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Abstract

Flow cytometric systems are being used increasingly
in all branches of biological science including
medicine. To develop analytic tools for identifying
unknown molecules such as the antibodies that
recognize different structure in the identical antigens,
we explored use of a neural network in flow
cytometry data comparison. Peak locations were
extracted from flow cytometry histograms and we
used the Marquardt backpropagation neural
networks to recognize identical or similar binding
patterns between antibodies and antigens based on
the peak locations. The neural network showed
93.8% to 99.6% correct classification rates for
identical or similar molecules. This suggests that the
neural network technique can be useful in flow
cytometry histogram data analysis.

Introduction

Flow cytometry is a clinical and experimental
technique that quantitatively measures the individual
protein molecules on cell surfaces. It has been used
not only for quantifying the expression of known
molecules, but also for identifying unknown
molecules through the comparison with known
molecules. However, there is a need to improve flow
cytometry analysis, to distinguish the "similarity" of
antibodies which recognize the identical surface
molecules but different target sites, from those of
different antibody subtypes (primary structure).

Some traditional comparison methods have been
widely used for flow cytometry data analysis despite
their deficiency in assessing non-identical similarity'
'. Recently, application of information theory to
cytometric histogram showed improvement over
traditional methods, although it still did not
differentiate the similarity correlation from other
types of correlation3.

In this study, we explored the application of a
Marquardt neural network in flow cytometry data
analysis. Peak locations are the key features of a
histogram and were extracted using a kernel

smoothing technique. The Marquardt neural networks
were trained and tested to recognize identical or
similar binding patterns between antibodies and
antigens based on the peak locations.

Monoclonal antibodies that recognize antigens with
identical as well as with different primary structure
were used in this study. The results indicated that a
neural network can successfully recognize certain
molecular binding patterns: (1) "similar, but not
identical" - binding between an antibody and
different sites (structures) in an antigen; (2) "identical
or similar" - binding between an antibody and an
antigen regardless of binding sites; (3) "different" -
binding between an antibody and different antigens.

Background

Flow cytometry

Flow cytometry is a technique for the automatic and
quantitative determination of physical parameters of
molecules using fluorescence induced by attached
fluorescent dyes4. It has been used increasingly in
various branches of biomedical research and clinical
practice. Major applications of flow cytometry
include DNA histogram analysis for ploidy
determination and immunofluorescence phenotyping.
In addition, monoclonal antibodies have been used
for the identification, enumeration, localization, and
isolation of individual types of cells from blood or
solid tissues. The molecular composition of a cell,
reflecting its differentiation state and patterns of
molecules expressed selectively by a particular cell
type, can serve as a marker for the cell type'. Various
monoclonal antibodies recognizing molecules on the
lymphocytes were used in this study to test the
applicability of the neural network on flow cytometry
histogram comparison.

Kernel smoothing and SiZer

In order to analyze histograms, we used a new kernel
smoothing technique, - SiZer, to smooth the
histograms and extract meaningful features. SiZer
performs cross-bandwidth (resolution) smoothing and
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provides a family of smoothed histograms. It also
distinguishes the statistical significant features from
noise. The first-derivative characteristics (i.e., curve
increasing, decreasing, or neither) are provided in the
form of a color-coded map where blue represents
curve increasing, red represents curve decreasing,
purple represents neither of the previous two, and
gray represents that not enough data at this resolution
to determine direction. The number of bandwidths
used for smoothing is user defined5-7.

Marguardt backpropagation network

A backpropagation neural network consists of input,
hidden, and output layers'. Each layer contains at
least one node with an output that is simply the sum
of its inputs and modified by a nonlinear transfer
function. Backpropagation is a training method that
uses backward propagation algorithms (from the
output layer to the, hidden layers, and then to the
input layer) to update weights in each layer. In our
study, we chose the Marquardt backpropagation
algorithm provided in the Matlab software (version 6,
The MathWorks, Inc., Natick, MA). The Marquardt
backpropagation algorithm is a modification of the
Marquardt-Levenberg algorithm into a
backpropagation algorithm. A network was known to
have converged when the conjugate gradient and
variable learning rate algorithms failed to converge'.
Material

Antibodies used were 86D, 18-106, ST-1, Hl-68, Al-
107, 17-63, 2-87, 2-128, 2-128-1, 14-24, 14-109, 7C-
2/38-65, ST-8, 6-87, 6-99, FW4, and ERD2/114.
Peripheral sheep blood lymphocytes (PBLs) of a
single animal were used as a test cell population. The
molecular "target" of each of these antibodies is
shown in Table 1. Some antibodies recognizing the
same cell surface proteins (e.g., TCR and CD3) were
also included.

Methods

Data acquisition

Reactivity of antibodies to the target molecules was
detected by indirect immunofluorescence. This was
carried out using FITC-conjugated goat-anti-mouse
Immunoglobulin (Ig) diluted 1:10 with Phosphate
Buffered Saline. Total of 50,000 cells were analyzed
by Coulter Epics XL flow cytometry (Coulter
Electronics, Inc., Hialeah, FL). The fluorescence
intensity was presented as log-scale histograms
containing a total of 1024 channels. A total of 51
flow cytometry histograms were obtained from 17
antibodies and there were 3 replications for each
antibody. The flow cytometry histograms were
recorded as FCS 2.0 listmode files'". The raw

histogram data was exported from WinList 4.0
(Verity, Topsham, ME) into ASCII for data analysis.

Table 1. Antibodies,
molecules.

their isotypes, and their target

Antibody Isotype Target molecule
86D al TCR
18-106 al CD3
ST-1 a2a CD5
H1-68 Ta2b CD5
A1-107 Ta2a CD5
17-63 a2a CD5
2-87 a1 CD21
2-128 al CD21
2-128-1 al CD21
14-24 ccal CD21
14-109 al CD21
7C-2/38-65 ca2a CD8
ST-8 v CD8
6-87 al CD8
6-99 al CD8
FW4 al CD29
ERD2/114 al CD29

Feature Extraction

SiZer maps with 5-bandwidth and 11-bandwidth
were generated for the histograms. We used these
maps to determine the peak locations on a histogram.
In a particular bandwidth, a peak was defined as a
region consisting of a strip of blue (increasing region)
to its left and a strip of red (decreasing region) to its
right. Thus, each peak location was described by two
parameters: the start and the end location of the peak.
A histogram may have multiple peaks, but typically
no more than 2 or 3. Empirically, the peaks further to
the right are more biologically significant. In this
study, we extracted the locations of the two rightmost
peaks from each histogram. (When there was only
one or no peak, its location was marked with a
default number '-1'.) Therefore, a total of 20 and 44
features were extracted from the 5-bandwidth and 11-
bandwidth SiZer maps, respectively.

Neural Network Analysis

The neural networks were constructed to compare
two histograms and determine if they were identical,
similar, or different. The peak location features
extracted from the SiZer maps of the two comparing
histograms were used as inputs to the neural network.
The input vector sizes were 40 and 88, respectively,
when 5-bandwidth and 11-bandwidth SiZer map
were used.
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We trained, validated, and tested the networks for
two tasks: (A) to distinguish similar histograms from
different histograms, when the histograms are not
identical; (B) to distinguish identical/similar
histograms from different histograms. We defined
identical, similar, and different histograms as
follows: Identical histograms: histograms of the same
antibody that binds with the same antigen, including
absolute and replicate identity (Figure 3); Similar
histograms: histograms of different antibodies that
bind with the same antigen (Figure 2); Different
histograms: histograms of different antibodies that
bind with different antigens (Figure 4).

The target of the networks was set to 0 for
recognizing histograms as different (different target
molecule), and 1 for recognizing histograms as
identical/similar or just similar (same target
molecule).

Four Marquardt backpropagation networks were
constructed using Matlab, corresponding to the two
different input vector sizes and two different tasks.
They were all two-layer networks: a 40-20-1 network
for 40-feature input, and an 88-9-1 network for 88-
feature input. A hyperbolic tangent transfer function
was used in the hidden layer, and a logistic sigmoid
transfer function was used in the output layer (Figure
1).

5-bandwidth flow cytometry data

40 20 .1

1 1-bandwidth flow cytometry data

Figure 1. Architecture of the networks (IW: input
weight matrix, LW: layer weight matrix, b: bias).
In our sample set, there were 102 unique pairs of
identical histograms, 216 unique pairs similar
histograms, and 1008 unique pairs different
histograms. The 1224 pairs of similar or different
histogram were used as the data set for the task (A) as
described before; and the 1326 pairs of identical,
similar, or different histograms were used as the data
set for the task (B). For each network, we assigned a
half of the data as a training set, a quarter as a test set
and the remaining quarter as a validation set. The

validation set was included to prevent the overfitting
problenm When errors in the validation set showed an
increasing tendency, training was stopped.

Initial weights in the networks were randomly set.
For each network, we experimented with five
different sets of initial weights and saved the one
with the best correct classification. The designated
epochs (cycles) were 1000, but most of the networks
were trained with less than 1000 epochs (11 to 1000)
to avoid overfitting.

In all 4 networks, we used 0.5 as a cut-off value, as
the output of the logistic sigmoid function is between
0 and 1. We considered values greater or equal to 0.5
as "identical" or "similar", and less than 0.5 as
"different".

Evaluation

We evaluated the neural network outputs in terms of
correct classification rate and mean-squared error
(MSE). The correct classification rate represented the
percentage of correct pattern recognition cases to
total cases. The best correct classification rate
indicated the highest correct classification rate among
the 5 neural networks' correct classification rates
according to 5 different initial weights.

Results

Each network was trained and tested with 5 sets of
randomly generated initial weights. The mean-
squared error (MSE) of the four networks with
different initial weights ranged from 0.027 to 0.148
and the correct classification rate ranged from 80.7%
to 99.1% (Table 2). The best correct classification
rate of each network was over 90%.

Table 2. Range of MSE and correct classification
rate (CCR) of the networks based on different initial
weights.

Similar* Identical/similar**

MSE CCR (%) MSE CCR (%)

5 0.060 85.9 - 0.042 - 82.5 - 95.5
band" -0.104 92.2 0.127
1 1 0.031 81.4 - 0.027 - 80.7 - 99.1
band"' -0.155 95.8 0.148
*: Networks that distinguish similar from different
**: Networks that distinguish identical/similar from
different
"': 5-bandwidth and 1 1-bandwidth data sets

The correct classification rate and MSE of the four
different networks showed little difference, indicating
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that the inclusion or exclusion of identity and that the
number of features used did not have drastic impact.

All the training sets showed over 95% correct
classification rate (95.9 -99.8%), which are better
than those of the test (92.2 - 99.1%) and validation
(91.2 - 99.7%) sets (Table 3). The network for
distinguishing similarity from difference showed
more overfitting tendency.

When errors occurred, we observed that the networks
tended to classifying identical/similar histograms as
different rather than the reverse. We also observed
that the networks made more errors in the recognition
of similarity than in the recognition of
identity/similarity.

Table 3. Best correct classification rate (CCR) and
MSE of the selected data sets.

Train Test Validation
S* 5 MSE 0.035 0.060 0.072

band" CCR 95.9 92.2 91.2

11 MSE 0.026 0.031 0.065
baned CCR 98.0 95.8 92.5

ID** 5 MSE 0.038 0.051 0.041
baned" CCR 97.3 94.9 96.1

11 MSE 0.021 0.027 0.023
band"' CCR 99.8 99.1 99.7

* Similar from different data set
**: IdenticaSsimilar from different data set
': 5-bandwidth and 1 1-bandwidth data sets

Figure 2. Reactivity of 4 antibodies recognizing the
CD8 on a subset of peripheral blood leukocytes.

Histograms of some antibodies that recognize the
same antigen had more variance than others and thus
were more challenging for the network to handle. The
most common error the networks made was to
classify the 4 antibodies that all recognize CD8 as
different (Figure 2).

Discussion

The application of the neural network technique on
flow cytometry data had been successfully used for
molecular and cellular classification'"'3. Previous
studies performed classification of individual
molecules and did not involve histogram analysis. In
this study, we explored the possibility of using neural
networks with flow cytometry histograms for
molecular identification. Our study differs from
previous studies in that it focuses on molecular
populations, the characteristics of which are revealed
in the form ofhistograms.

Comparing to other methods that have been used and
studied (Kolmogorov-Smirnov, information theory
measurement, binning method)'3'4, neural network
analysis is a learning algorithm and it can memorize
and recognize patterns. The advantage of neural
networks is their ability to model both linear and non-
linear relationship models. Traditional linear models
are sinply inadequate for non-linear data8.

The best correct classification rates in the four
networks we implemented were consistently over
90%. This demonstrated the feasibility of combining
neural network and kernel smoothing technique for
flow cytometry histogram analysis.

Figure 3. Three replications of 2-128 antibody
reactivity.
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We picked the more general antibody binding
patterns to train the neural network to recognize:
identity, similarity, and difference. Such patterns are
relatively consistent across antibodies and cell lines.
An altemative way was to train the neural network to
recognize specific molecules or binding patterns
associated with specific molecules. For instance, we
could train the networks to classify the histograms by
their target molecules such as CD8 or CD3. The
resulting network, however, would not be applicable
to other molecules or cell lines.

ESD
-FW4

Figure 4. Two different antibody reactions of 86D
and FW4 to recognize different target molecules.

Hagan9 found that the Marquardt backpropagation
algorithm converged when the conjugate gradient and
variable learning rate algorithms failed to converge.
Our experience was consistent with his finding. We
experimented with a number of other algorithms and
were able to obtain optimal solutions faster with the
Marquardt backpropagation algorithm.

In backpropagation methods, the most common
approach is to use a gradient descent algorithm. The
gradient is zero almost everywhere when a hard-
limiting non-linearity is used8. This is why we did not
use a hard-limiting transfer function for outputs,
although the targets were binary.

When interpreting the non-linear output from the
networks, we used an empirical cut-off value of 0.5.
We did perform receiver operating characteristics
curve (ROC) analysis using different cut-off values.
The optimal cut-off values to recognize
identical/similar vs. different was around 0.5, and
The optimal cut-off values to recognize similar vs.

different was around 0.3. Due to space limitations,
we are not including the detailed results from the
ROC analysis in this paper.
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