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By analyzing interpoint comparisons, we obtain significant results describing the relationship in “hippocampus shape space” of
clinically depressed, high-risk, and control populations. In particular, our analysis demonstrates that the high-risk population is
closer in shape space to the control population than to the clinically depressed population.
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1. INTRODUCTION

Major depressive disorder (MDD) is a mental disorder af-
fecting about 16% of the US adult population, and is a ma-
jor cause for concern not only in the United States but the
world over. It is a disorder characterized by depressed mood,
diminished interest or pleasure, significant weight loss, feel-
ings of guilt or low self-worth, insomnia or hypersomnia, fa-
tigue, poor concentration, or recurrent thoughts of death.
The symptoms are widespread, and tend to be quite stable.
In 2000, the World Health Organization (WHO) estimated
depression to be the leading cause of disability as measured
by years lived with disability (YLD) and the fourth leading
contributor to the global burden of disease. See [1].

Over the years, a significant amount of research has been
dedicated to finding physiological causes of MDD. One such
study involved the catecholamine hypothesis [2] that sug-
gested that MDD is caused by decreased levels of the neu-
rotransmitters norepinephrine and serotonin. This finding
led to most modern day medication for MDD, which works
by preventing the reuptake of these neurotransmitters. Neu-
roimaging research has also shown that enlarged ventricles,
sulci, reduced volume of the frontal lobe and basal ganglia
are also associated with depressive episodes [2].

The studies aforementioned involved studying the brain
once MDD had already set in. The physiological changes are
associated with the symptoms themselves. What about phys-
iological predictors for MDD? Such predictors would facili-

tate the diagnosis of the disorder well before the onset of the
symptoms, perhaps allowing measures to prevent the symp-
toms from ever appearing.

A vast amount of research is being conducted in order
to find biological predispositions to MDD. There is evidence
correlating shape differences of the hippocampus to depres-
sion [3] and schizophrenia [4]. In this manuscript we analyze
interpoint comparisons [5] to investigate the relationship
in “hippocampus shape space” of three populations among
twins. The subjects are categorized into three categories: the
affected subjects (clinically depressed, or MDD), the nonaf-
fected cotwin of the MDD subjects (high-risk, or HR), and
the nonaffected twin pair (Control, or CTRL). The dataset
includes both monozygotic (MZ) and dizygotic (DZ) twin
subjects.

According to established literature, the concordance rate
for monozygotic (MZ) HR subjects is 40%, and for dizygotic
(DZ) HR subjects 11% [6]. This demonstrates that the sub-
jects labeled HR (due to the fact that their twin is MDD) are
in fact high risk—they develop MDD at a higher rate than
the general population.

2. DATA

Our data set includes n = 114 subjects (57 twin pairs): 29
CTRL-CTRL pairs, 22 HR-MDD pairs, and 6 MDD-MDD
pairs. The subjects are young female twins recruited through
an epidemiological sample based on Missouri birth records.
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To ensure that hippocampus shape space is the only inde-
pendent variable, other factors had to be controlled; all of
the subjects were right handed and were screened for factors
that may cause structural changes of the brain such as loss
of consciousness greater than 5 minutes, chronic medical or
neurological illnesses, or pregnancy.

To obtain images of the hippocampus, very high resolu-
tion magnetic resonance imaging (MRI) scans were required.
The Siemens Vision/Sonata 1.5T scanner was used to acquire
three MPRAGE scans [7] (160 slices at 256x256 FoV, 1.0 mm3

isotropic voxels). Using Analyze [8], the images were regis-
tered and averaged, converted to 8-bits while optimizing the
intensity range, and interpolated to 0.5 mm isotropic voxels.
The image protocol implemented above allows for optimal
comparative analysis.

For each of left and right hemispheres separately, 22
three-dimensional landmarks were identified for each hip-
pocampus and were used to generate and align hippocampal
subcubes to a standardized orientation. It is these landmark
data that we employ herein.

3. SHAPE

Using the landmark data, for each pair of subjects and for
each of left and right hippocampus, we produce an interpoint
shape comparison, as described below.

For two subjects x and y (for the left hemisphere, say),
let x1, . . . , xN and y1, . . . , yN be the corresponding landmarks,
where N = 22.

3.1. Landmark matching

Finding the shape comparison involves a landmark matching
(LM) transformation. The transformation is nonparametric,
and this flexibility implies that overfitting must be guarded
against via regularization. LM finds a diffeomorphism ϕ that
minimizes an error criterion which includes both landmark
mismatch and transformation complexity. That is,

ϕ∗ = arg inf
ϕ
σ d
(
ϕidentity,ϕ

)2
+

N∑

i=1

∥∥ϕ(xi)− yi
∥∥2

, (1)

where d is a geodesic distance in a group of diffeomorphisms
[9] and σ > 0 is a regularization parameter which controls
the relative contribution of transformation complexity ver-
sus landmark mismatch to the optimization objective. The
algorithm solves the nonlinear Euler equation by a Newton
method combined with a shooting procedure [10].

We use LM(x, y) = ‖ϕ∗‖, the energy of the minimizing
diffeomorphism, as the shape comparison between two sub-
jects x and y (for the left hemisphere, say).

3.2. Interpoint comparison matrices

Applying LM to the left or right hippocampus data for
each pair of subjects yields an interpoint comparison ma-
trix D̃. However, D̃ is n × n, hollow (zeros on the diagonal)
and is asymmetric. That is, we obtain matrices D̃LM-Left and
D̃LM-Right.

114

80

58

1

1 58 80 114

CTRL-CTRL HR-CTRL MDD-CTRL

CTRL-HR HR-HR MDD-HR

CTRL-MDD HR-MDD MDD-MDD

Figure 1: Structure of the interpoint comparison matricesD for the
114 subjects.
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Figure 2: The interpoint comparison matrix DLM-Left, after sym-
metrization, for the 114 subjects. The comparison values are color-
coded, with red representing zero (e.g., the diagonal entries) to
green representing large values.

The nature of the hippocampus shape space is such that
under ideal conditions, it should yield a symmetric distance
matrix. The asymmetry of the matrix D̃ does not reflect the
true nature of the hippocampus shape space, and is in fact a
result of the limitations in the LM matching method. Hence,
before further investigation, D̃ must be symmetrized to D,
using an appropriate symmetrization technique [11]. In this

work we symmetrize via di j = min {d̃i j , d̃ ji}.
Figure 1 depicts the structure of the interpoint compari-

son matrices for the 114 subjects. Figure 2 depicts the actual
interpoint comparison matrix DLM-Left (after symmetriza-
tion) for the 114 subjects.
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Figure 3: A multidimensional scaling scatter plot of DLM-Left

mapped intoR2. Little can be discerned from this plot regarding the
relationship in hippocampus shape space of the three populations
(MDD, HR, CTRL)—no class-conditional differentiation is appar-
ent.

4. STATISTICAL ANALYSIS

Our task is to begin describing the relationship of the three
populations (MDD, HR, CTRL) amongst one another in the
hippocampus shape space elicited by the LM interpoint com-
parisons. First, we present a multidimensional scaling (MDS)
[12] scatter plot; unfortunately, we see in Figure 3 that no
significant relationship can be discerned from this plot. Em-
ploying linear discriminant analysis (LDA) after MDS for all
possible MDS target dimensionalities—analysis via LDA ◦
MDS ◦ LM (·) a la Miller et al. [13]—yields no classifica-
tion capabilities statistically significantly superior to chance.
Nevertheless, we will see in Figures 4 and 5 a suggestion that
perhaps progress can be made on our task, given a sufficiently
clever methodology.

Figure 4 depicts kernel probability density estimates [14]
for the LM-Left comparisons to show that the entries of
the interpoint comparisons matrix DLM-Left that correspond
to comparisons between HR and CTRL (the solid line in
Figure 4) are, overall, smaller than the entries which cor-
respond to comparisons between HR and MDD. That is,
Figure 4 suggests a stochastic ordering relationship [15]:
d(HR, CTRL) <std(HR, MDD). Such a result is precisely
what we seek. Again, dependencies amongst the entries of
D make it difficult to assess the statistical significance of the
result depicted in Figure 4.

Each row of the interpoint comparisons matrix D, cor-
responding to a single HR subject, gives rise to two sam-
ples: {d(HR, CTRLi)} and {d(HR, MDD j)}. That is, we have
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Figure 4: This figure shows kernel probability density estimates for
DLM-Left. The solid line depicts d(HR, CTRL) and the dashed line
depicts d(HR, MDD).
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Figure 5: This figure shows the quantile-quantile plot for DLM-Left.
Depicted are the individual P-values for a Wilcoxon-Mann-
Whitney test of each HR subject, in turn, based on the two samples
{d(HR, CTRLi)} and {d(HR, MDDi)}.

the vector of comparisons from that HR subject to every
CTRL subject, and we have the vector of comparisons from
that HR subject to every MDD subject. (We do not in-
clude in these vectors the twin of the particular HR sub-
ject under consideration; ignoring twinnedness in the anal-
ysis proves beneficial that we eliminate bias in similarity
status between a subject and her twin that is not due to
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condition (MDD,HR,CTRL).) For this individual HR sub-
ject’s two sample data, a Wilcoxon-Mann-Whitney test [16]
of the null hypothesis that the distribution of comparisons
d(HR, CTRL) is the same as the distribution of comparisons
d(HR, MDD), against the alternative of stochastic ordering,
yields a P-value. Figure 5 provides a quantile-quantile plot of
these P-values for DLM-Left. Under the null hypothesis, these
P-values would be expected to be distributed approximately
uniform(0,1). The plot demonstrates a clear deviation from
a uniform distribution, again suggesting a stochastic ordering
relationship—d(HR, CTRL) <std(HR, MDD). Again, depen-
dencies amongst the entries of D make it difficult to assess
the statistical significance of the result depicted in Figure 5.

The quantile-quantile plot independently reiterates the
suggestion of a stochastic ordering relationship that was first
seen using the kernel probability density estimates. Thus,
while Figures 4 and 5 give an inkling of the type of infor-
mation that can be gleaned regarding the relationship in hip-
pocampus shape space of the three populations (MDD, HR,
CTRL) amongst one another, it remains henceforth to accu-
rately assess the Figures’ suggestion.

5. CLASSIFICATION

To further uncover the characteristics of hippocampus shape
space, we consider the task of classifying each HR subject as
either MDD or CTRL.

As before, we consider the two samples, {d(HR, CTRLi)}
and {d(HR, MDD j)}, associated with each individual HR
subject. We classify the HR subject as belonging to MDD or
CTRL based on the Wilcoxon-Mann-Whitney test statistic P-
value, as described in [17]; (see also [15, page 183]).

Once we have classified each of the HR subjects in this
way, we assess the relative similarity of HR to CTRL ver-
sus MDD based on the classifier’s performance—based on
the collection of HR subjects’ classifier-assigned class labels,
taken as a whole.

This procedure can be employed with LM interpoint
comparisons obtained on Left, Right, or both Left and Right
hippocampuses, and with any of the three populations (HR,
CTRL, MDD) as the population of interest—the role of HR
in the description above.

6. RESULTS

Classifying the 22 HR subjects as either MDD or CTRL us-
ing DLM-Left results in 19 classified as CTRL versus 3 classi-
fied as MDD. The probability of obtaining a result this ex-
treme or more extreme (the P-value) under the least favor-
able null hypothesis H0 : HR are equally likely to be classified
as MDD as CTRL is P < .01 against each one-sided alter-
native. LM-Right yields 16 classified as CTRL versus 6 clas-
sified as MDD—classification performance not statistically
significantly distinguishable from chance. Combining left
and right, the shape comparisons LM (LM-Left and Right)
yields 20 classified as CTRL versus 2 classified as MDD—
P < .0005 for each one-sided alternative and strong statis-
tical evidence that HR is more like CTRL than MDD in hip-
pocampus shape space.

HR CTRL MDD
Figure 6: Artist’s rendition of what hippocampus shape space
might look like were it one-dimensional—if the population shapes
could be accurately represented in R1. Our results suggest that the
joint relationship of the three populations, in terms of shape, puts
the CTRL population between the HR and MDD populations. The
relationship depicted here holds for both LM-Left and LM-Right,
although our results suggest that for the left hippocampus CTRL is
shifted closer to HR while for the right hippocampus the CTRL is
shifted closer to MDD.

An analogous analysis—classifying the 33 MDD subjects
as either HR or CTRL using LM-Left—shows that MDD is
more like CTRL than it is like HR (P < .00002 for each one-
sided alternative), and that the left carries more information
than does the right—the P-values are smaller indicating that
the signal is stronger.

The results obtained from classifying the 59 CTRL sub-
jects as either HR or MDD are more nuanced: in this case,
using LM-Left indicates that CTRL is more like HR than it
is like MDD (P < .0005) while using LM-Right indicates that
CTRL is more like MDD than it is like HR (P < .0005). This
hemispherical ambiguity provides further insight into hip-
pocampus shape space.

Finally, we note that in the last two columns of Table 1
we consider classifying the 22 HR subjects (via leave-one-out
crossvalidation) as HR or MDD and as HR or CTRL. These
results are consistent with our other findings—HR is more
difficult to distinguish from CTRL than from MDD, and the
information extracted via LM-Left is more powerful for this
task than is LM-Right.

7. CONCLUSIONS/DISCUSSION

Our analysis indicates that HR is more like CTRL than it is
like MDD, MDD is more like CTRL than it is like HR, and
CTRL is not obviously more like one or the other. Also, we
discern that the left hippocampus carries more information
than does the right.

If hippocampus shape space were one-dimensional—if
the population shapes could be accurately represented in
R1—then the joint relationship described by these three re-
sults could be depicted as in Figure 6, with the CTRL pop-
ulation between the HR and MDD populations in terms
of shape. However, it must be noted that this depiction
(Figure 6) offers only a simplified view of the true infinite
dimensional nature of the shape space configuration, as sug-
gested by the fact that the 2-dimensional MDS embedding
depicted in Figure 3 presents little or no class separation.

7.1. On Populations

Our stated task is in terms of populations—to begin de-
scribing the relationship in hippocampus shape space of the
three populations (MDD, HR, CTRL) amongst one another.
However, our results are conditional—using LM-Left we clas-
sify, for example, the 22 HR subjects representing the HR
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Table 1: Output of classifier based on the Wilcoxon-Mann-Whitney test statistic. For example, the first numerical column, “H : CvM,” gives
the number of HR classified as CTRL versus MDD and the second numerical column, “H : MvC,” gives the number of HR classified as
MDD versus CTRL. Thus, we find that combining left and right, the shape comparisons LM (LM-Left and Right) yields 20 HR classified as
CTRL versus 2 HR classified as MDD—strong statistical evidence that HR is more like CTRL than MDD in hippocampus shape space. (This
analysis is based on 22 HR subjects, 33 MDD subjects, and 59 CTRL subjects. Thus, e.g., the two HR numbers, H : CvM and H : MvC, should
sum to 22. Discrepancies are due to situations in which the classifier makes “no decision” as described in [17]; (see also [15, page 183]).

H : CvM H : MvC M : HvC M : CvH C : HvM C : MvH H : HvM H : HvC

LM-Left 19 3 5 28 48 11 16 7

LM-Right 16 6 9 24 22 33 13 8

LM-Left & Right 20 2 6 27 31 25 16 6

population as belonging to either the MDD or the CTRL
class, conditionally on “training” data from MDD and CTRL.
This, in fact, is the standard approach in probabilistic pattern
recognition; see, for example, [18]. The difference between
a focus on populations versus conditionals is indicative of a
difference between “policy science” and “laboratory science”
[19]. A justification for the conditional approach in “labo-
ratory science” is given in [18] where it is claimed that the
unconditional approach “ . . . would be unnatural, because
in a given application, one has to live with the [training] data
at hand.” In “policy science”, however, knowledge about the
populations themselves may be the focus.

By performing our analysis thrice, for each of the three
populations in turn conditionally on the “training” data
from the other two, we obtain three conditionals. Letting nj
denote the class-conditional sample sizes for each of the three
classes, we see that the joint distribution for our sample is
(n1+n2+n3)·d-dimensional (where d is the presumed “shape
space” dimensionality of each observation). Each conditional
considered is nj·d-dimensional, with one population re-
maining. The overall joint distribution of interest—the three
populations in “shape space”—is of course not simply the
product of our three conditionals. However, some population
inferences regarding stochastic ordering can be performed
via the (multiple) conditionals, and in particular the condi-
tional approach justifies the simplistic view of our three pop-
ulations in “shape-space” given by Figure 6.
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