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Recent studiesl 2 on the coding properties of synthetic polynucleotides in mam-
malian systems, and studies3 on the binding of aminoacyl transfer RNA from bac-
teria and diverse animal sources to ribosome-oligonucleotide complexes have clearly
demonstrated the general universality of the genetic code. However, we have been
examining whether there might be variations in the distribution of particular
transfer RNA molecules which could control the relative rates of synthesis of
various proteins in animal cells. These studies were suggested as a result of our
recent observations4 that certain small RNA viruses replicate with widely varying
efficiency in different animal cells. These observations might be explained by the
hypothesis that the RNA of these viruses is translated with differing efficiencies
according to the availability in different animal cells of certain transfer RNA
molecules necessary for an accurate translation of all the codons in the viral RNA
messages.
Kano-Sueoka and Sueoka' found a new leucyl-tRNA peak replacing a normal one

following T2 phage infection of E. coli. Subak-Sharpe et al.6. 7 have reported the
formation of a new arginyl tRNA in herpes virus-infected cells. Kaneko and Doi'
reported a change in the elution pattern of valyl-tRNA from a methylated albumin
kieselguhr column during sporulation of B. subtilis. Kano-Sueoka and Sueoka5
have suggested that even minor quantitative variations, or qualitative modifications,
of tRNA could drastically alter the relative rates of synthesis of different classes
of proteins. Many investigators have considered the possible controlling role in
differentiation which could be played by variations or modifications of tRNA.

In the present study, we compared by C'4, HI double-labeling technique the
chromatographic profiles on methylated albumin kieselguhr (MAK) columns of
aminoacylated tRNA's from various tissues or organs of the same species, from
different animal species, from cultured cells of various origins, and from tumor
cells.
We found a remarkable similarity of elution profile of tRNA's from different

tissues and even from widely divergent animal species. However, several dif-
ferences are demonstrated, the most striking of which are the altered elution pro-
files of a number of tRNA's from mouse tumor cells as compared to normal tissues.

Materials and Methods.-Transfer RNA was extracted from bovine, rabbit,
and mouse tissues and from various cells by phenol extraction in 0.15 M NaCl,
0.05 M Tris, pH 7.5, followed by repeated ethanol precipitation.

Ehrlich ascites tumor cells (EAT cells) and mouse sarcoma-i cells (Sa-1 cells)
were harvested from the peritoneum of mice eight days after intraperitoneal in-
jection of the tumor inoculum. Cell cultures were propagated in Eagle's medium
with 7 per cent calf serum as monolayers on glass.
The amino acid-charging enzyme fractions were freed of contaminating amino

acids by passing the 30,000 9 supernatant of a cell or tissue homogenate through
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Sephadex G-50. The tRNA's were charged in vitro with either H'- or C'L4-labeled
amino acids according to a modification of the procedure of Yamane and Sueoka,9
and re-extracted with buffered phenol (pH 5.2) to free them of protein. The C14
and HI aminoacyl RNA's mixed, precipitated with ethanol three times, and loaded
on MAK columns in 0.02 M Tris, pH 7.0.
The tRNA's were eluted from the MAK column with a linear saline gradient

with an initial concentration of 0.2 M NaCi, 0.05 M Tris, pH 7.0, and a final con-
centration of 0.65M NaCi, 0.05 M Tris, pH 7.0.

Radiolabeled amino acids: The source and specific activities of the labeled
amino acids were as follows. New England Nuclear: C14-alanine (117 mc/mM),
C'L4-glycine (116 mc/ml\i), C14-leucine (25 mc/ml\i), C14-serine (120 mc/
mM), C14-phenylalanine (393 mc/mM), C'4-threonine (156 mc/mM), C14-
tyrosine (393 mc/mM), H3-alanine (40 c/mM), H3-leucine (5 c/mM), C'4-valine
(208 mc/mM), H3-tyrosine (7.96 c/mM). Schwarz BioResearch: C14-lysine (198
mc/mM), H3-glycine (2.1 c/mM), H3-lysine (0.48 c/mM), H3-serine (1.2 c/mM),
H3-phenylalanine (2.5 c/mM), H3-threonine (0.575 c/mM), H3-valine (0.87 c/mM).

Results.-Initially, we screened the transfer RNA of a large number of different
tissues, or organs from a number of animal species by comparing the relative ratio
of aminoacylation of many C'4 amino acidcs to the aminoacylation of HI phenylal-
anine in cell-free extracts. The ratios (not presented here) were so nearly identical
as to suggest that the relative proportions of the total tRNA's for the various amino
acids do not vary significantly among most animal species, nor among tissues or
organs in the same animal.
tRNA from different animals and tissues: Transfer RNA's isolated from the brain,

liver, kidney, and skeletal muscles of different animal species (bovine, rabbit,
mouse, and chick) were compared. The specific tRNA's tested were: alanine,
glycine, leucine, lysine, serine, phenylalanine, and threonine. Each tRNA was
charged with the homologous enzyme, and in many cases with heterologous en-
zymes. Typical results of such MAK column chromatographs for each of these
amino acids are shown in Figure 1 (A-H). It will be noted from Figure 1 that the
elution profiles of specific amino acid tRNA's are quite similar irrespective of species
or tissue origin. Only the elution profile of serine-tRNA (Fig. 1G) showed a clearly
discernible difference between organs. A minor peak was present in liver tRNA,
but not in kidney or skeletal muscle tRNA. This was true of both mouse and rabbit
tRNA (Fig. 2A). When the liver tRNA was charged with the kidney aminoacyl-
ating enzyme, no front peak was noted (Fig. 2B). Nor was a front peak of ac-
tivity found when the liver enzyme was used with kidney RNA, suggesting a lack
of both the tRNA and the cognate enzyme in kidney cells (Fig. 20).

Cell lines: Studies similar to those described above were carried out with tRNA
and aminoacylating enzymes isolated from HeLa and MBK cell lines. Although
these two cell lines are derived from different species and tissues (human cervical
carcinoma and bovine kidney) and have certainly undergone extensive dedifferentia-
tion in tissue culture, no large differences were noted among those amino acid
tRNA's examined (alanine, leucine, lysine, phenylalanine, threonine, valine),
either between cell lines, or when compared to whole tissues.
To examine whether in vitro charging reflected the true in vivo state of the

charged tRNA, washed intact cells were pulse-labeled for ten minutes with radio-
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Active amino acid before phenol extraction of tRNA at pH 5.2. Such in vilvo (HI)-
charged tRNA was compared with in vitroC4 tRNA. In all cases examined, both
radioactive peaks elute'd together fro'm the MAK column (Fig. 3). Various tRNEA's
from other cell lines were compared: HeLa, MBK, adeno-viruA-3-trAnsformeid
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FIG. 6.-(A, B) In vivo labeled EAT transfer RNA compared to normal tissue tRNA. (C, D)
Heterologous charging of EAT phenylalanine andserine(tRNA.

from HeLa cells and chick embryo fibroblasts. With our chromatographic tech-
nique, HeLa cells and Ehrlich tumor cells show two major peaks of glycine-tRNA;
in contrast, tRNA from chick fibroblasts and fromdiffterent organs (Fig. 4) exhibit
a major peak and a minor one.
Tumor cell tRNA: Transfer RNA was extracted from Ehrlich ascites tumor and

mouse sarcoma-i cells and compared with tRNA from normal mammalian cells or
tissues. Of those amino acids examined, the elution profiles of alanine, lysine,
threonine, glycine, and leucine-tRNA were nearly identical between the tumor and
mouse or rabbit tissues. However, significant differences were found in the elu-
tion profiles of phenylalanine- (Fig. 5A), serine- (Fig. 51,), and tyrosine-tRNA
(Fig. 5C), between Ehrlich ascites tumor cells and normal tissues. In contrast,
Sa-1 tumor cells differed only in phenylalanine-tRNA (Fig. 5D). There is a definite
shift of the chromatographic positions of each of the above charged tRNA's of the
tumor cell tRNA. These differences are apparently not due to a degradative
enzyme in the EAT-charging enzyme, as evidenced by the fact that if the tumor
cell RNA was labeled in vivo (Fig. 6A, B), or with a rabbit kidney synthetase (Fig.
6C, D), the shift in elution pattern still existed.
To investigate whether this shift is merely a phenomenon of rapidly dividing
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PclpHrNYrAfANIME* uH3 cells, primary cultures of rapidly dividing mouse
embryo cell tRNA was charged with H3-phenylala-

-MOUS.EIE RN nine-utilizing EAT-activating enzyme from Ehrlich
tumor cells. As is illustrated in Figure 7, the shift
of EAT phenylalanine transfer RNA persists rele-

..T RNA vant to mouse embryo tRNA.
Discussion.-Our results demonstrate that at least

for those particular tRNA species examined, major
differences are not apparent, either at the tissue
level or between animal species. This study has so
far been confined only to 7 of the possible 20 amino

__________________ acids, and is limited by the extent of resolution
3o 40FUACTION I.TiMS 60 of MAK chromatography. It is possible that

FIG. 7.-Position of primary many of the major peaks may contain multiple
culture of mouse embryo phenyf- species of tRNA that could be further resolved
alanine tRNA relevant to EAT by other chromatographic'methods. In fact, the
RNA.

elution profiles of many major peaks show
shoulders which suggest multiple components.
However, our results do suggest that quantitative differences exist in some

tRNA's or activating enzymes (e.g., serine-tRNA, glycine-tRNA), both between
different tissues and cells from different species. That these differences are not
artifacts has been demonstrated by charging specific tRNA's with heterologous
enzymes, and/or by in vivo charging. In every case where a difference between
tRNA's was found, it was confirmed by reversing the C14-, H3-labeling to the op-
posite tRNA's and repeating the entire experiment. This ruled out artifacts due
to contamination of one of the isotopic forms of any amino acid, or artifacts due to
concentration effects arising from differences in specific activity of the H3- or C-14
labeled amino acid. Fractionation of in vivo charged tRNA confirms the tech-
niques employed in vitro.
The observation that some species of tRNA from Ehrlich ascites tumor and mouse

sarcoma-1 tumor are eluted at a salt concentration different from that of the same
tRNA found in normal mouse tissue suggests that these tRNA's differ in structure
from normal mouse tRNA. They may differ in their complement of methylatediO
or other unusual bases. Tsutsui et al.ii have recently demonstrated that the
specific activity of tRNA methylases isolated from a variety of tumors is much
greater than the specific activity of the methylases from normal cells. Transfer
RNA from such tumor cells is methylated to a much greater degree than that of
normal cells. These authors have suggested that such methylation may play an
important role in the carcinogenic transformation of normal cells.

Lazzarini and Peterkofskyi2 have demonstrated a "shift" in the elution pattern
of leucyl-tRNA from E. coli off MAK column grown under methionine deprivation.
Under these conditions methylation did not occur. The "shifts" that we have
noted in the phenylalanine, serine, and tyrosine tRNA's of EAT origin and in
phenylalanine from Sa-1 may be attributed to methylation or to the presence of
other unusual bases. However, if this shift is a result of methylation, it is due to
selective methylation since all tumor tRNA's do not show shifts. However,
whether these alterations in various tRNA's are significant with regard to cardino-
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genesis demands additional study. The molecular basis for such shifts in elution
patterns and its possible relationship to tumor formation are currently being in-
vestigated in our laboratory. In addition, we are studying peptide "fingerprints"
of proteins derived from RNA viruses grown in different cells from the same virus
inoculum to determine if there are differences in the translation of the viral RNA
in different cell lines.
Summary.-Specific transfer RNA's of mammalian origin (from organs and cul-

tured cells) were compared by double-labeling and elution from MAK columns for
changes that might have occurred during differentiation. No major differences
were detected between tissues or species for alanine, leucine, lysine, phenylalanine,
or threonine tRNA. However, differences were observed in the elution profiles
of minor tRNA species for glycine and serine. Major differences were observed in
the elution patterns of phenylalanine, serine, and tyrosine tRNA derived from
Ehrlich ascites tumor cells when compared to normal mouse tissue.
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