy-
roxine daily for one week, had medication withheld for
one week, and then received 50 micrograms of levothy-
roxine daily for one week. A query about fatigue then
produced a plot of energy levels over the preceding
three months, demonstrating rapid, dose-responsive
resolution of fatigue following the administration of
medication. Bayes nodes correctly detected slopes,
durations, and other features of the shape, and in turn
set the states of other nodes, producing reports that de-
scribe several temporal features of the patients' fatigue.
The complete sequence executed in less than 50 milli-
seconds for our current models running on single proc-
essor Pentium III class computers.

DISCUSSION

A major advantage of the ABFP simulation system is
accurate time management of the simulated patients.
Existing structures support queries of any patient on
any finding at any time. Although not directly sup-
porting temporal symptom queries, this feature made
this three-step algorithm for symptom recall practical.

A continuing shift of detailed medical domain content
from health state models to query models continues to
characterize this simulation project. The discovery that
we might generally avoid modeling symptoms as find-
ings, and instead model symptoms entirely as responses
to queries maintains the trend. Although we continue to
have compelling reasons to avoid strictly physiologic
models, queries driven coarsely by physiologic patient
features are becoming a very desirable modeling goal as
the knowledge base expands.

Limitations
In spite of the progress obtained thus far, a number of
important limitations in our temporal modeling remain.
First, our experience with this technique is limited, and
we may need to expand the range of plot attribute que-
ries that we support.
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Second, a human respondent might take very different
steps to answer a symptom history question: (a) based
on the question, decide how long to recall; (b) recall
characteristic event times such as starting and stopping
medications, surgery, onset of diseases, exposure to
hazard environments, etc.; (c) describe the symptom
status associated with the characteristic events. The
report would then focus on specific events set in time.
We do not yet know whether we need to recreate this
logic to achieve the realism required for ABFP recerti-
fication testing. The simulator might use process con-
trol methods to compare plots of symptom scores
against external events. It could then describe symptom
changes in relation to any external event.

Third, this algorithm does not directly address a group
of temporal queries regarding recurring exacerbating
and alleviating factors. For instance, this process can
reliably report increasing fatigue with advancing hypo-
thyroid states, and improvement following levothyrox-
ine treatment, but it cannot directly generate an asso-
ciation between levothyroxine treatment and improving
energy levels. This could be very useful information
for recertification candidates, and will require addi-
tional development efforts. For instance, the simulator
might calculate correlation coefficients between a drug
dose and a symptom score then generate text that sum-
marizes the strength of the association.

Both process control charts and arbitrarily selected cor-
relation coefficients could produce interesting mis-
leading responses. For instance, the coincidental pre-
scription of an ineffective drug at about the same time
as the spontaneous resolution of a self-limited illness
could lead to an incorrect conclusion that the events are
associated.

CONCLUSIONS

These results suggest that patient simulations in general
could avoid explicitly defining most, and perhaps all,
symptoms as explicit findings. Temporal information
about the presence of explicitly defined symptoms and
treatments is difficult to combine to create a history of
the symptom. Using a physiologic model of instanta-
neous symptom status to sample the patient's history is
a versatile option, allowing arbitrarily detailed review
of symptom history. Although we use a conputation-
ally intense approach, performance is acceptable.
Hardware and software improvements should keep pace
with increasingly complex models.
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