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Abstract
Flow cytometry is a widely available technique for
analyzing cell-surface protein expression. Data ob-
tainedfrom flow cytometry is frequently used to pro-
duce fluorescence intensity histograms. Comparison
of histograms can be useful in the identification of
unknown molecules and in the analysis of protein
expression. In this study, we examined the combina-
tion of a new smoothing technique called SiZer with
information theory to measure the difference between
cytometry histograms. SiZer provides cross-
bandwidth smoothing and allowed analysis in feature
space. The new methods were tested on a panel of
monoclonal antibodies raised against proteins ex-
pressed on peripheral blood lymphocytes and com-
pared with previous methods. The findings suggest
that comparing information content of histograms in
feature space is effective and efficient for identifying
antibodies with similar cell-surface binding patterns.

Introduction
Flow cytometry is a technique for quantitatively
measuring the expression of individual molecules on
cells. This technique, combined with monoclonal
antibody technology, is a powerful tool with both
research and clinical applications (1).

In flow cytometry, fluorescent labeled antibodies are
used as probes, and fluorescence detectors are used to
analyze large numbers of cells sequentially (2). Since
antibodies will generally bind to their respective tar-
get molecule or "antigen" in a one-to-one ratio, the
number of antibodies bound to a cell, and hence the
number of fluorescent molecules present, will gener-
ally be proportional to the level of expression of that
protein on the cell. Each antibody-bound cell emits a
pulse of fluorescence which can be specifically de-
tected by a cytometer. Fluorescence intensity histo-
grams, which depict the distribution of cell surface
antigen densities within the population of cells under
study, can be thought of as a molecular "fingerprint"
of protein expression.

With the recent development of high-throughput cy-
tometers that employ digital signal process tech-
niques, it has become feasible to obtain large
amounts of accurate cytometry data that can be used
for proteomics research. New techniques for the
analysis of flow cytometry data, specifically com-
parison of fluorescence intensity histograms, could
enable the identification ofunknown molecules based
on their patterns of cell-surface expression.

Techniques for comparison of fluorescence intensity
histograms are not new. Most existing methods for
analyzing cytometry histograms are designed to ei-
ther test the hypothesis that two histograms are the
same, or calculate the number of "positive" cells
(cells that bind labeled antibodies) in a histogram (3-
5).
Hypothesis testing methods such as the Kolmogorov-
Smirnov (KS) method are capable of answering
whether two histograms have a statistically signifi-
cant difference (6). The statistically significant dif-
ference, however, is not necessarily biologically sig-
nificant (7). These methods also do not offer a meas-
urement of similarity beyond identity.

Other methods have been developed for counting the
number of positive cells in a histogram (4, 8). While
these methods are useful for certain clinical applica-
tions, the number of positive cells is not to establish
identity. Two histograms with the same of number of
positive cells may have very different shapes and
reflect different binding patterns.

We had previously experimented by comparing cy-
tometry histograms using Shannon's information
theory, which provides a measurement of similarity
and showed promising results in our preliminary
study (9). Our original approach, however, had two
limitations: (1) empirical parameter settings were
employed to smooth noisy data; and (2) comparisons
were performed on the entire histograms instead of
selected or derived features, although certain features
may be biologically more relevant than others.

To address these drawbacks, we combined a new
curve characterization technique, SiZer (10), with an
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information theory approach. SiZer provides cross-
bandwidth smoothing, which transforms a curve into
a family of curves with varying degrees of smooth-
ness. Peaks are the most important features of a his-
togram and SiZer provides information on peaks in
the form of a map which marks different parts of a
curve as going up, down or flat. We applied informa-
tion theory distance measurement on the SiZer-
smoothed families of curves and on the SiZer maps.

To evaluate the effectiveness of the different ap-
proaches for identifying similar cell surface binding
patterns, they were tested on a sample data set of
peripherial blood lymphocytes (PBLs) labeled with a
panel of diverse monoclonal antibodies. We calcu-
lated the information theory distance between the
histograms in four different ways, using: (1) SiZer
smoothed families, (2) SiZer maps, (3) histograms
smoothed using a polynomial filter. and (4) un-
smoothed histograms. Our evaluation showed that the
distinguishing power of information theory distance
is most enhanced when used with SiZer maps, which
reflected the information content of histograms in a
feature space.

Background

Information Theory
In recent years, Shannon's information theory (11)
has been applied to a wide variety of problems, in-
cluding image registration and gene sequence analy-
sis (12, 13). In a previous paper, we reported its use
for flow cytometry histogram comparison (9).

Given a discrete information source, the average in-
formation content or entropy reflects the unpredict-
ability of the source. For a stream of symbols, the
more random they are, the higher their entropy is.
Both mutual information and distance can be used to
measure the similarity between two sources.

We chose to use distance as the similarity measure-
ment instead of conditional entropy and mutual in-
formation, because the distance is symmetrical be-
tween two sources, while conditional entropy and
mutual information are not. To distinguish this spe-
cific distance measurement here from the general
concept of "distance", we refer to it as the IT dis-
tance, calculated as in our previous work (9).

SiZer
SiZer ("Significant Zero Crossings of derivatives") is
a new tool for distinguishing significant features
(e.g., peaks) of a curve from noise. As the name sug-
gests, SiZer uses estimates of the first derivative of
the histogram following kernel smoothing (10). The
significance of a feature in a histogram is also a

function of the amount of smoothing applied to the
histogram. To address this issue, SiZer performs
cross-bandwidth smoothing, or multiple degrees
(from minimum to maximum) of smoothing. After
processing a histogram, it provides two types of out-
put: (1) a family of smoothed histograms using dif-
ferent bandwidths, and (2) a map indicating which
part of a histogram is increasing, decreasing, or flat
based on a given smoothing bandwidth. Figure 1
shows a flow cytometry histogram. A family of 11
smoothed histograms for this histogram is displayed
in Figure 2, and the corresponding SiZer map is
shown in Figure 3.

Figure 1. Unsmoothed flow cytometry histogram of
antibody 18-106 with peripheral blood leucocytes.
The x-axis represents the different levels (channels)
of fluorescence intensity and y-axis represents the-
number of cell in a channel.

Figure 2. A family of 11 smoothed histograms of
antibody 18-106 with PBLs, produced by SiZer. Each
histogram corresponds to a particular smoothing
bandwidth. The x-axis represents fluorescence inten-
sity channels and y-axis represents the number of cell
in the channels (both normalized).
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Figure 3. SiZer map of antibody 18-106 with PBLs.
The x-axis represents the different smoothing levels
and the y-axis represents the fluorescence intensity
channels. The colors indicate that a histogram is: in-
creasing (blue), decreasing (red), neither (purple); or
that there is not enough sample to decide (grey).

Materials and Methods

Experimental animals
Randomly bred ewes were obtained and housed in
accordance with Harvard guidelines on the care and
use of experimental animals.

Test cell population
Peripheral blood leucocytes (PBLs) were collected
from the jugular veins of the ewes by venipuncture
under sterile conditions. Red blood cells were lysed
using ammonium chloride and leucocytes harvested
by centrifugation (14). All cell populations were
washed 3 times in phosphate-buffered saline (PBS),
and reacted with monoclonal antibodies as previously
described (15).

Test antibodies
All test antibodies were from murine hybridomas
produced over the last 15 years, directed against pro-
teins normally expressed by subpopulations of sheep
leucocytes. Antibodies were represented by the cell
clone name of the murine hybridoma, and included
86D, 18-106, ST-I, HJ-68, Al-107, 17-63, 2-87,2-
128, 14-24, 14-109, 7C-2/38-65, ST-8, 6-87, 6-99, 2-
128-1 (supernatant produced from a subclone of 2-
128), FW4, and ERD2/114. Three replicates were
generated for each antibody. The molecular "target"
of each of these antibodies is known and shown in
Table 1. Antibodies 86D and 18-106 recognize the
unique proteins TcR-y8 and CD3'y, which are indi-
vidual components of the same multi-protein com-
plex. Reactivity was detected by indirect immuno-

fluorescence, using FITC-conjugated goat-anti-
mouse Ig diluted 1:10 with PBS. For each histogram,
a total of 50,000 cells was analyzed on a Coulter XL
flow cytometer, and the fluorescence intensity was
presented on log-scale histograms containing a total
of 1,024 channels.

Table 1. Cell types, antibodies, and their respective
molecular "targets" in the sample set.

Cell Type Antibody Molecular
"Target"

PBL 86D TCR-y8

PBL 18-106 CD3y

PBL ST-1 CD5

PBL H1-68 CD5

PBL A1-107 CD5

PBL 2-128 CD21

PBL 14-24 CD21

PBL 14-109 CD21

PBL 7C-2/38-65 CD8

PBL ST-8 CD8

PBL 6-87 CD8

PBL 6-99 CD8

PBL 2-128-1 CD21

PBL FW4 CD29

PBL ERD2/114 CD29

IT Distance Calculation
We calculated the IT distance between histograms in
four different ways:

1. Using SiZer smoothed families

Each histogram was processed by SiZer into a family
of 11 histograms with varying degrees of smooth-
ness. When calculating the information distance, we
viewed each smoothed histogram as a string of num-
bers and concatenated the 11 smoothed histograms
into one string of numbers. The IT distance was then
calculated between the two concatenated smoothed
strings representing the two histograms.
2. Using SiZer maps

A SiZer map was generated for each histogram,
which indicates if a point on the histogram is statisti-
cally significantly increasing, decreasing, neither, or
that the direction cannot be determined because of
the sample size. This information was originally
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provided as a 2-dimensional array and coded in 4
numbers. For IT distance calculation, we represented
the map as a string of numbers.

3. Using histograms smoothed with a Savitzky-Golay
filter

For comparison purpose, we smoothed the histo-
grams using a polynomial filter: the Savitzky-Golay
(SG) filter as in our previous work (9). A polynomial
order of 3 and a frame size of 41 were used, and IT
distance was calculated for the smoothed histograms.

4. Using unsmoothed histograms

The information distance between unsmoothed histo-
grams was also calculated as a control to evaluate the
various smoothing methods.

Evaluation
In the PBL data set, there are 45 different histograms
and 936 possible pairs of different histograms.
Among them, 144 pairs recognize the same cell sur-
face complexes and 792 pairs do not. The IT dis-
tances were calculated for all 936 pairs of histograms
using the four methods described above. We con-
structed receiver operator characteristic (ROC)
curves for the four methods and compared areas un-
der the ROC (AROC) to see which methods are more
effective in detecting the biological similarity under-
lying the histograms

Results
The ROC curves resulting from the four different
methods differ but not dramatically (Figure 4). The
AROC was the largest using the SiZer map and the
smallest using the SG filter. The difference between
using the SiZer map and using unsmoothed histogram
was statistically significant (p<0.01), while the dif-
ferences among the other three methods were not
statistically significant (p>0.05).

Table 2. The AROCs and their respective 95% con-
fidence intervals of the four ways we calculated in-
formation distances between histograms: using SiZer
family, SiZer map, SG filter, and unsmoothed histo-
gram.

111
Curve
SiZer family
SiZer map
SG filter
Unsmoothed

_Area
_0.79
0.85

_0.77
_0.78

95% CI ofArea
0.75 to 0.84
0.82 to 0.89
0.72 to 0.81
0.73 to 0.82

Figure 4. The ROC curves of the four methods by
which we calculated information distances between
histograms: using SiZer family, SiZer map, SG filter,
and unsmoothed histogram.

Discussion
In this study, we experimented with combining a
smoothing technique, SiZer, with information theory
to analyze flow cytometry histograms for the purpose
of identifying antibodies that recognize the same
molecular "targets". Our results showed that when
using SiZer maps as surrogates for the unsmoothed
histograms to calculate information distance, we
could better distinguish the histograms of antibodies
with similar binding patterns from other histograms
(p<O.Ol).
Although the AROC differences between using SiZer
maps and other methods were less than 10%, there is
significant gain in reducing computational complex-
ity when using SiZer maps. The complexity of cal-
culating information distance between two informa-
tion sources or streams of symbols is of the order of
the square of the size of the number of unique sym-
bols in the sources (O(n2), n: the number of unique
symbols in the sources.) In our calculation, we
viewed cytometry histograms as strings of numerical
symbols, which are the cell counts within florescence
intensity channels. In a typical unsmoothed or
smoothed histogram, there can be dozens to hundreds
of different numbers/symbols. In a SiZer map, how-
ever, there are only 4 symbols indicating whether the
curve at a particular point is rising, declining, flat or
of undetermined direction (due to small sample size).
When analyzing large data sets, this reduction in n
may result in a major reduction in computing time.

Comparing with the method we previously reported,
the use of SiZer required much less setting of
smoothing parameters. It also allowed more objective
analysis of the histogram data. Some cytometry his-
tograms are "noisier" than others, as a result of
which, when using a polynomial filter, we may need
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to adjust certain parameters to achieve a desirable
smooth effect. Since SiZer performs cross-bandwidth
smoothing, no such adjusting is necessary.

The SiZer map focused on a particular feature of a
histogram: the first-derivative characteristic. Biolo-
gists empirically know that this is the most important
and biologically relevant feature. A histogram does
have other features, yet not all features are biologi-
cally relevant. Analyzing data in the feature space
allows us to separate them and to focus on the rele-
vant ones.

In our study, only one data set was used, so the gen-
eralizability of our results has yet to be validated.
This data set is relatively "clean", compared with
some other histograms we have seen. With a data set
that has more noise, the results may differ.

We would like to point out that histogram compari-
son cannot definitively determine the identity of tar-
get molecules. Related molecules may have different
antigen density distributions within the cell popula-
tion being studied. Similarly, it is also possible for
some unrelated molecules to have density distribu-
tions (histogram morphology) for some cell popu-
laitons. Comparisons utilizing multiple cell types,
however, are likely to improve the resolution of this
method.

We plan to explore more features of flow cytometry
histograms in the future, since they might provide
additional biologically relevant information. We are
also in the process of obtaining larger and more di-
verse data sets for validation and future studies.

Conclusion
We studied a new approach that combines a smooth-
ing technique, SiZer, with information theory to
analyze flow cytometry histograms for the purpose of
identifying antibodies that recognize the same mo-
lecular "targets". The results showed that this ap-
proach could improve performance and reduce com-
putational complexity over the use of information
theory with a polynomial filter.
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