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Abstract In order to elucidate the mechanisms of
purinergic transmission of calcium (Ca®*) waves be-
tween microglial cells, we have employed micro-
photolithographic methods to form discrete patterns
of microglia that allow quantitative measurements of
Ca’>* wave propagation. Microglia were confined to
lanes 20-100 um wide and Ca>* waves propagated from
a point of mechanical stimulation, with a diminution
in amplitude, for about 120 um. The number of cells
participating in propagation also decreased over this
distance. Ca®* waves could propagate across a cell-free
lane from one microglia lane to another if this distance
of separation was less than about 60 um, indicating that
propagation involved diffusion of a chemical transmit-
ter. This transmitter was identified as ATP since all
Ca’* wave propagation was blocked by the purinocep-
tor antagonist suramin, which blocks P2Y, and P2Y,
at relatively low concentrations. Antibodies to P2Y,
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showed these at very high density compared with P2Y,
indicating a role for P2Y, receptors. These observa-
tions were quantitatively accounted for by a model in
which the main determinants are the diffusion of ATP
released from a stimulated microglial cell and differ-
ences in the dissociation constant of the purinoceptors
on the microglial cells.
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Introduction

Microglia give a calcium (Ca®") transient in mixed cul-
tures of microglia and astrocytes, following mechanical
stimulation of a single astrocyte [1, 2]. This transient
in the microglia is dependent on the release of ATP by
the astrocytes [1]. However, nothing is known about the
mechanism of transmission of a Ca®* signal between
microglial cells that allows for propagation of a Ca**
wave in populations of microglia [3]. In the absence of
neurons, a Ca>™ wave in astrocytes propagates for hun-
dreds of microns from a point of mechanical stimulation
(e.g., [4,5]). It remains to be seen whether a Ca* signal
can be transmitted between microglia in such a way that
there is propagation of a Ca’>* wave.

The Ca?* waves in astrocytes, when initiated at a
point in a culture, can jump cell-free gaps of different
widths formed by scraping away cells [4, 6]. Such Ca**
waves propagate across these gaps with a delay that
increases with gap width until this width reaches about
150 um, when such propagation fails. More recent re-
search has used micropatterned arrays of astrocytes in
which lanes of cells about 110 um wide alternate with
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cell-free lanes about 40 um wide [4, 5]. If a Ca®* wave
is initiated by mechanical stimulation in an astrocyte in
just one lane it propagates both along the lane as well
as transversely across the cell-free lanes into the adja-
cent astrocyte lanes with a delay of about 10 s. These
observations support the idea that the transmission of
Ca’* waves between astrocytes involves the release of
a diffusible substance. The question of whether this
wave is transmitted between microglia by a diffusible
substance has not been addressed. It is known that
microglia collecting in the vicinity of a stab wound
express connexin CX43 and that these cells are coupled
by such connexins in vitro under the control of certain
cytokines [7]. However, given the relative low density
of resting microglia in the brain compared to that of
astrocytes [8-10], it seems unlikely that connexins are
used by microglia in normal circumstances to transmit
Ca’" waves. We have therefore used micropatterned
arrays of microglia to ascertain if the Ca?t wave can
propagate across cell-free regions, thus indicating that
a diffusible substance is involved in transmission. As
shown below, this turns out to be the case.

Microglia possess P2X7, P2Y, P2Y, /4, P2Y¢, P2Y 5,
P2Y,; and P2Y,4 purinoceptors [11-14] with P2Y,
receptors and P2X; receptors unique to microglia, at
least in the hippocampus [15]. There is evidence that
some microglia cells possess predominantly P2X re-
ceptors and others predominantly P2Y receptors [16].
P2X; receptors on microglia are involved in apoptosis,
transcription and microvesicle shedding [17]. Activa-
tion of P2X; receptors can lead to the release of pro-
inflammatory cytokines, such as TNFe [18, 19]. P2Y,
and P2Y,/, receptors are involved in the release of
the cytokine IL-10 that acts to markedly reduce the
release of the pro-inflammatory cytokines [20]. Most
(85%) resting microglia respond to ATP with a Ca**
transient [21] as a consequence of an action of ATP on
P2X and P2Y receptors [11, 14]. The activation of P2X
receptors leads to an influx of calcium ions whereas
the activation of P2Y receptors releases calcium from
internal stores [21-26]. Microglia can also release ATP
using in part ATP-binding cassette (ABC) proteins,
such as P-glycoproteins (mdr 1a and mdr 1b) and multi-
drug resistant associated proteins (mrpl and mrp4;
[27]). Taken together, these observations on the action
of ATP on purinergic receptors possessed by resting
microglia suggest the hypothesis that the transmission
of Ca?* waves between microglia is due to ATP, and
this we have investigated.

The experimental work is supplemented by calcula-
tions using a theoretical model of extracellular commu-
nication in cellular networks, originally developed for
astrocytes [28], and here modified for microglia.
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Methods

The experimental methods for immunohistochemistry,
mechanical stimulation of leading to Ca** waves in
cells, application of drugs, recording Ca®* waves and
seeding cells into lanes were the same as that pre-
viously described [5]. The purification of microglia
started when plated mixed glia culture from Sprague-
Dawley rat pup spinal cord formed a confluent mono-
layer (usually between 1 and 2 weeks). The culture was
shaken at 200 rpm for 1 h at 37°C using rotating shaker
(IKA-Vibrax-VXR). During shaking, the astrocytes re-
mained adhered to the poly-D-lysine coating whereas
the microglia and oligodendrocytes detached from the
astrocyte monolayer. Immediately after shaking, the
medium containing the detached cells was transferred
to a 15-ml centrifuge tube and centrifuged for 5 min at
500 rpm. The supernatant was discarded and the pellet
was resuspended in 1 ml DMEM and triturated. Cell
density was adjusted by adding fresh DMEM (typically
1-2 ml) after cell trituration and 300 uL of the cell
suspension was pipetted onto each coverslip containing

Fig. 1 The distribution of microglia, immunostained with anti-
CSF-1R, in parallel lanes of width 20 um and separation 45 um;
the calibration bar is 45 um
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previously prepared microchannels and then incubated
for 15 min. Incubating DMEM was replaced with fresh
DMEM containing 50% of spinal cord astrocytic con-
ditioned medium (ACM). After 15 min, microglia se-
lectively adhere to the poly-D-lysine coating whereas
other cell types that may be present, such as any re-
maining astrocytes and oligodendrocytes, take a longer
period of time to adhere [29]. The purity of the mi-
croglial cultures was greater than 98% according to live
staining of the cells with the microglial marker FITC-
I1B4 (Invitrogen). Microglia-plated microchannels were
incubated in ACM supplemented DMEM for 48 h
before use in experiments (Fig. 1). The medium was
removed and replaced daily.

Fig. 2 The Ca>* wave
propagates along a lane of
microglia with decreasing
amplitude from the point of
initiation. A and B show
results for two different lanes
of microglia, of widths

82+5 pum and 38+4 pm,
respectively. In each case,
(a) shows the site of Ca?*
initiation by mechanical
stimulation with a
micropipette and (b) shows
the microglia that responded
with a Ca’" transient
(indicated by open circles)
after stimulation at the site
indicated by the arrow;

For Ca* recording, the relative fluorescence ampli-
tude (A F/F), was calculated using the formula

<AF) B F—F,
F FO - f'background

where F is the fluorescent intensity during the Ca**
transient, F, is the intensity averaged over the in-
terval immediately before the calcium transient and
T’background is the average fluorescence intensity mea-
sured in several cell-free areas. Ca’" transients with a
maximum A F/F value less than 0.3 (being 15% of the
largest Ca?* transient observed in a lane of microglia)
were discounted as being too close to the noise level
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<« Fig. 3 Quantitative characteristics of the Ca>* wave for a num-
ber of microglia lanes. a shows the average peak amplitude of
Ca?* deliveries along the lanes before becoming undetectable at
about 120 um (values normalized to the peak Ca’* concentration
at the stimulating electrode). b shows the number of microglia
that give a Ca>* response at different positions along the length
of a lane, expressed as a percentage of the total number of Ca>*
indicator-labeled microglia at that position; this remains high
for about 80 um and then declines. ¢ shows that the average
amplitude of the peak Ca>* wave in equal-width segments of
a microglia lane increases with the number of microglia that
propagate Ca®* in the segment. Results in a, b and c are for three
different lanes in three different cultures. In a and b the distance
is from equal-width segments along a lane (for which the average
peak Ca®>* was calculated for all microglia in the segment) to the
site of mechanical initiation of the Ca?* wave

to be reliable. All experiments were repeated at least
three times and values are presented as mean =+ s.d.
Statistical significance was determined with the use of
unpaired t-tests and ANOVA, and P < 0.05 was con-
sidered significant. All P2Y receptor antagonists were
obtained from TOCRIS.

Mathematical model

A detailed description of a mathematical model of
purinergic transmission in glial networks was given
in [28] and subsequently applied to experimental re-
sults on such transmission between astrocytes [5]. This
model has been adapted to the present case of mi-
croglial networks. The basic model is the same, so here
we give only a brief summary of the main features,
highlighting the changes that have been made.
Communication between the model microglia is me-
diated by ATP diffusing in the extracellular space. This
ATP binds reversibly to metabotropic receptors (P2Y)

Fig. 4 Propagation of a Ca’>" wave occurs between microglial
lanes if these are not separated by distances greater than about
60 um. A and B show parallel lanes of microglia in which the
lane widths are 75+3 pum and 25+3 pum respectively, separated
by cell-free lanes of 16543 um and 70+£4 um respectively; the
open circles indicate the microglia that gave a Ca>* response
following mechanical excitation of the microglial cell indicated by
the arrow; there is no propagation of the Ca®* wave across these
lanes. C shows parallel lanes of microglia in which lane widths
are 50+6 pum and the cell-free lane 46+£10 um; the open circles
indicate that a Ca’" wave response was able to propagate across
cell-free lanes as well as along the lanes. The calibration bar is 45
umin A, B and C. The position of the micropipette in C(a) is not
evident as it is out of focus
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on the surface of cells so that the ratio of bound to total
receptors is given by

_[ATP)
P KR+ IATP]’

where [AT P] is the extracellular ATP concentration
and Ky is the dissociation constant for ATP binding.
The usual meaning of K is the concentration of ATP
at which half the total receptors are bound; however,
in the present context Kz, as well as being a measure
of the affinity of receptor types, also reflects additional
variables such as spatial variations in receptor density,

Fig. 5 Propagation of Ca’* waves is blocked by the ATP-
degrading enzyme apyrase. A and B show the extent of prop-
agation of Ca*, from the point of mechanical stimulation of a
microglial cell, to other microglial cells in a lane. In each case, the
top panel (a) shows the position of the mechanically stimulating
micropipette and the lower panel (b) shows the microglial cells
that gave a Ca”* signal (open circles) in response to mechanical
stimulation at the arrow. A is the control and in B apyrase (60
units/m¢; grade III, Sigma) was present with only the stimulated
cell now giving a Ca?* transient. The calibration bar is 45um
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Fig. 6 Transmission of the Ca>" wave between microglial cells
is chemical due to the release of ATP. A and B show the extent
of propagation of Ca>* from the point of mechanical stimulation
of a microglial cell to other microglial cells in a lane. In each
case, the top panel ((a)) shows the position of the mechanically
stimulating micropipette and the lower panel ((b)) the microglial
cell(s) that gave a Ca*t signal (open circles) in response to
mechanical stimulation at the arrow. A is the control and in
B suramin (100 #M) was present blocking P2Y receptors and
only the stimulated cell responded with a Ca’* transient. The
calibration bar is 40 um

since p is a measure of the effective activity of ATP as a
function of space and time. Thus K is to be interpreted
as an effective, rather than an actual, dissociation con-
stant (see the section “Receptors” in [5]).

Each microglial cell is represented by a cube of side
8.3 um, and these cubes are arranged in 2D arrays with
their centres 25 um apart. As explained in [28], this
simplified geometry does not model the spatial com-
plexity of a real cell, but is a lumped approximation.
The Ca’* wave can be initiated either by increasing
the IP; concentration in a single cell, or by applying
ATP extracellularly. In the present calculations, a fixed
concentration of ATP (typically 20 uM) is applied for
an extended time (typically 5 s) to the surface of one
model microglial cell. The parameters used are those
given in Table 1 of [28], except that the parameter
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governing the ATP release rate, Varp, has been re-
duced from 2 x 107'"' to 5x 1072 pgmol um=2 s~!
in order to obtain agreement with the experimental
observations.

Results

Quantitative characteristics of Ca?t wave propagation
propag

The amplitude and velocity of propagating Ca’>* waves
in microglia at different positions along microglia lanes,
from a point of mechanical initiation in a microglia,
were determined. Figures 2A and B show the extent of
propagation from the point of stimulation in two lanes,
~80 um and ~40 pum wide, respectively. The Ca**twave
propagates with diminution in amplitude (Fig. 2C),
at a velocity of about 5 um s~!, over a distance of
at most 120 um before becoming undetectable. This
velocity is about one-quarter of that for Ca** wave
propagation in astrocyte lanes [S]. Quantitation of these
observations for four different sets of microglia lanes
in four cultures is shown in Fig. 3. Figure 3a shows
that there is a continual decrease in amplitude of the
Ca** wave over 120 um at which distance the amplitude
falls below 15% to 20% of the initial amplitude and
could no longer be reliably detected. The percentage
of microglia cells across a lane that gives a Ca®* peak
amplitude change that is greater than 15% of the peak
amplitude at the site of initiation remains high for
about the first 80 um and then declines rapidly over
the succeeding 40 um (Fig. 3b). On the other hand, the
peak Ca’* amplitude increases rapidly with an increase
in the local density of cells that give an observable Ca>*
transient response (Fig. 3¢).

The restricted local propagation of the Ca?>* wave
from the point of initiation is emphasized by experi-
ments in which different sites of initiation along a single
lane of microglia are determined. As Fig. 2 shows, in
each case the Ca** wave propagation is restricted to
regions of about 100 um diameter around the site of
initiation.

Evidence for release and diffusion of ATP during Ca**
wave propagation

In order to test for the possibility that mechanically
stimulated microglial cells release a diffusible sub-
stance, parallel lanes of microglia were constructed,
separated by cell-free lanes (see Fig. 1). Tests were then
made of the extent to which Ca?>* waves could prop-
agate across these cell-free lanes of widths 70 um or
more, independent of the width of the microglia lanes
(Figs. 4A and B). No such propagation was observed in
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Fig. 7 Density of P2Y
receptors on microglia.

a Distribution of anti-P2Y |,
receptor immunofluorescence
on single spinal-cord
microglia in lanes; the shape
of the cell is given by the
borders of immunohisto-
chemical staining.

b Histogram of the density
of and anti-P2Y, labelled
receptors for different
microglia. The error bars

indicate £SEM. At least ten 10um
areas on each cell were used
to determine the P2Y P2Y12
receptor density
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20 experiments. On the other hand, if the cell-free lanes  (Fig. 4C). It appears then that a diffusible substance is
were less than ~60 um wide there was always successful ~ released by the excited microglia and is able to initiate
propagation of the Ca?* wave across the cell-free lanes ~ Ca* transients in them.

Fig. 8 Diagrammatic
representation of the
theoretical spatial and
temporal changes in a Ca’*
wave in a lane of microglia
five cells wide following
excitation of the central
microglia, according to the
mathematical model. The
Ca* wave is initiated by a 5-s
pulse of ATP of concen-
tration 20 uM. The vertical
bars give Ca®* in uM at times
t=7.5,15,22.5 and 30 s, as
indicated. K values range
from 25 to 45 uM for
different microglia across
each lane
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Since astrocytes use ATP as a chemical transmitter,
and it is known that microglia initiate Ca>* transients
in response to ATP, we determined if ATP was likely
to be the diffusible substance released by microglia in
order to promote Ca’* wave propagation. First, Ca>*
wave propagation was blocked by the ATP-degrading
enzyme apyrase (grade III, 60 units per m¢; Fig. 5).
Second, the effects of antagonists to the P2Y class of
purinergic receptors on Ca®* wave propagation were
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<« Fig. 9 Theoretical characteristics of a Ca2* wave in a microglia
2 g

lane, according to the mathematical model as in Fig. 8, for
quantitative comparison with the observed characteristics (see
Fig. 3). a shows that the predicted peak amplitude of Ca?* for
all cells in a lane, normalized to that at the site of stimulation,
declines with distance along the length of the lane until it be-
comes undetectable at about 120 um (compare to Fig. 3a); the
horizontal line indicates the values of the Ca>* amplitude below
which experimental detection is in the noise level (set at 15%).
b shows the predicted number of microglia that give a Ca**
response greater than 15% of the maximum value at different
positions along the length of a lane expressed as a percentage of
the total number of cells at that position; this is maintained for
about 70 um and then declines rapidly (compare to Fig. 3b). ¢
shows that the predicted amplitude of the average peak Ca’* in
rows of a microglia lane increases with the number of microglia
that propagate Ca?* in the row (compare to Fig. 3c)

tested. It is known that the pharmacological profile of
P2Y receptor activation on spinal cord microglia and
the expression of their mRNA clearly favours P2Y,
receptors, followed by P2Y¢ and P2Y according to [12]
and P2Y,, P2Ys, P2Y; and P2Y 4 according to [14].
Suramin (100 uM) completely blocked all propaga-
tion of the Ca** wave along microglial lanes (compare
Fig. 6B with 6A), indicating that P2Y¢ and P2Y4 are
not involved, and this was confirmed for P2Y¢ using
the specific P2Y, antagonist MRS 2578 (30 uM). The
specific P2Y, antagonist MRS 2500 (100 xM) did not
block the Ca?t wave. On the other hand, the P2Y ;-
specific antagonist 2-MeSAMP (300 M) blocked Ca**
wave propagation. Any contribution of P2X receptors
known to be present on microglial cells, such as P2X,
and P2X; [11], to Ca*" wave propagation is likely to
be minimal given the blocking effects of the P2Y,-
specific antagonist 2-MeSAMP. We conclude that Ca>*
wave propagation between microglial cells involves the
release of ATP onto at least P2Y, receptors. Visentin
et al. [14] have also placed emphasis on the role of
P2Y;, receptors in calcium signalling.

Density of P2Y receptors on microglia

The theoretical requirement that Kz take values from
25 to 45 M may reflect different densities of P2Y re-
ceptors on the microglia, since in the present theory Kz
depends on this density as well as on the dissociation
of ATP from the receptors (see Theory section above,
and also the following section). Polyclonal antibody
labelling of P2Y, (Fig. 7a) receptors indicated that
these are localized in clusters of average diameter 0.45
um, as are P2Y receptors on astrocytes [S] and smooth-
muscle cells [30]. The density of P2Y, receptors, mea-
sured over nine microglial cells, varied about four-fold
(Fig. 7b). We suggest that P2Y, receptors mediate the
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Fig. 10 Stimulation of microglia at different sites in a lane
leads to Ca®>* wave propagation confined to the vicinity of the
stimulating electrode. Shown in (a), (b) and (¢) are three different
sites, greater than 140 um apart, of mechanical stimulation by a
micropipette of a single cell in a single lane of microglia. In (d) is
shown that the Ca?t waves initiated in each case ((a) to (c)) are
confined to a region within 90 xm of the stimulating micropipette,
with each set of symbols indicating the extent of Ca?t wave
propagation. The calibration bar is 45 um. The position of the
micropipette in C(a) is not evident as it is out of focus

Ca** wave propagation. Since in the present model Ky
values need to vary over at least a two-fold range, it
may be that this variability is partly due to differences
in P2Y, receptor density.

Modelling the quantitative characteristics of Ca**
wave propagation amongst microglia

The model of purinergic transmission of the Ca>* wave
given in the Methods was used to give a quantitative

description for comparison with the experimental re-
sults. A lane of microglia five cells wide and 528 pum
long was considered in which the centre-to-centre dis-
tance between the microglia was 25 um. The whole
lane of microglia was placed on a 2D surface 528 um
by 528 um (Fig. 8). Each row of five cells possessed
Kpr values assigned by random permutations of the
values 25, 30, 35, 40 and 45 uM. Note that these are
effective Ky values that take into account other prop-
erties besides dissociation of ATP from P2Y receptors.
Activation of a microglial cell in the centre of the lane,
by increasing the ATP concentration about the cell to
20 uM for 5 s, generated a Ca>* wave that propagated
with diminution as shown in Fig. 8. The Ca’* wave
varied in amplitude and velocity, both across the width
of the lane as well as along its length (Fig. 8).

A quantitative analysis of Ca’* wave propagation in
a lane, such as that shown in Fig. 8, gives the results
summarised in Fig. 9. The peak amplitude of Ca**
in each microglial cell of the lane varied significantly
both along the length and across the width of the lane
(Fig. 9a). Normalizing the Ca?* to the largest ampli-
tude observed at the site of initiation shows that many
of the cells give a Ca?* amplitude that is less than 15%
of the largest one (Fig. 9a). Using this as a cut-off for
the AF/F value that would be observed experimentally
(see Methods) gives a rate of decline of Ca’>* with
distance similar to that observed, from 100% to 20%
over about 120 um (compare Fig. 9a with Fig. 3a). The
percentage of cells that gives a Ca*" amplitude greater
than 15% of the largest amplitude at the site of initi-
ation, for different rows of five cells along the length
of the lane, remains high for the first 75 um and then
declines to about 40% of maximum at 120 pum. This
is a similar pattern of Ca>* changes to that observed
experimentally along a lane of microglia (compare
Fig. 9b with Fig. 3b). The average amplitude of the peak
Ca’* across rows of cells in a lane increases with the
number of cells that are activated in a row (Fig. 9c).
This is also observed experimentally (compare Fig. 9c
with Fig. 3c).

These theoretical results highlight the fact that Ca®*
wave propagation amongst microglial cells is very
limited compared with that amongst astrocytes [5]. Ex-
perimentally, this was highlighted by mechanical stimu-
lation of microglial cells at different well-separated sites
along a single microglial lane, showing that Ca>* wave
propagation was restricted to within about 90 um of the
stimulating micropipette (see Fig. 10). Such restricted
propagation was also observed along the model lane
following stimulation at well-separated sites (compare
Fig. 11 with Fig. 10). The clustering of activated cells
near the site of initiation of the Ca>t wave is, in the
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Fig. 11 Theoretical predictions of the distribution of microglia in
alane five cells wide that gave a Ca>* response, with an amplitude
greater than 15% of maximum, following excitation of a single
microglial cell at three different sites along the length of the lane,
indicated by filled circles (). The dots indicate the positions of
microglia in the lane. The diamonds (¢) indicate microglia that
gave a response following stimulation of the microglia near the
left-hand end of the lane (sixth cell from the left at —250 pm), the

model, due to the large amount of ATP released in this
region.

The model of purinergic transmission of Ca’* waves
was used to see if it could account for Ca>* propagation
along and between lanes of microglia, such as those
shown in Fig. 4. Figure 12 shows the propagation of
Ca’* waves in three such parallel lanes of cells, sepa-
rated by cell-free lanes 42 um wide, following initiation
of the Ca®* wave in the middle row of the middle lane
by applying 20 uM of ATP for 5s at a central cell. There
is propagation of the Ca®>* wave over about six cells
of the middle lane before the side lanes are engaged,
at about 7 s after application of the initiating stimulus

t=75s

200

Fig. 12 A diagrammatic representation of the theoretical spatial
and temporal changes in Ca®* in three lanes of microglia each
five cells wide, separated by cell-free lanes 42 m wide, following
excitation of a single microglial cell in the middle row of the
middle lane. The Ca’>* wave is initiated by a 5-s pulse of ATP of
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open circles (o) responses following stimulation of the microglia
near the right-hand end of the lane (sixth cell from the right
at 250 pum) and the plusses (+) microglia in the centre of the
lane (at 0 um). (A longer lane (800 wm) has been used for
this calculation.) The Kg values range from 25 to 45 uM for
different microglia across each lane. Note that there is no overlap
in the Ca®* wave domains of each stimulated microglial cell, the
diamonds, crosses and circles designating discrete regions

(Fig. 12). Both side lanes first generate a Ca’>" wave
that is in cells in a row opposite or nearly opposite the
row containing the initiating cell in the middle lane. By
13 s the crest of the Ca?* wave has reached the limits
of Ca’* propagation at about 100 um from the site of
initiation, by which time it has travelled less than 75%
of that distance along adjacent lanes (Fig. 12). Very few
cells are engaged in Ca?>* wave propagation in these
adjacent lanes and propagation fails over distances of
about 70 um along the lane and 50 um across it.

The question arises as to whether regeneration of
ATP in each cell is necessary. Repeating calculations
with regenerative release switched off, and thus only

t=15s
0.3
+ : §
o ' I"
O ol
200
200
0 5
um200 200
t=30s
0.3
& !
© ol -l_-
O 0 lutd \.-,'I ]

;N
200 -

um-200

200
= 0
-200 um
concentration 20 M on the central microglial cell at time ¢ = 0.
The vertical bars give Ca2* in uM at times t = 7.5, 15, 22.5 and 30
s, as indicated. Kg values range from 25 to 45 uM for different
microglia across each lane. Note the limited propagation of the
Ca”* wave in both the middle and side lanes
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pure diffusion of ATP from its initial release site, gave
travel distances along lanes reduced by about 20%.
We investigated whether this reduced distance could
be compensated for by increasing the initial release of
ATP, but this then recruited cells in adjacent lanes in a
way not observed experimentally. Thus the theoretical
calculations indicate a role for intracellular regenera-
tion of ATP, but at a much lower rate than in astrocytes.

Discussion

Although activation of P2X5 receptors by ATP leads to
an influx of calcium ions in microglial cells [16, 31-33]
it does not seem that these receptors mediate the Ca>*
wave propagation in these cells as this is blocked by
suramin which does not block P2X; receptors. It seems
likely that P2X; receptors are activated at higher con-
centrations of ATP than is required for P2Y receptor
activation [33], suggesting that the concentration of
ATP reached at the receptors after its release from mi-
croglia is insufficient to excite P2X; receptors. ATP acts
on microglial cells to both release calcium from internal
stores and to evoke an influx of calcium [34, 35]. P2Y
receptors mediate Ca®>* release from internal stores in
microglial cells [14, 21, 32, 33, 36, 37], the extent of
this release being under the modulatory control of P2X
receptors [25, 32] and of toll-like receptors [38].

ATP released following stimulation of astrocytes can
generate Ca’" transients in nearby microglial cells [2].
Repeated stimulation of the astrocytes releases suffi-
cient ATP to activate P2X; receptors on the microglial
cells, greatly increasing membrane permeability in the
microglial cells [1] and leading to the release of inflam-
matory cytokines, such as IL-2, from the cells [39]. The
present work suggests that in these experiments the
ATP released in moderate amounts from singly stim-
ulated astrocytes most likely acts on P2Y, receptors
on microglial cells. We could block the ATP-dependent
Ca’* propagation in these cells with suramin, which
blocks P2Y,, P2Y, and P2Y, receptors, but could not
be blocked by P2Y, receptor antagonists. Given that
the predominant receptor on microglial spinal cord
cells shows the pharmacological profile of P2Y, [12]
(see also [14]), we conclude that this receptor, which
we found in relatively high density, is most likely to be
mediating the effect of ATP. Thus there is no evidence
that P2X; receptors are engaged in Ca®* propagation
in microglia. It is interesting to note in this regard
that microglial cells rapidly re-orientate their processes
towards a site of ATP release in vivo as a consequence
of the action of the released ATP on P2Y receptors,
an action that is blocked by apyrase [40] and that

nucleotides acting on P2Y), receptors of microglia
exert a chemotactic effect [41].

We have used soft lithography techniques of micro-
fabrication to allow controlled and discrete patterning
of microglia so that quantitative investigations can be
carried out [42]. Such an approach avoids the difficul-
ties inherent in the random seeding of microglial cells
on a homogeneous substrate for carrying out quanti-
tative measurements of the properties of propagating
calcium waves [43]. The technique allows lanes of mi-
croglial cells with controlled widths of from 15 um to
over 150 um, separated by cell-free regions with the
same range of widths [44]. It is unlikely that this fabri-
cation method affects the seeded microglial cells, since
when applied to astrocytes the rates of propagation of
the Ca®* waves remain about the same as determined
in random seeded cultures [4, 5].

The amplitude of the Ca®* wave, and the percentage
of microglial cells excited to give a Ca’" response,
were correlated along the length of a microglial lane,
both decreasing from near the site of initiation over a
distance of about 120 um before the wave ceased to
be detectable. Decreases in amplitude of Ca’* waves
from a site of mechanical initiation have often been
observed in randomly seeded astrocytes over a homo-
geneous substrate, but in this case over several hundred
microns [45-47]. The purinergic gliotransmission model
suggests that the decline in amplitude of the Ca>* wave
is due to the relatively high level of ATP released from
the stimulated microglial cell, which then dominates
the concentration profile of ATP within approximately
100 pm. The decline in amplitude of the wave approxi-
mately follows this concentration gradient of ATP. The
decline in the percentage of microglial cells excited to
give a Ca’" response within this 100 um range is then
attributed to a failure of microglial cells possessing a
relatively high Ky to generate a Ca** response as the
concentration of ATP declines over the same range.
The more than two-fold range in the K values used in
our model is comparable to the range of P2Y, receptor
densities found in microglial cells using immunohisto-
chemistry.

Our work shows that there can be propagation of
Ca’* waves between parallel lanes of microglial cells
when these are about 30 um wide and separated by
cell-free lanes about 40 um wide, but this does not
occur until many microglial cells in the initiating lane
undergo a Ca** response. It seems likely that a certain
minimum amount of ATP must be released from the
initiating lane, involving a certain minimum number
of microglial cells undergoing a Ca>* response, before
nearby microglial lanes are excited. Since ATP can
diffuse across cell-free lanes as wide as 150 um from
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astrocyte-seeded lanes [5], it seems likely that the ATP
released from microglial cells is much less than that
from astrocytes since the P2Y, receptors in the model
for microglia possessed lower Kg values (25 — 45 uM)
than in the model for astrocytes (25 — 125 uM; [5]).

The purinergic transmission model can account for
the observed extent of the Ca?* wave provided pure
diffusion of ATP from the stimulation site is supple-
mented by regenerative release of ATP from the mi-
croglia. Fluctuations in the density of excited microglia
along a lane leads to local fluctuations in the amplitude
of the Ca?>* wave due to changes in the local ATP
concentration, consequential on the changes in the local
number of microglial cells excited. This is modelled by
assigning a range of Ky values to the P2Y receptors
on the microglia, and this also reflects the density of
receptors on individual microglial cells.

Stimulation of three different microglial cells some
hundreds of microns apart gave a Ca?* response in
microglia at highest density closest to the site of stim-
ulation. Our model quantitatively explains these ob-
servations as arising from the large amount of ATP
released by the stimulated microglial cell diffusing to
activate microglia within about 100 pm.
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