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In solvents of low dielectric constant, where the electrostatic potential energy
e2/aD of an anion and a cation at contact is large compared to mean thermal energy
kT, one expects and finds association of ions to nonconducting pairs. As the dielec-
tric constant is increased the extent of association should (and does) decrease, but
in principle it should never become zero, because there is always a nonzero chance
that anion-cation contacts will occur, even if the ratio b = e2/aDkT becomes small.
In fact, for the hypothetical extreme of infinite dielectric constant, the association
constant due to encounters between ions should be given' by

KO = 47rNa3/3000 = 0.002523d3. (1)

For d = 5, KO0 0.3; at 0.01 N, this would correspond to a decrease in conductance
of about 0.3 per cent, and at 0.1 N to 3 per cent. Association of 1-1 salts in water
has, however, been completely disregarded ever since the Debye-Huckel theory,
based on the hypothesis of complete dissociation, proved to be so successful in pre-
dicting the behavior of electrolytes in the limit of extreme dilution. Experimentally,
it seemed futile to look for association in aqueous solutions, for practical reasons.
Application of the Fuoss-Onsager theoretical treatments 3 of conductance has been
limited by their mathematical approximations to solutions no more concentrated
than about 0.01 N. (These limitations were deliberately set; the mathematical
functions to which the theory led were hopelessly intricate from the point of view
of practical computation, because electronic computers were not generally available
in 1955 when the theory was developed. The linearized approximation was there-
fore proposed; the price paid for the simplification was restriction of the range
applicability of the equation. This restriction has, unfortunately, been disregarded
by some authors who have applied the equation to data at higher concentrations.)
The linearized conductance equation for unassociated salts is

A = A, -Sc11'+E'clnc+Jc, (2)

which is modified to

A = A0 - Sc'/2 + E'c lnc + Jc - KAAOC (3)

if slight association occurs. Clearly, since both the Jc term from long-range inter-
action and the KAAOC term from pair formation are linear in concentration, empirical
analysis of conductance data can only produce a net linear coefficient (J - KAAO)
and there is no way to split it into components. For ordinary salts in water, the
theoretical Jc term amounts to about 1.5 per cent at 0.01 N so a 0.3 per cent asso-
ciation is in any case relatively small, and difficult to find. The obvious experi-
mental approach would be to work at higher concentrations, where the association
term would not only be larger, but also would have a different functional dependence
on concentration and thereby be accessible to evaluation by appropriate analysis.
However, this approach has been blocked by the limitations of current theory; if
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equation (2) is applied to data at concentrations above 0.01 N, the parameters A0
and J begin to depend on the range of concentration over which they are determined,
and deviations between calculated and observed conductances acquire a systematic
plus-minus-plus pattern which becomes more pronounced, the higher the maximum
concentration included in the calculation. Both of these symptoms lead to one
diagnosis: the functional form of equation (2) is incorrect for concentrations much
above 0.01 N in water.

Consideration of a large number of recent data of high precision (40.02%) for
several alkali halides in water4, 5 showed that the experimental data could be re-
produced within the experimental error by a semi-empirical equation of the form

A = AO- Scl1' + Ec log c + Ac + Bch/2, (4)

where S and E are given by theory. A test of equation (4) is shown in Figure 1.
Conductance data for potassium chloride, cesium iodide, sodium chloride, and
cesium bromide were analyzed by a least-squares procedure to obtain the corre-
sponding values of A0, A, and B. Then the quantity

Y = [A(obs.) - A0 + Sc'1' - Ec log cl/c

was plotted against square root of concentration. The resulting plots are linear as
required by equation (4). The solid circles represent Shedlovsky's earlier results6' 7
for potassium and sodium chlorides; perfect agreement appears. Standard devia-
tions between calculated and observed values are 0.015, 0.018, 0.017, and 0.020 A-
units for the four systems of Figure 1. The equation for potassium chloride is

A = 149.936 - 94.88c1/2 + 25.48c ln c + 221.Oc - 229c /. (4a)

It fits the Jones and Bradshaw8 points at 0.01 demal and 0.1 demal within 0.011 per
cent and 0.010 per cent, respectively, and hence may be used for cell calibration.9
The coefficient B was found to be quite different from the J2 of the approximate

theory which included a special c&/ term,2 the one from expansion of negative ex-
ponential integrals (all other terms of this order had been systematically dropped).
Given the close fit between observed conduct- 225
ances and values computed by equation (4),
we were encouraged to repeat the integrations Y
which led to equation (2), this time with ex- 200 2 __-_-_
plicit retention of all of the terms of order
C3/". The result (as expected) was a quite com-
plicated expression for the conductance func-
tion, far too complicated for a desk calculator, 4
especially when ionic association was included,
but the function can be handled by an electronic

150
__

computer. 50
The equivalent conductance A as a function

of concentration is given by the equation 125 _ _

A = y(AO- AA)(1 + AX/X)/(1 + 3so/2), (5) 0

where -y is the ratio of free ion concentration to FIG. 1.-Test of empirical equation.
Top to bottom: (1) Y(KCl), (2) Y(CsI),stoichiometric. The electrophoretic term AA (3) Y(NaCi), (4) Y(CsBr) - 10. -
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and the relaxation term AX/X are given explicitly in the Appendix, equations (A39)
and (A 14). The fraction Sy is determined by the association constant KA

1 - = KACfY22, (6)

where the activity coefficient f is calculated by the Debye-Hickel limiting law

-lnf = iBx/2. (7)

Both AA and AX are functions of xa, where a is the center-to-center distance at con-
tact of the rigid charged spheres which represent the ions; AX also depends
on a through the parameter b = (3/a. The factor (1 + 3sp/2), where sp, the volume
fraction of one species of ions, is approximated by (47rNc/3000) (a/2)3, makes allow-
ance for the fact that ions obstruct the motion of ions of the opposite charge.10 11

The conductance equation is a 3-constant equation:

A = A(c; Ao, KA, d) (8)

and is nonlinear in all three parameters. A program was designed to analyze a set
of data points (cp, A;) to evaluate the parameters by the following sequence of opera-
tions: First, an arbitrary value (of the correct order of magnitude) was chosen for
the association constant, and y's were computed from equation (6) by a convergent
series of successive approximations. Then values of Ao and d were found which
would minimize 1(5A1)2, where bA is the difference between conductance calculated
by equation (5) and the observed conductances A1:

6A = A (calc.) - A (obs.). (9)

Then another value of association constant was tested and the standard deviation a-
was again computed. This step was repeated until the minimizing value of asso-
ciation constant was bracketed. This final interval was then searched to locate
KA (min.), using appropriate subroutines to locate the corresponding values of A0
and d.
Conductance data for the following systems were analyzed by the above pro-

cedure: sodium chloride in water4 and in dioxane-water mixtures,12 potassium
chloride in water4 and in dioxane-water mixtures,'3 and cesium iodide in water'
and in dioxane-water mixtures. 14 An example is shown in Figure 2, where the stand-
ard deviation a- is plotted against the value of the contact distance d; the ordinate
scales, in A-units, are displaced by arbitrary amounts to prevent overlap. These
plots represent projections on a plane of the intersection of skew surfaces cutting
the u-(Ao, KA, d) surface at varying d and at the Ao and KA values which minimize
o- continuously for the corresponding d-values. Curves 1-5 correspond to data
for cesium iodide in dioxane-water mixtures with dielectric constants 12.81, 15.29,
18.68, 24.44, and 40.57, respectively. It will be noted that the minimum, which is
very sharp at low dielectric constants, becomes progressively broader as the dielec-
tric constant increases. These data (1961) for the dioxane-water mixtures had been
designed to test the linearized2 conductance equation for associated electrolytes

A = A0 - SC127'/2 + Ecy log cy + Jcy - KACY2f2A (10)

and the concentration range had therefore been restricted to an upper limit such
that xa did not exceed 0.1. For dielectric constants above about 40, the a-d
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FIG. 2.-Analysis of conduct- FIG. 3.-Analysis of conductance
ance data for cesium iodide in data for cesium iodide in water;
dioxane-water mixtures; xa < 0.1. 0.003 < c < 0.093.

minima become so shallow that no unique value of a can be determined. This is
to be expected, of course, because the ion pair term becomes steadily less significant
as dielectric constant increases. At low concentrations in solvents of higher dielec-
tric constant it therefore becomes impossible to conclude whether any ion pairs at
all are present, because the measurements cannot distinguish between a small KA
and one equal to zero. But by going to higher concentrations, the ion pair term
becomes visible again, as shown in Figure 3. The bottom curve is a plot of a

against KA for data over the range 0.003 < c < 0.10; the minimum at KA = 0.93
is sharp. The minimizing A0 and d values corresponding to the range of KA-values
are shown in the upper two plots; curve 6 of Figure 2 was constructed from the
data of Figure 3. The minimizing constants Ao = 154.172, d = 5.492, and KA =
0.93 reproduce the entire set of data with ao = 0.0134, or 0.0085 per cent.
The minima of the a-d curves of Figure 2 lie between 5.5 and 5.9. The value

5.50 from the data in water is the most precisely determined, because it is based on
70 data points covering concentrations up to about 0.1 N. In the dioxane-water
runs, only five data points were available at each value of dielectric constant.
Inspection of Figure 2 suggests that the same value of contact distance should de-
scribe cesium iodide in all mixtures. Accordingly, the inverse calculation was made;
d was fixed at the water value of 5.50, and the corresponding values of A0 and KA
which would minimize a were determined. Data for sodium chloride (water value
of d = 6.10) and potassium chloride (water value of d = 5.65) were treated in the
same fashion. The results of these calculations are summarized in Table 1. In
every case, a single contact distance serves to predict the conductance of the salt
over the entire range of dielectric constant from that of water down to about 12.
This result, that d is a parameter independent of solvent composition, shows that
the previously observed variation'3 of d was an arithmetical artifact produced by the
neglect of ion association at the higher dielectric constants. The association con-
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TABLE 1
CALCULATION OF CONDUCTANCE USING WATER VALUE OF & FOR MIXTURES
D Ao KA

Cesium Iodide, 4 = 5.50
60.18 99.42 1.0 0.013
40.57 66.89 3.0 0.005
29.79 56.52 11.4 0.006
24.44 52.28 30 0.006
18.68 48.27 109 0.010
15.29 45.44 336 0.021
12.81 41.95 865 0.012

Potassium Chloride, d = 5.65
60.16 100.73 1.6 0.010
41.46 69.16 5.9 0.009
30.26 56.48 24 0.004
25.84 52.40 46 0.006
19.32 46.39 184 0.005
15.37 42.73 575 0.005
12.74 39.46 1720 0.016

Sodium Chloride, 4 = 6.10
49.54 71.21 3.0 0.009
32.77 53.31 16 0.009
26.85 48.78 34 0.010
18.74 42.75 177 0.021
16.67 41.11 330 0.003
13.51 38.60 1035 0.022
12.12 37.52 2050 0.010

stants in water are 0.93 for cesium iodide, 0.80 for potassium chloride, and 0.92
for sodium chloride.
The dependence of association constant on dielectric constant is shown in Figure

4, where logarithm of association constant is plotted against reciprocal dielectric
constant. Theory' predicts linearity, from

4 KA = (47rNa3/3000) exp (E2/aDkT). (11)
The linear segments in the figure are drawn with
slopes calculated from the water values of the

3 /SXO/Darameter d which minimized the difference be-
tween observed conductances and values calcu-
lated by equation (5). Reasonably good agree-

2 ment is found for cesium iodide over the whole
o A' / range of dielectric constants. For potassium

/ ,g / and sodium chlorides the fit is good at the lower
l /u°/< < dielectric constants, but the values curve down

o// f from the straight line for water-rich mixtures,
and earlier for sodium than for potassium. The

t/agreement between slopes calculated from a single

value of d, at least for a large part of the dielectric
l______ ________ ________ range, is most gratifying, because it is convincing

°O 3 IOO/D 6 9 evidence that the association constants reported
here have real physical meaning and are not

FIG. 4.-Dependence of association
constant on dielectric constant. Top merely the results of curve-fitting.
to bottom: cesium iodide (1.0 + log The curvature for sodium and potassium chlo-
KA); potassium chloride (log KA);
and sodium chloride (-0.5 + log KA). rides at higher dielectric constant suggests the
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obvious ad hoc hypothesis that KA should contain an entropy factor"7 to
allow for the differences in water structure around free ions and around ion
pairs as the cation varies through the series of the alkali metals. In the dioxane-
rich systems, where the log KA- D-1 slope has the predicted value, the water
structure is presumably destroyed by the dioxane; hence the agreement there.
The values of a are all considerably larger than the sum of the lattice radii of the
ions and clearly must include the diameters of several water molecules. This ob-
servation suggests that conductance measures the association constant for solvent-
separated ion pairs.
Appendix.-The relaxation field is given by

AX/X = - ac'1/2 1(1 - A1) + AXB/X + AX2,3/X + AXa/X + AXP/X + AXV/X, (Al)

where the symbols are those defined in reference 2. The following terms remain unchanged

ac"'2A, = (#92x2/12p3b2) (1 + b) (A2)

AXB/X = [32X2/3p2(1 + xa)2][1/8 - (1 + xa)/4b + T2/4] (A3)
AX./X = -_{#2x2/3p2p3(1 + xa)2j[0.5 - 2q/3] (A4)

= -0.0286 . . .}

The cross-gradient term becomes

AX2,3/X = -(#2x2/3)[F23(xa) - (xa/b)Fb(xa) + (3T2 + pT, - 4plp2To)/16p2(1 + xa)2] (A5)

with F23(Xa) = N2a(xa)/4p2p3(1 + xa)2 (A6)

N23(xa) -9/4 + 9q/2 + (7q/3-7/12)xa + (7q/12 + 1/24)X2a2 (A7)

and Fb(xa) = Nb(xa)/8p2p3(1 + xa) (A8)

Nb(xa) = q/2 + (2q - 2/3)xa + (5/12 - q/3)x2a2. (A9)

The function Fb(xa) and the xa and x2a' terms in N23 are new. The kinetic term to next approxi-
mation is now

AXp/X = (#2x2/12b2)[(l + xa/2)/(l + xa)(l + qxa) - l/b], (A10)

where the bracketed quantity replaces the former [1 - 1/b]. The velocity term"5 is replaced by

AX,/X = [X2/6wn(co + w2)][FV(xa) + F(xa)/2(1 + xa)2 - 1/6bp3(1 + xa)], (All)
where Fv(xa) = N,(xa)/48p2(1 + xa)2

Nv(xa) = 16 + 6q + (7 + lOq)xa + (3 + 4q)X2a2 (A12)

and F(xa) = (7T2 + p3T, - p2p3To)/8p2. (A13)

Here the xa and x'a' terms in Nv(xa) are new. Also, the constant (16 + 6q) replaces the formerl5
(13 + 6q); the 13 was either a misprint or a mistake.
The integrations actually gave higher polynomials in the numerators N(xa). By numerical

test, we found that terms of order x3a3 in the polynomials could be neglected without significantly
changing the values obtained for the conductance parameters, provided xa did not exceed 0.4.
(Terms of order x2a2 in the polynomials are equivalent to terms of order c2 in the A-c equations.)
Therefore, these equations should not be used in a range of variables beyond xa ; 0.3 on account
of this algebraic approximation. Also, of course, for such values of xa, the distance x-1 is only
three times the mean ionic diameter, and the average implied in using an ionic atmosphere as a
model is certainly no longer valid.
The above relaxation field terms are combined by substituting in (Al). The result, in which

electrostatic and hydrodynamic terms (coefficients El' and E2', respectively) are separated, is
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(1 + AX/X) = 1 -ac/2,y /2 + E11'cyF,(xa, b) - (E2'cy/Ao)F2(xa, b), (A14)

where Fi = -4Fii - F12 + Fls/b + F14/b2- 2/b (A15)

F2 = -8F21 - 4F21 + 4/3bp2(1 + xa) (A16)

wiih Fn1 = (7T2 + p1T1 - 4plp2To)/8p2(l + Xa)2 (A17)

F12 = 2N22(xa)/p2p3(1 + xa)2 + l/p2(1 + xa)2 + 0.4576/2p2p3(1 + xa)2 (A18)

N12 = -9/4 + 9q/2 + (-7/12 + 7q/3)xa + (1/24 + 7q/12)x2a2 (A19)

F13 = 4Nl3/p2p3(1 + xa) (A20)

N13 = 1 + (9q/8 + 1/2)xa + (q + 1/24)x2a2 (A21)

F14 = 4(1 + 3xa/4)/p3(1 + xa) (A22)

F21 = N2l/48p2(1 + xa)2 (A23)

N21 = 16 + 6q + (7 + lOq) xa + (3 + 4q)x2a2. (A24)

The polynomials pi have the following values

pi = 1 + xa + x2a2/2 (A25)

P2 = 1 + qxa + x2a2/4, q2 = 1/2 (A26)

P3 = 1 + qxa + x2a2/6 (A27)

and the transcendental functions Tj(xa) are defined by the expressions

Tj(xa) = exp[(j + q)xa]E.[(j + q)xa], j = 0, 1, 2 (A28)
co

En(x) = f e-du/u. (A29)

The following relationships among various constants18 are used in converting the coefficients to
practical units:

p = e2/DkT = ab (A30)

162x2/3 = 8E1'c (A31)

ac'12 = ,Sx/6(1 + q) (A32)

o= 8E2'/(6Ei'))/2 (A33)

7= 6Ei'c = 132x2/4 (A34)

x/37rn(co + C02) = oC /2/Ao (A35)

x2= 7r#NcY/125. (A36)

(Note that the definition of X2 includes a factor y, where y = [A -]/c = [B']/c.)

°j = Iej II: Oi (A37)

0o = 5exoT/3r7nC/' (A38)

The electrophoretic term AA, to a very close approximation, is given by

AA = 1loc/2y1/2/(1 + xa). (A39)

Retaining higher terms in the hydrodynamic equation18 gives

AA = Boc'/2-yl/2EL(xa, b), (A40)

where EL (xa, b) is a very complicated function of xa and b. It is, however, numerically almost
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exactly equal to 1/(1 + xa), as shown by the typical TABLE 2
example (calculated for potassium chloride in water) in ELECTROPHORESIS TERM
Table 2. c AA(39)/Ao AA(40)/As
Conductance data have also been analyzed1' by the 0.0797 0.0867 0.0855

Pitts equation,20 which is based on an expansion in 0.0597 0.0776 0.087278
powers of #x. Two of the boundary conditions, how- 0.0485 0.0715 0.0716
ever, seem physically unrealistic. One requires that 0.0388 0.0652 0.0656
the velocity vector "vanishes on the surface of the 0.0246 0.0539 0.0545
ion." For rigid spheres in a continuum, only the radial 0.0109 0.0378 0.0383
component must vanish; the tangential component, 0.0050 0.0265 0.0268
which corresponds to one sphere rolling or slipping
around another,"' need not vanish. Our treatment therefore requires only that vyr vanish at
contact. Also, Pitts specifies that the perturbation potential must vanish at r = a (i.e., precisely
where the relaxation force is to be computed). Our electrostatic boundary conditions are the
classical continuity of potential and field at the boundary r = a.

* Grateful appreciation is expressed to the donors of the Petroleum Research Fund, adminis-
tered by the American Chemical Society, for support of this research.
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