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ABSTRACT A method is presented for computing the
average solution of problems that are too complicated for
adequate resolution, but where information about the statis-
tics of the solution is available. The method involves comput-
ing average derivatives by interpolation based on linear re-
gression, and an updating of a measure constrained by the
available crude information. Examples are given.

Outline of Goal and Method

There are many problems in science whose solution is de-
scribed by a set of differential equations, but where the
solution of these equations is so complicated that it cannot be
found in practice, even numerically, because it cannot be
resolved properly. An accurate numerical solution requires
that the problem be well resolved, i.e., that enough variables
(“degrees of freedom”) be retained in the calculation to
represent all relevant features of the solution. Well known
examples where good resolution cannot be achieved in practice
include turbulence and various problems in statistical physics
and in economics. We consider in the present paper what one
should do in underresolved problems, i.e., problems where
good resolution has not been achieved.

There exists a large literature on the solution of underre-
solved problems, describing a wide variety of problem-specific
tools; for example, in the case of turbulence there are modeling
methods and methods for “large-eddy simulation” (1). All
these methods involve some assumptions about the relation
between what one can effectively compute and the “invisible”
degrees of freedom that cannot be properly represented.
Obviously, nothing can be done without some information in
addition to what can be computed. In the present paper we
assume that the additional information consists of explicit
information about a measure preserved by the differential
equations. In many problems of interest this kind of informa-
tion is available, but it does not seem to have been fruitfully
utilized previously. The key special case of turbulence will be
treated in detail elsewhere, where it will be shown that it falls
within the class of problems to which our methods apply.

The situation of interest is as follows: Consider a differential
equation of the form

ut = R(u)7 [1]
where ¢ is the time and R(u) = R(u, du/dx, . ..) is a (generally
nonlinear) function of its arguments. Assume in addition that
a measure on the space of solutions of Eq. 1 is invariant under
the flow induced by Eq. 1, and that we know what it is. We
denote averages with respect to this measure by angle brackets:
(*). We further assume that we cannot resolve u, but that we can
find some information about u at a small number of mesh
points; the information could consist of point values but it is
more reasonable physically and mathematically to assume that
what one has is “filtered” values, as would be indeed produced
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by a real physical measurement. We thus assume that what we
have at the mesh points are the values i, defined by:

u,(t) = f G(x —x)u(x, t) dx, [2]

where « is an index on the mesh. The kernel G can represent,
for example, spatial averaging. The coarse grid data in Eq. 2
specify, at every moment in time, a subset of functions (the
functions that are consistent with these observations). We
denote averages over this restricted subset by angle brackets
with a subscript corresponding to the observations: (+)z. We call
the measure on the restricted subset the “constrained mea-
sure.” If the problem is underresolved, the measure is carried
by a nontrivial set of functions. It is important to note that the
constrained measure is not invariant; indeed, if the invariant
measure we start with is ergodic, the constrained measure
tends in time to the unconstrained measure; for example, if we
demanded that initially all the functions assumed given values
at the grid points, there is no reason to believe that the
solutions of the differential equations that evolve from these
data would still take on the very same values at the mesh points
at later times.

Our goal is to calculate averages of the solutions with respect
to the constrained measure; these averages represent what one
can calculate on the crude grid, properly averaged over the
“invisible” degrees of freedom that cannot be represented on
that grid. Given the constrained measure and the filtered
values, the mean and the moments of the solution can be found
at all points by interpolation (equivalent to linear regression,
ref. 2), and therefore the mean derivatives of these quantities
at the computational points can be found, for all practical
purposes without error. The remaining problem is to charac-
terize the evolution of the constrained measure so that the
mean solution (and any moments that may be needed) can be
advanced in time. Our assumption is that the constrained
measure remains the invariant measure constrained by n
filters, where n is the number of grid points. The filters
therefore have to change in time. The formulas below will
allow us to relate quantities whose evolution can be calculated
to the parameters that determine the evolving filters. In the
present paper we shall simplify the problem of finding the
evolving filters by assuming that the filters are determined by
the evolution of the mean solution (and not, for example, by
the evolution of the higher moments of the solutions). This is
equivalent to assuming that the equation

dii,
It (1) = G(x —x)R(u) dx

is a good approximation to the real evolution of the u,(¢) given
by Egs. 1 and 2. Of course, the validity of this assumption
depends in particular on a good choice of filters G. In the
present paper, we assume furthermore that the measure is
either Gaussian or approximately Gaussian, in a sense speci-
fied below.

The two keys to success are: (i) averaging with respect to the
right constrained measure and (if) updating the constraints as
the solutions evolve. Ingredient (i) was already used numeri-

[3]
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cally in ref. 3. A number of interesting attempts have been
made over the years to “fill in” data from coarse grids in
difficult computations so as to enhance accuracy without
refining the grid (see, e.g., refs. 4 and 5), but without our two
key ingredients the usefulness of the earlier methods is nec-
essarily limited.

We proceed as follows: First we present some elementary
but important results on constrained Gaussian probabilities;
then we explain and apply our scheme in the special cases of
linear and nonlinear Schrodinger equations. Note that in the
nonlinear case the invariant measure is not Gaussian. We also
explain why these are significant test models. Because these
model equations have some simplifying features, we also
sketch a more general methodology.

Gaussian Distributions: Conditional Expectation Under
Affine Constraints

We start by describing how to calculate expectation values of
functions of normally distributed variables when the variables
satisfy constraints of the affine form. Letu = (uy, ..., u,)" be
a real vector of jointly normal random variables; it has a
probability density F(u) of the form,

Py <uy=s,+dsq, ..

:F(S) dsl...dSN

~>sn<un53n+dsn)

1
=z eXp(_ Es,-aijsj + bisi> dsl e dSN, [4]

where Z is the appropriate normalization factor, repeated
indices imply summation, the n X n matrix A with entries a;;
is symmetric, and its inverse 47!, assumed to exist, is the
pairwise covariance matrix whose elements are

ai;I = Covl[u,, uj] = <uiuj> - <ui><uj>7 [5]

where the brackets denote averaging with respect to the
probability density, and the vector b with components b; is
related to the pointwise expectation values by

The distribution is fully determined by the » means and by the
ln(n + 1) independent elements of the covariance matrix;
therefore, all expectation values of observables (O(u)) can be
expressed in terms of these parameters. In particular, all
higher-order moments are given by Wick’s theorem (e.g., ref.
6).

Next, assume that the random vector u satisfies a set of affine
constraints of the form,

oilli = Uy a=1,...,m<n, [7]
where the index « enumerates the constraints; the matrix G,
whose entries are g,, is the discrete analog of the continuous
kernel G(-) introduced in Eq. 2. To distinguish between the
vector space of random variables, (u1, . . ., u,), and the vector
space of constraints, (i1, . . ., U,), we use Roman and Greek
letter indices, respectively.

Our goal is to calculate conditional expectation values, i.e.,
averages over the functions that satisfy the constraints; for-
mally,

(O(u)); = S AL duy)O(u)F(u) 17—, B(gajuj — i)
b J (L duy)F(u) 117, S(gajuj —ily)
where the left-hand side introduces a notation for a con-

strained average and F(u) is the properly normalized proba-
bility density (Eq. 4). We shall use the following three lemmas:

(8]
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LEMMA 1. The conditional expectation of the variable u; obeys
an affine relation,

<ui>ﬁ = qiaﬁa + Ci, [9]

where the n X m matrix Q with entries q;,, and the n-vector ¢ with
entries c; are

0 =("'GNGA'GN)!
c=A"D - (A'GHGAT'GT)"(GA™ D).

[10]

LEMMA 2. The conditional covariance matrix has entries
Cov[u;, uj]ﬁ = <uiuj>ﬁ - <ui>ﬁ<uj>ﬁ
=a;' = [A'GNGAT'GN)(GA™H];. [11]

LEMMA 3. Wick’s theorem holds for constrained expectations,
namely,

<H (1, — <”"">"‘)>u =

=1

{0 Podd
[12]

Zperm Covlu, uy Jg - - - Covlwy, ,u;ls  Peven’

where the summation is over all possible pairings of the P
coordinates that are in the list.

Lemmas 1 and 2 can be deduced from standard linear
regression theory. Lemma 3 can be proved by noting that a
delta function is the limit of a narrow Gaussian function. As a
result, the projection of a Gaussian measure on the subspace
of functions that satisfy the constraints can be viewed as
approximately Gaussian, hence satisfying Wick’s theorem; an
appropriate limit can then be taken.

A Linear Schrodinger Equation

We demonstrate our method by applying it to two equations of
Schrodinger type. We chose these problems because we feel
that a nonlinear Schrodinger equation is a suitable one-
dimensional cartoon of the Euler/Navier-Stokes problem that
we are most interested in: it is Hamiltonian and nonlinear. The
more popular cartoon, the Burgers equation, will be analyzed
elsewhwere; its peculiar properties (dominance of the solution
by shocks and the need for a driving noise term to obtain an
invariant measure) introduce added complications whose anal-
ysis does not fit within a short introductory paper.

We start with a linear Schrodinger equation written as a pair
of real equations:

Pi= —qu t+ 1,
, [13]
(’It = +pxx - IJ" pa

where p, g : [0, 27) X [0, ©) — R, w is a given constant, and
periodic boundary conditions are assumed. This system of
equations can be derived from a Hamiltonian,

1
H[paq]zzf

0

2

dx[(p)* + (q.)* + 2> + ¢»], [14]

where p(x, t) and g(x, t) are the canonically conjugate vari-
ables.

This system has an invariant measure, the canonical mea-
sure, depending on a temperature that we set equal to one, so
that the invariant measure has the density distribution F[p, g]
= exp(—H]|p, q]). The quadratic form of the Hamiltonian
makes the canonical distribution Gaussian, completely speci-
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fied by the average functions (p(x)) and (g(x)), which are zero
by symmetry, and by the covariance functions,

o ik(x—y)
Covlp(x). p)] = Covlg). a0)] = 3 1o s

[15]
Covl[p(x), q(y)] = Cov[g(x), p(y)]1 = 0.

The measure is absolutely continuous with respect to a Wiener
measure, and the sample functions in this ensemble are
continuous but not differentiable with probability one, so that
the evolution of a single solution in time is hard to calculate.

We pick initial data from the invariant ensemble, but then
assume that measurement has revealed, at each of m points,
the values of two sets of filtered quantities that can be though
of as local averages of the solution:

2
Da(t) = f dxp(x, )G(x — x,),
’ [16]

2m
éa(t) = f dXQ(xa t)G(x _xa)r

0

where a = 1, ..., m, x, = 27ma/m are the points about which
the averages are evaluated, and the function G(-) is a Gaussian
filter (i.e., a function of Gaussian shape, not a random variable)
of width o. Once we know the values of these filtered values,
the constrained average is defined. We wish of course to
evaluate the future means of the solutions in the ensemble that
has been constrained in this way, without calculating any
particular solutions and using only the information at the m
given points.

Given the values of the filters, formulas (Eqgs. 9 and 11) allow
us to find the mean of the solution in the ensemble conditioned
by these filtered values; a short manipulation yields

(q())p.a = Ta®)Sap'Gp, [17]

where

2
ro(x) = f dy Covlg(x), g()IG(y — x.)
0

[18]
2
Sap = f dyr (y)G(y — xB)>

0

and the s;é are the «, B elements of the matrix that is the
inverse of the matrix whose entries are the sqg. The result of
this procedure is shown in Fig. 1, where we plot the mean of
the functions that satisfy the constraints that have been
imposed at a set of 10 points. The width of the filtering kernel
is 0 = 2m/m (the distance between the grid points). Note that
we know exactly the mean of the functions in the constrained
ensemble, and we know it everywhere.

In the present linear problem, if one knows the mean of the
functions in the constrained ensemble, one can readily eval-
uate the mean time derivative at the grid points by applying the
differential operator to the mean function. However, one
cannot integrate this mean derivative in time and expect to
obtain the mean future, because at a later time the ensemble
that will have evolved from the initial constrained ensemble
will not be the same as the initial ensemble. The assumption
in the whole approach is that the ensemble prepared initially
by placing conditions (the values of the filters) on the functions
sampled from the invariant ensemble evolves into an ensemble
that can still be represented as a subset of the ensemble that
carries the invariant measure, with a measure conditioned by

Proc. Natl. Acad. Sci. USA 95 (1998)

0.2
0

Fi6. 1. The interpolating function. Given 10 constraints, p, (open
circles), the mean of the functions in the constrained ensemble is
reconstructed (solid line).

new filters G and filtered values p and q. Here we are making
the further assumption that it is sufficient to advance in time
only mean values of p and q. Hence,

dp. <d13a> N
a =\ ar = - ) dxG(x — x,)

p-q

2
X {ﬁ <61(x)>f),q - M2<Q(x)>f,,q] . [19]

Using Eqgs. 17 and 15 we find the more detailed expression:

dp. s
<m>"=—%w@%7 [20]
p.a
with
o e ik(xp—xy)
dop = E ekt hg, = E ez 237k2(r2~ [21]
k=—oo ke kT

An analogous equation with opposite sign is obtained for the
mean time derivative of the vector q. We now have a closed
system of equations for the estimation of the mean values of
p and q in the future. We emphasize that the last assumption
whereby it is sufficient to advance in time the mean values of
p and q is nonessential and unlikely to be true in general (see
the concluding section). The domain of validity of the more
general assumption remains to be determined.

In Fig. 2 we plot the mean evolution of five filtered values
Polt) for randomly selected initial values of p,(0) and g.(0).
The filtering function G(-) has a width (defined above) equal
to the distance between mesh points. In this linear problem the
evolution of the mean of the filtered values can be calculated
exactly simply by using Green’s function for the problem to
advance the mean solution and hence advance the values of the
filters. In Fig. 2 the results of an exact calculation of the filtered
values are represented by open circles, and the results obtained
by integrating the set of 10 ordinary differential equations (Eq.
20) are represented by dashed lines. The two results are
practically indistinguishable.

A Nonlinear Hamiltonian System

We now consider a nonlinear generalization of the method
demonstrated in the preceding section. We want to exhibit the
power of our method by comparing the solutions that it yields
with exact solutions; in the nonlinear case, exact solutions of
problems with random data are hard to find, and we resort to
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F1G.2. Mean evolution of the vector p for m = 5. The initial values
of the coarse variables were chosen randomly. The open circles
represent the exact solution, whereas the dashed lines were obtained
by integrating equations 20.

a stratagem. Even though our method applies to the full nonlinear
partial differential equation, we study a finite dimensional system
of 2n ordinary differential equations that is formally an approx-
imation of a nonlinear Schrédinger equation:

dg; i-1 = 2p; + p;i

Tz:_%W?
i=1,...,n, [22]

dpi qi-1—2qi t qiv1

d[_ A2 —4q;

where A = 1/n is a mesh size. The approximation is formal
because the solutions of the differential equation are not
smooth enough to ensure convergence. We consider a periodic
system so that go = ¢, and g,+1 = ¢1 (with analogous
conditions on p). In the calculations below, n = 16.

The Hamiltonian of this system is

_1 S| (Giv —q,->2 (Pi+1 _Pi>2 1 4 4

i=

[23]

Starting from this discrete system, we shall use a discrete
version of the method above to deduce equations for a reduced
set of variables, which will reproduce the mean solution of the
full set of equations, and we shall be able to show explicitly that
the algorithm does what it should.

As in the linear case, we assume that the canonical distri-
bution has a temperature equal to one. Note that now the
Hamiltonian is not a quadratic function and the invariant
measure is not Gaussian. The lemmas of section 2 cannot be
used without approximation. The equilibrium distribution
P(p, q) = e Hral js approximated by a Gaussian distribution,
chosen so as to yield the same means and covariances as the
original distribution. Symmetry considerations imply that (p;)
= (p;) = (pig;) = 0. Translation and reflection invariance, on
the other hand, imply that {(p;p;) = {(qiq;) = fii—j- Thus, the
approximate distribution depends on a single vector f;—; that
can be calculated, for example, by a straightforward Monte
Carlo simulation.

We define a subset of 2m coarse variables (m << n) that
represent local averages of the vectors p and q:

Po=8uiPi and q. = gadi [24]

where the index @« = 1, ..., m enumerates the coarse vari-
ables. We consider the case m = 2; thus, we replace a set of
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F1G. 3. Mean evolution of the coarse variables, p1 (&), p2 (O), g1
(%), and g> (O). The symbols represent the mean evolution of an
ensemble of initial conditions generated by means of a Monte Carlo
algorithm. The solid lines are the solutions obtained by integrating the
mean time derivatives (Eq. 28). The two graphs show different time
intervals: (a) t = 0 — 0.2; (b) t = 0 — 10.

32 variables by a reduced set of 4 variables. The filtering matrix
G with entries go; has a Gaussian profile:

=B (xi - Xa)z
8ai = exp 0_2 >

[25]

where B is a normalization factor, x; = i/n, X, = a/m, and o
is the width of the filter. In the calculations below we took o
= (.25, i.e., the filter averages over an interval of the order of
the distance between the coarse data points.

Given the constrained distribution, the mean time derivative
of the coarse variables can be calculated. For example,

dp, 1 5
al - Pgm‘[@i—ﬁp,q = 29055 T Qi+ 0pal — 88 b a
p.q 126]
The first term on the right-hand side can readily be calculated
by the interpolation formula (Lemma 1). For the second
term, which involves the expected value of a cubic function of

qi, we use the Gaussian approximation and apply Wick’s
theorem,

<q}3>p,q = 3<¢Zfz>p,q<qz'>p,q - 2<qz‘>%,¢ [27]

All these terms can be computed explicitly by using Lemmas
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1 and 2. The mean time derivative of p; is

dp: _ P P ~3 ~2- = —2
ar =19.5(g> — q1) +[1.50g7 — 0.88g1g> + 0.27g.q>

P-q
+0.11g3 + 0.0097, + 0.0017,]. [28]

The term in square brackets is the “gaussianized” approxima-
tion to the cubic term in Eq. 26. The equation for p is obtained
by substituting 1 <> 2; the equations for g, g» are obtained by
the transformation p — ¢ and ¢ — —p.

We now test the accuracy of the prediction of the mean
evolution of the vectors p and q, obtained by the integration
of equations (Eq. 28). In contrast to the linear example, we do
not have an exact mean solution for comparison. Instead, we
generated numerically an ensemble of initial conditions that
sampled the constrained canonical ensemble. We employed a
standard Metropolis algorithm and sampled 10* states. Each
state was then evolved in time using a fourth-order Runge—
Kutta solver, and by averaging over the evolved ensemble we
were able to compute the mean evolution of the solution of the
system of 32 equations, which we then compared with the
solution of the reduced system. The possibility of making this
comparison is the reason we started with a discrete system
rather than the full partial differential equation.

A comparison between the true mean and the mean pro-
duced by our averaging/updating procedure is shown in Fig. 3
a and b. The two graphs show different intervals of time; the
coarse initial conditions are p; = 0.2, p, = 0.3, g1 = 0.6, and
q> = 0.55.

Discussion
We have shown by examples that one can calculate average

solutions accurately on a crude grid. The examples were simple
but not trivial; in particular, they were complicated enough so
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that the calculation of even a single sample solution was
difficult. The main tools were interpolation based on regres-
sion and the characterization of constrained measures by
time-dependent filters. In more complete papers to come we
plan to show that the method generalizes to more complicated
situations. In the Gaussian case, one can advance in time not
only the mean solution but also its moments and covariances.
As more information is updated, one can update not only the
values of the filtered variables, but also parameters that
determine the structure of the filters (i.e., one does not have
to keep G in Eq. 2 fixed). In non-Gaussian problems, one can
perform local “gaussianization” rather than global “gaussian-
ization,” as above, and describe a broader range of measures.
Furthermore, it should be obvious from the discussion that one
does not need complete information about the measures, but
only the covariances and low-order moments on scales smaller
than the distance between mesh points. This partial informa-
tion is available in a broad range of situations (7).
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