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Abstract

In intensive care physiological variables of the criti-
cally ill are measured and recorded in short time in-
tervals. The proper extraction and interpretation of the
information contained in this flood of information can
hardly be done by experience alone. Intelligent alarm
systems are needed to provide suitable bedside deci-
sion support. So far there is no commonly accepted
standard for detecting the actual clinical state from
the patient record. We use the statistical methodology
of graphical models based on partial correlations for
detecting time-varying relationships between
physiological variables. Graphical models provide
information on the relationships among physiological
variables that is helpful e.g. for variable selection.
Separate analyses for different pathophysiological
states show that distinct clinical states are character-
ized by distinct partial correlation structures. Hence,
this technique can provide new insights into physio-
logical mechanisms.

Introduction

In intensive care detection of critical states and of in-
tervention effects is of great importance for suitable
bedside decision support. Clinical information sys-
tems can acquire and store physiological variables
and device parameters online at least every minute. A
physician can be confronted with more than 200 vari-
ables of each patient during his morning round' . In
view of the high dimension of the data and the time
critical situations physicians are steadily confronted
with, severe problems arise from the natural limita-
tions of human beings. It is difficult to develop a
systematic response to problems involving more than
seven variables2, and human beings are not able to
judge the degee of relatedness between more than
two variables. Thus, besides the aim of detecting
clinical states, reducing the number of variables is a
further task. Typically we select some ofthe variables
using our personal experience. Of course, this is sub-
jective, and it is important to know which and how
much information we neglect in the reasoning process
based on such a selection. Hence, we need informa-
tion on the relationships between the variables.
Graphical interaction models have become an impor-
tant tool for investigating and modeling relationships
within multivariate data. These models allow a simple
and helpful graphical visualization, where the vari-

ables are represented by vertices and the relationships
between the variables are illustrated by edges. Sepa-
rations in the graph provide information on direct and
indirect relationships in the data 4,5,6,7.

Methods

Data set. On the surgical intensive care unit of the
Community Hospital Dortmund, a tertiary referral
center, online monitoring data was acquired from 25
consecutive critically ill patients (9 female, 16 male,
mean age 66 years) with extended hemodynamic
monitoring requiring pulmonary artery catheteriza-
tion, in one minute intervals with a standard clinical
information system. These data were transferred into
a secondary SQL database and exported into standard
statistical software for further analysis. A total
129943 sets of observations were analyzed.
In the analysis we concentrated on the variables heart
rate HR, arterial diastolic pressure APD, arterial sys-
tolic pressure APS, arterial mean pressure APM,
pulmonary artery diastolic pressure PAPD, pulmo-
nary artery systolic pressure PAPS, pulmonary artery
mean pressure PAPM, central venous pressure CVP,
blood temperature Temp and pulsoximetry SpO2.
These variables are important for the detection of
critical, possibly life-threatening situations as well as
for intervention effects, and they provide information
on the clinical status of the patient.
We make use of a given classification of observation
periods for each patient into different clinical states to
evaluate whether these states can be characterized by
different partial correlation structures.

Graphical interaction models. Between multiple
variables usually a multitude of relationships exists,
but many ofthem are indirect, i.e. they are induced by
others. Distinguishing between direct and induced
relationships among the observed variables and pri-
mary and secondary consequences of medical inter-
ventions is difficult from experience alone. Statistical
analysis in form of graphical models helps to reveal
the essential relationships which are not induced by
others. Visualization of a graphical model is accom-
plished by a graph: We draw a circle for each variable
and connect each pair of variables by an edge when-
ever the relation between these variables persists after
conditioning on all the other variables. In this way the
indirect character of some marginal relationships
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which are induced by underlying conditional depend-
encies can be illustrated. Indirect relationships can
result from successively ordered direct influences.
We concentrate on undirected graphs where undi-
rected edges (simple lines) represent symmetrical in-
teractions between the variables. A medical example
for the use of directed graphs where directed edges
iarrows) represent directed influences can be found in

In the following we compare "empirical relation-
ships" found by statistical analysis to "physiological
relationships" based on medical knowledge. Physio-
logical relationships mean that a change in one
physiological variable leads to a change in another
physiological variable. For instance, systolic, dia-
stolic and mean blood pressures are different repre-
sentations of the same physiological process, i.e. a
pulsatile blood pressure. Therefore, an increase of
systolic blood pressure close to always leads to an
increase in mean blood pressure. This is something
that can directly be deducted from physiological
knowledge. In other situations the direction of the re-
lation may change in different disease states. For in-
stance, during volume depletion an increase of CVP
and PAPM will typically lead to an increase in APM
and a decrease in HR, while in congestive heart fail-
ure under high doses of inotropes an increase in HR
may typically lead to an increase in APM. Hence the
term physiological relationship does not imply any
causal, linear or non-linear relation, nor a direction
for it.
From a statistical point of view, measurements of
physiological variables observed in short time inter-
vals form multivariate time series as there may be in-
teractions not only between the measurements ob-
served at the same time point, but at short time lags,
too. Therefore we use partial correlation graphs for
multivariate time series9 '1 l1. Here, linear relation-
ships between every pair of variables at all time lags
are investigated controlling for the linear effects of
the other variables at all time lags, i.e. after all linear
effects of the other series have been removed'2. These
relationships are called partial correlations and can be
expressed equivalently in the frequency domain using
the partial spectral coherence, that measures the par-
tial correlations at all frequencies. Hence, partial cor-
relation graphs allow to detect relationships in form
of partial linear, possibly time-lagged dependencies
between the variables of a multivariate time series.
Moreover, under some weak regularity assumptions
we can interpret the separations found in a graphical
model.
For estimation of the partial spectral coherences from
multivariate time series representing physiological
variables we use the program "Spectrum" developed
by Dahlhaus and Eichler'3. Based on the estimated
partial spectral coherence a decision has to be made
on whether the true partial spectral coherence may be

identical to zero because sampling variability always
causes estimates to be distinct from zero. Simple
testing results in a crude "yes-no" statement, while it
is well-known that physiological relationships may
differ in strength. Hence, we decide to measure the
importance of the edges in a simple way. We decide
to classify the relationships into high, medium, low
and zero partial correlation on the basis of the area
under the estimated partial spectral coherence. Be-
tween 366 and 10929 observations could be used for
the estimation of the partial spectral coherences for
each patient. Using the clinical data we now test
whether graphical interaction models can reliably
identify known strong relationships, e.g. between
systolic, mean and diastolic blood pressures, and
known likely relationships, e.g. between HR, PAP,
and CVP.

Results

A first step for online monitoring is to find a manage-
able number of representative variables. In clinical
practice, we typically select some of the observed
variables and base our decisions on them. However,
to get reliable and interpretable results without sub-
stantial loss of information we need to understand the
relationships between the variables. In order to ex-
plore the use of graphical models for this task, we
analyzed the relationships between all vital signs
mentioned above. Since we want to get a general im-
pression we estimated the partial spectral coherences
from the full data set for each patient.
As expected, for all patients strong relationships
could be identified between the arterial pressures
(APS, APD and APM), between the pulmonary artery
pressures (PAPS, PAPD, PAPM) as well as between
heart rate and pulse, the strength of the relation be-
tween the systolic and the diastolic pressure being
always smaller than between each of these and the
corresponding mean pressure. These relationships
measured by the area below the partial spectral coher-
ences were found to be much stronger than all other
relationships. Hence, we can identify groups of
strongly related variables from an analysis of the full
data sets. Further relationships could be identified for
some patients, e.g. between arterial pressures and
heart rate, and between pulmonary artery pressures
and central venous pressure. Figure 1 shows a typical
example of a partial correlation graph for the hemo-
dynamic system resulting from the analysis of the
data measured for one patient.
A partitioning of the variables into strongly related
subgroups as given above can be used to reduce the
number of variables which have to be considered for
online monitoring, i.e. for variable selection. The ab-
sence of a relation between two variables VI and V2
means that the observations of V2 do not add any-
thing to explain the course of variable VI (and vice
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versa) given the measurements of the remaining vari-
ables. On the other hand, if a variable has strong rela-
tionships to several other variables it provides a lot of
information on these variables. Selecting APM from
the strongly related subgroup of arterial pressures and
neglecting APD and APSYS for clinical monitoring is
therefore meaningful from a statistical point of view.
The same applies to pulmonary artery pressures.
Figure 1: Partial correlation graph. Different line
types depict different strength of correlation.
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In the previous analysis we inspected the relafion-
ships using all variables. This may hide some rela-
fionships when there are groups of variables which
are only slightly different representations of the sa'me
physiological process. For instance, APM is a trans-
form of APS and APD, and PAPM is a transform of
PAPS and PAPD. When analyzing whether there is a
relaMionship between PAPM and APM, we subtract
the linear influences of all other variables including
APD, APS, PAPD and PAPS. After eliPination of
the linear effects of these variables, the rernaining
variability for both APM and PAPM is very low. This
possibly masks some weaker relafionships. In conse-
quence, systolic and diastolic pressures are dropped
in the following, which is e inseewith medical rea-
soning as menlioned above. In this way a set of'ir-
portant variables' consisting of HR, APM, PAPM,
CVP, SP02 and Temp is retained.
For these variables all observations without fissing
values are included in the analysis for each patient.
TableI sununarizes the results. It should be noted
that the classifications of the relationships are not in-
dependent for the same patient. The strongest partial
cosielayions are observed between central venous and
pulmonary artery pressures. Strong partial correla-
tions can also be detected between these intrathoracic
pressures and mean arterial pressure, and between
heart rate and mean arterial and pulmonary arterial

pressures. The weakest partial coherences are be-
tween body temperature and all other vital signs.

Table 1: Summary of the classifications based on the
partial spectral coherences (25 patients).

High Medium Low Zero
HR-APM 3 3 13 6
HR-PAPM 1 3 11 10
HR-CVP 0 2 13 10
HR-SP02 1 1 7 16
HR-Temp 0 0 14 11
APM-PAPM 2 10 13 0

APM-CVP 0 0 17 8

APM-SP02 0 3 12 10

APM-Temp 0 1 12 12
PAPM-CVP 14 9 2 0

PAPM-SpO2 0 1 7 17

PAPM-Temp 0 1 14 10

CVP-SpO2 0 2 11 12

CVP-Tenp 0 3 7 15

SpO2-Temp 0 0 8 17

Distinct clinical states such as pulmonary hyperten-
sion, septic shock, congestive heart failure and vaso-
pressor support are accompanied by different patho-
physiological responses of the circulatory system.
These changes may be supposed to result in differ-
ences in the interactions between the vital signs, too.
For instance, pulmonary hypertension can be charac-
terized by an elevated PAPM. Due to the increased
right ventricular pressures we expect strong interac-
tions between CVP and PAPM. On the other hand,
the increased pulmonary vascular resistance may at-
tenuate the interactions between PAPM and APM as
changes in PAPM will have a less than normal effect
on left ventricular preload. In consequence, the ex-
pected associations of vital signs show a different
picture for the state of pulmonary hypertension than
the relationships under normal physiological condi-
tions.
In the following we investigate, whether graphical
correlation models can detect differences in the status
of the circulatory system. Therefore, for each patient
the predominant pathophysiological state is deter-
mined for every time point from the medical record.
Then the time series are partitioned into segments of
at least 300 observations during which the patient is
in the same clinical state. The partial spectral coher-
ences between the vital signs are estimated separately
for each of these segments. Tables 2 to 5 summarze
the results for the distinct clinical states.
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Although the number of samples is small, there are
obvious differences between the partial correlation
patterns for distinct clinical states. Most of these dif-
ferences can be explained by known physiological
mechanisms. While for most states strong partial cor-
relations can be found between heart rate and blood
pressures as well as between intrathoracic and arterial
pressures, the status of pulmonary hypertension is
predominantly associated with strong partial correla-
tions between the intrathoracic pressures only.

Table 2: Summary of the classifications for conges-
tive heart failure (15 se ments).

|_High Medium Low Zero
HR-APM 0 5 8 2

HR-PAPM 0 2 7 6
HR-CVP 0 1 4 10
HR-SP02 0 0 8 7
HR-Temp O 2 6 7
APM-PAPM 3 11 1 0

APM-CVP 0 4 5 6
APM-SP02 0 0 10 5
APM-Temp 0 1 6 8
PAPM-CVP 4 10 1 0

PAPM-SpO2 0 1 7 7

PAPM-Temp 0 1 5 9
CVP-SpO2 0 2 3 10
CVP-Tem O 0 7 8
SpO2-Temp 0 3 6 6

Table 3: Summary of the classifications for pulmo-
nary hypertension (17 segments).

|High | Medium Low Zero
HR-APM 0 7 8 2
HR-PAPM 0 1 11 5

HR-CVP 0 2 9 6
HR-SP02 0 0 5 12

HR-Temwp 0 0 9 8
APM-PAPM 0 7 9 1
APM-CVP 0 0 10 7

APM-SP02 0 2 8 7

APM-Temp 0 1 9 7

PAPM-CVP 7 9 1 0

PAPM-SpO2 0 0 6 11

PAPM-Temp 0 1 8 8

CVP-SpO2 0 1 11 5

CVP-Te 0 1 7 9

SpO2-Temp 0 0 5 12

Table 4: Summary of the classifications for septic
shock (19 segm nts).

High Medium Low Zero

HR-APM 3 6 6 4

HR-PAPM 0 1 11 7
HR-CVP 0 2 10 7

HR-SP02 0 3 8 8

HR-Temp 0 2 9 8

APM-PAPM 0 8 7 4

APM-CVP 0 2 10 7
APM-SP02 0 1 10 8
APM-Temp 0 0 12 7
PAPM-CVP 9 7 3 0

PAPM-SpO2 0 2 10 7

PAPM-Temp 0 2 10 7

CVP-SpO2 0 2 9 8

CVP-Temp 0 2 11 6

SpO2-Temp 0 2 .13 4

Table 5: Summary of the classifications for vasopres-
sor support (6 segments).

High Medium Low Zero
HR-APM 3 3 0 0
HR-PAPM 1 1 2 2

HR-CVP 1 3 2 0

HR-SP02 1 3 2 0

HR-Temp 0 0 4 2

APM-PAPM 4 1 1 0

APM-CVP 2 1 2 1

APM-SP02 0 4 2 0

APM-Temp 0 0 3 3
PAPM-CVP 2 2 1 1

PAPM-SpO2 0 1 2 3

PAPM-Temp 0 2 2 2

CVP-SpO2 0 2 2 2

CVP-Temp 0 0 2 4

SpO2-Temp 0 1 2 3

For the clinical status of congestive heart failure we
find high partial correlations between APM and
PAPM. This can be explained by a failure of the left
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ventricle, where the forward failure of the left ventri-
cle leads to a decrease in APM, and the concurrent
backward failure to an increase in PAPM. For the
status of vasopressor support there are strong partial
correlations between APM and PAPM, too. But in
comparison to the previous states there are also
higher partial correlations between HR and APM.
This is due to the therapy which inhibits the normal
autoregulation of the circulatory system. Hence, there
are strong positive interactions between APM and
PAPM, while the influence of CVP on the other vari-
ables is reduced.

Conclusion

We found that graphical partial correlation analysis
based on partial spectral coherences can reliably de-
tect known physiological relationships between he-
modynamic variables. The insights gained by this
method are useful to improve online monitoring of
vital signs since it allows an improved application of
methods for dimension reduction. One possibility is
to select suitable subsets of important variables from
the graphs. Alternatively, we can deduce information
on the partial correlation structure from the partial
correlation graph to enhance methods such as princi-
pal component analysis or factor analysis for time se-
ries, which are also accomplished via spectral analy-
sis 2. Multi-block principal component analysis has
been suggested to monitor high-dimensional time se-
ries 4. Here, the variables are organized in subsets to
which principal component analysis is applied sepa-
rately. Such subsets of closely related variables can
also be identfied from graphical models for historic
data. In our study the blocks obtained from the data
analysis agree with the blocks obtained from medical
knowledge. Therefore, we expect to gain reliable in-
sights when applying this methodology to time series
describing other variables, for which we have less
medical knowledge so far. Special partial correlation
patterns may even represent specific pathophysiologi-
cal states in the critically ill. This can be useful for
reaching deeper insights into the causes of clinical
complications as well as for detecting such complica-
tions by additional data analysis. In view of the high
sampling rates of modem equipment this method
could even be applied to detect these complications
online in the time critical situations on the intensive
care unit. Further studies are projected to validate
these preliminary findings with larger groups of pa-
tients.
In summary, graphical partial correlation analysis
seems to support the analysis of correlations in multi-
variate physiological time series. As the final statisti-
cal analysis results in simple graphs, interpretation of
the partial correlation patterns can be accomplished
by physicians without further statistical knowledge.
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