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Abstract
Healthcare cost-effectiveness analysis (CEA) often uses individual patient data (IPD) from
multinational randomised controlled trials. Although designed to account for between-patient
sampling variability in the clinical and economic data, standard analytical approaches to CEA
ignore the presence of between-location variability in the study results. This is a restrictive
limitation given that countries often differ in factors that could affect the results of CEAs, such as
the availability of healthcare resources, their unit costs, clinical practice, and patient case-mix.

We advocate the use of Bayesian bivariate hierarchical modelling to analyse multinational cost-
effectiveness data. This analytical framework explicitly recognises that patient-level costs and
outcomes are nested within countries. Using real life data, we illustrate how the proposed methods
can be applied to obtain (a) more appropriate estimates of overall cost-effectiveness and associated
measure of sampling uncertainty compared to standard CEA; and (b) country-specific cost-
effectiveness estimates which can be used to assess the between-location variability of the study
results, while controlling for differences in country-specific and patient-specific characteristics.

It is demonstrated that results from standard CEA using IPD from multinational trials display a
large degree of variability across the 17 countries included in the analysis, producing potentially
misleading results. In contrast, ‘shrinkage estimates’ obtained from the modelling approach
proposed here facilitate the appropriate quantification of country-specific cost-effectiveness
estimates, while weighting the results based on the level of information available within each
country.

We suggest that the methods presented here represent a general framework for the analysis of
economic data collected from different locations.
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1. Introduction
Healthcare economic evaluation studies benefit considerably from access to individual
patient data (IPD) from randomised controlled trials (RCTs) [1]. In the context of some
healthcare interventions - in particular, pharmaceuticals - RCTs are often multinational in
design. Such studies offer several advantages over single-country counterparts. These
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include the opportunity to reach rapidly the required target sample size, and meeting the
needs of regulatory agencies in different jurisdictions. Furthermore, because these studies
enrol patients from a wide range of countries, multinational trials are thought to have the
potential to increase the geographical generalisability of clinical and cost-effectiveness
estimates [2].

However, there are two sets of arguments that suggest this viewpoint many not be totally
defensible. The first relates to the fact that policy-makers are essentially jurisdiction-specific
and, in most instances, this accords with being country-specific. An increasing number of
healthcare systems now require economic evidence to make country-specific decisions
regarding the reimbursement of specific health technologies [3], which suggests that trial-
wide cost-effectiveness results may not be relevant to any specific jurisdiction. Countries in
fact will inevitably differ in factors such as availability of healthcare resources, clinical
practice, patients’ case-mix and the costs of delivering healthcare. These factors can cause
the value for money of a healthcare intervention to vary between different countries in a
multinational study [2], leaving country-specific policy-makers uncertain about the extent to
which trial-wide (i.e. pooled) cost-effectiveness results are relevant to their own jurisdiction.

The second set of arguments relates to the appropriateness of the methodology used to
analyse IPD alongside multinational trials. Patients are often recruited and treated (in a
particular centre) in a given country, hence cost-effectiveness data take on a natural
hierarchical structure. Failure to acknowledge these features of the data may lead to
misleading conclusions with regard to the generalisability of the study results. In other
words, it can be argued that there is likely to be statistical heterogeneity in the country-
specific cost-effectiveness results between different jurisdictions participating in a
multinational RCT, and that it is implausible to assume a priori that differential costs and
health outcomes are the same in each country.

There are three important questions that must be addressed when assessing the geographical
generalisability of the conclusions of the economic component of any health technology
assessment (HTA). First, what are the appropriate methods to analyse IPD relating to cost-
effectiveness data from multinational RCTs? Second, how should we assess the extent to
which trial-wide results are generalisable between countries participating in the same study?
Finally, how to produce country-specific cost-effectiveness estimates that are directly
relevant to local decision-makers?

Various analytical strategies - most of which use regression methods - have been proposed
to address the above questions [1]. Early approaches ignored the natural clustering in the
data and failed to implement methodologies that could facilitate the estimation of the
between-country variability in the results [4]. A series of recent papers advocated the use of
hierarchical modelling to analyse cost-effectiveness IPD from multi-location trials, while
simultaneously allowing for (potential) between-location variability in the data [5-8]. Pinto
et al [5] recently explored alternative estimation methods to obtain country-specific
estimates of cost-effectiveness, conducting a simulation exercise based on summary
estimates of country-level differential costs and effects from a large multinational RCTs.
Grieve et al [7] compared OLS and hierarchical models in the analysis of cost data from 11
European countries, and proposed a generalised linear mixed model to address the skewed
nature of the length of stay and cost data. Finally, Manca et al [8] extended the net benefit
regression [9] to accommodate the hierarchical structure of economic data in multi-location
trials, showing how hierarchical models can be used to obtain trial-wide and location-
specific estimates of incremental cost-effectiveness, while correctly quantifying the
measures of sampling uncertainty around these mean estimates [8].
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This paper advocates the use of Bayesian bivariate hierarchical models (BHLM) for the
analysis of multinational cost-effectiveness data. In view of the need to investigate potential
between-country differences in cost and health outcomes, it is demonstrated that BHLM can
be used to accommodate information at subject- and country-level to facilitate robust
estimation of overall (i.e. trial-wide) and country-specific differential mean costs and
effects. The proposed approach is illustrated using data from the Assessment of Treatment
with Lisinopril and Survival (ATLAS) study, a large multinational trial comparing low
versus high doses of the ACE inhibitor Lisinopril in patients with chronic heart failure [10,
11].

The paper begins by briefly summarising existing approaches for RCT-based cost-
effectiveness analysis (CEA). Section 3 describes the bivariate non-hierarchical regression
methods for CEA proposed in the literature. Section 4 outlines the rationale for extending
the use of BHLM techniques to the analysis of IPD from multinational cost-effectiveness
data. The case study is presented in Section 5. The next provides a discussion of the results
from the application of non-hierarchical and hierarchical bivariate models to the case study.
The final section summarises the contributions of paper contextualising these in the light of
the current methodological debate in medical economic evaluation.

2. Analytical strategies for CEA using individual patient data from
multinational trials

Despite the existence of factors that could potentially affect the between-location variability
of the study results, most CEAs using IPD collected alongside multinational RCTs have
been conducted assuming that the clinical effectiveness of the intervention does not differ
greatly (at least in relative terms) across countries [12, 13], and that pooling clinical data
across countries (and centres) to assess the effect of treatment on clinical outcomes is an
acceptable strategy.i Similarly, on the cost side the standard method has been to apply a
single set of unit costs (typically taken from one country) to all patient-specific resource use
data collected in the study, regardless of where this resource use had taken place. Pooled
costs are related to pooled outcomes to obtain a trial-wide (or pooled) measure of cost-
effectiveness. Results for another jurisdiction are then obtained by multiplying the pooled
trial-wide resource use data by resource-specific unit costs taken from this other jurisdiction.
The above practice implicitly assumes that resource use and effectiveness data are perfectly
transferableii between countries/jurisdictions [14]. Despite the popularity of this approach,
the proliferation of country-specific re-assessments of previously published trial-wide CEAs
suggests that local decision-makers are often uncertain about the ‘transferability’ of the trial-
wide results to their own jurisdiction.iii

An alternative approach, sometimes adopted in multinational studies, assumes that resource
use data are not at all transferable between locations while effectiveness data are. Analyses
for a particular country/jurisdiction would produce cost estimates by multiplying unit costs
for a given country by resource use of patients recruited in the same country, while relating
these costs to trial-wide effectiveness data (see for instance Bjorholt et al [15]). The two

iThe validity of this assumption is sometimes assessed using formal hypothesis tests of heterogeneity, despite the fact that these are
typically underpowered [45]. In fact, Pinto et al. recently showed that the between-country variability in differential effects was even
greater than the corresponding variability in differential cost. [5]
iiThe terms ‘transferability’ and ‘generalisability’ are used here interchangeably. Strictly speaking the former should be interpreted as
“the extent to which results from a given setting also apply to other settings”, whereas the term generalisability should be used to
indicate the extent to which results can be adapted to apply in other settings, or can be interpreted for other settings”.
iiiThe economic data collected in the ATLAS trial, for instance, have been analysed from the US perspective with respect to cost
differences [47], and in the UK [10], Switzerland [48] and Italy for cost-effectiveness [49]. A similar practice is observed for other
multinational studies such as the PURSUIT [50-52], HOPE [15, 53], and SOLVD [54, 55] trials.
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main limitations with this approach are that, first, it is only feasible for trials which recruited
a reasonably large number of patients in the country of interest, and second, it ignores the
fact that IPD on costs and effects are naturally correlated. Analysing two different samples
for costs and effects will introduce bias in the estimation of the joint distribution of the mean
differential costs and effects, influencing the analyst’s ability to correctly quantify the
sampling uncertainty surrounding the measure of cost-effectiveness [14].

A third and less commonly utilised approach to the analysis of multinational cost-
effectiveness IPD is to focus on only one of the countries/jurisdictions in the trial, estimating
mean costs and effects solely using patient data from such a country (examples can be found
in Liljias et al [16] and Mark et al [17]). While overcoming the limitation of the previous
approach, this strategy implicitly assumes that country-specific data are not at all
transferable between locations. Most of the time this is impracticable for countries with low
recruitment rate in the trial. Furthermore, it makes a sub-optimal use of the data, by
discarding potentially relevant information from other countries.

In practical terms it is likely that IPD from multinational trials will be partially transferable.
That is, some components of resource use and health outcomes will be common between
locations, while others will be more country-specific. Analytically, the problem is to
disentangle the extent to which CEA data for one country/jurisdiction are generalisable to
another. Attempts to address the issue have focussed on the analysis of individual-patient
resource use and cost data only, rather than full cost-effectiveness.

Willke et al were the first to use regression methods for the simultaneous analysis of cost
and effects data collected alongside multinational RCTs [18]. To explore the between
countries variability in the results, their regression model included country-by-treatment and
country-by-outcome interaction terms, which facilitated country-specific estimation of mean
differential costs and effect. The regression estimates were then used to calculate
incremental cost-effectiveness ratios (ICERs) uing (i) own-country costs and effectiveness
results, (ii) own-country costs and trial-wide effectiveness results; or (iii) own-country costs,
but trial-wide resource utilisation and effectiveness. The authors found that greatest
variation in the country-specific ICER was in case (i), where country-specific resource
utilisation, unit prices and outcome levels were all taken into account.

In a recent paper, Willan et al [6] used hierarchical modelling to obtain empirical Bayes
estimates of country-specific differential costs from summary data derived from a large
multinational trial. The authors compared and contrasted (i) overall random effect estimate,
(ii) the country-level estimates obtained from a stratified analysis (i.e. similar to having a
dummy variable for each country), and (iii) the empirical Bayes estimates obtained from a
random effect model, finding that estimates obtained with (iii) to be more informative for
the Canadian decision maker. The method in (i) and (iii) are essentially similar to a random
effect meta-analysis [19], which assumes that study-specific (country-specific, in the case of
the models applied to multinational IPD) estimates are drawn from a distribution of possible
realisations of the study-specific treatment effect (country-specific differential cost) which
follows a normal distribution. Using the same summary data, Pinto et al [5] conducted a
simulation exercise to explore the validity of univariate and bivariate shrinkage models for
differential costs and effects derived using an empirical Bayes approach.

Grieve et al [7] and Manca et al [8] have recently proposed the use of hierarchical modelling
to analyse, respectively, individual-level cost and cost-effectiveness data collected alongside
multi-location trials. The authors justify the proposed approach on the basis of two main
considerations. First, patients treated in the same site are expected to be more similar (in
terms of resource use and clinical outcome) than those treated in other locations [20, 21].
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Second, locations may vary markedly in factors that influence the resource use, unit costs
and outcome data observed in trials [1, 2]. Manca et al showed how to use hierarchical
regression analysis to obtain trial-wide and location-specific estimates of cost-effectiveness,
using centre-specific predictions to explore the between-location variability in the results.
This approach was developed in the context of a univariate model for net benefit and did not
use any patient- or centre-specific covariates to explain the observed between centres
variability in the results.

This paper extends the approach proposed by Manca et al in two ways. It develops a
Bayesian bivariate hierarchical regression model for the analysis of individual patient level
cost-effectiveness data collected alongside multinational trials, showing how to incorporate
patient- and country-specific information in the model.

3. Bivariate (non-hierarchical) modelling approaches for trial-based CEA
Willan et al [22] recently extended the net benefit regression framework proposed by Hoch
et al [9] using of a system of seemingly unrelated regression (SUR) equations for IPD on
costs and health outcomes. This (bivariate) approach has three main advantages. Firstly, it
facilitates explicit modelling of both costs and effects while allowing the inclusion of a set
of covariates in the two equations. Secondly, it exploits the existence of correlation, at
patient level, between costs and effects, thereby improving the efficiency of the estimation
process when this correlation is different from zero. Thirdly, unlike the standard (univariate)
net benefit regression, SUR does not require a new regression to be estimated for every
value of the cost-effectiveness threshold (i.e. λ). Using a fully parametric approach, the
authors showed how the ‘treatment effect’ (in terms of differential mean costs and effects) is
estimated from a regression model in which the error terms for the cost and effects equations
are assumed to follow a bivariate normal (BVN) distribution with (zero) mean and a given
covariance matrix.iv

A more flexible formulation of the non-hierarchical bivariate model for cost-effectiveness
IPD, has been proposed by O’Hagan et al within a Bayesian statistical framework [23].
Their model can be illustrated as follows. Let the vector of individual-specific costs (Cti) and
effects (Eti), receiving the treatment t = (0, 1) be described as follows,

(1)

where IPD on cost and effects are assumed to follow a BVN distribution, with the
parameters , and  representing respectively the sample mean estimates for effects
and costs in the two arms of the trial (0=standard intervention; 1=new intervention). The

parameters , and  are, respectively, the variance of the mean effects, the variance
of the mean cost, and their covariance in treatment arm t. Notice that unlike the SUR model,
this formulation does not require the covariance matrix to be the same in each treatment
group.

In each treatment arm, mean cost and effects were assigned a non-informative joint
multivariate normal prior distribution, while the covariance matrix was characterised by a
Wishart distribution. The estimation of the model parameters was carried out using Markov

ivIn the SUR approach the cost and effects equations are therefore related through their error terms. As Willan et al. point out this
method brings efficiency gains over unrelated OLS regression if different sets of covariates are used in each equation. The authors
show how to extend the SUR approach in presence of a set of patient-specific covariates. It is important to note that in this formulation
the variances for costs (and effects) are assumed to be the same in both treatment arms.
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chain Monte Carlo (MCMC) methods, deriving the information of interest from the posterior

distribution of the differential mean costs  and effects .

Model (1) can be re-parameterised using the, so-called, product normal formulation which
reinterprets the multivariate model into a series of related (univariate) linear models [24-27],
as followsv

(2)

which assumes (for each treatment arm) a Normal distribution for effects and a Normal
distribution for costs, with the latter being conditional upon the departure of the individual-

specific effectiveness (i.e. ) from its treatment-group specific overall mean
(Etg). The quantities α and γ represent, respectively, the trial-wide mean cost and effect for
the control arm.

When IPD on costs and effects follow a BVN distribution, expressions in (2) can be back-
transformed to obtain the parameters in (1) as follows

(3)

This formulation captures the correlation between costs and effects at patient level through
the terms θ0 and θ1 assuming that in each arm, the mean cost is linearly related to the

departure of the patient-specific effectiveness from its group mean (i.e. ). The differences
in mean cost (Δc) and mean effects (Δe) are subsequently combined as follows to estimate
the incremental net benefit:

(4)

A Bayesian formulation of (1) requires the specification of prior distributions for both the
vector of mean cost and effects and the covariance matrix. The ‘textbook’ definition of a
prior distribution for the latter is in the form of a Wishart distribution [25, 26]. However,
several authors have commented on the fact that the definition of a non-informative Wishart
prior distribution for variance parameters is not a trivial task [25, 26, 28]. One of the
advantages of adopting the product-normal formulation in (2) is that more standard non-
informative priors [26] for variance parameters can be used.

vMultivariate normality has the following property [26]. Let X and Y follow a BVN, X, Y ∼ BVN[θX,θY,σX,σY,ρ], where the

distribution has the following properties , , , ,  . It can be

showed that the conditional distribution of  , where  and

.
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The models discussed so far assume no differences between countries, and it is reasonable to
expect some degree of clustering in multinational economic trials.vi

4. Bivariate hierarchical linear model in trial-based CEA
The model described in the previous section can be extended in two ways. Firstly, by
formally recognising the hierarchical structure of the cost-effectiveness data, and secondly,
by incorporating subject and country specific covariates to explain observed between-
country variability in the economic results. The standard implicit assumption underpinning
the validity of this class of models relates to the concept of exchangeability between the
units conveying information on the parameter of interest (i.e. country-specific differential
costs and effects). The implications of this assumption are considered in the discussion
section of this paper. For a full discussion of the concept of exchangeability in Bayesian
hierarchical models see Gelman et al [25] (Section 5) and Spiegelhalter et al. [26] (Section
3.17).

4.1 Accounting for hierarchical data structure
We start by reformulating (1) to take into account the nested structure of the cost-
effectiveness data (i.e. patients clustered within countries) as follows

(5)

where Etij and Ctij represent respectively, the observed effect and cost of the ith patient
receiving treatment t(= 0,1) in country j. Note that (5) is the same as (1) except that we have
now introduced a subscript to indicate that we are interested in the country j estimates of the
mean costs and effects in each arm, as well as their differential mean estimates.

It is assumed for simplicity that the covariance matrix is not country-specific, i.e. in each
arm, the variance of costs and effects between subjects is the same in each country, as is
their covariance.vii This is another important feature of the modelling framework proposed
here compared to the approaches described in section 3.

As before, (5) can be re-expressed using the product-normal formulation

(6)

where αj and γj are treated as fixed effects within each country, while the jth country-
specific differential mean effects (Δej) and costs (Δcj) are assumed to follow a BVN
distribution and to be correlated with each other, as showed in (7),

(7)

viThis is an important consideration even in trials where individual patients are the unit of randomisation [56-58].
viiThis assumption can be relaxed to incorporate between-country differences in the covariance matrix, but it’s relevance it’s likely to
depend on the data.
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where  and  represent the between-country variance in the (country-specific) difference
in mean costs and effects, δc and δe are the overall differences in mean costs and effects, and

 is the departure of the country-specific mean differential effects from the trial overall
mean.

This formulation differs from the model proposed by Manca et al. [8], in that the random
effects in (7) are specified only for the differential mean costs and effects. In this sense, this
model resembles a Bayesian (random effects) IPD meta-analysis [26]..

The parameters (Δcj) and (Δej) can be combined to calculate the country-specific
incremental net benefit as showed in (8).viii

(8)

For the jth country, the expressions in (6) can be back-transformed to the parameters in (5),
as before

(9)

The choice of a truly non-informative prior for variance parameters of the random effects in
BHLM is an area of ongoing methodological research [25, 26, 29]. Following Lambert et al.

[30], a range of several non-informative prior distributions for the variances (  and ) of
the ‘random effects’ has been investigated here, and uniform priors on the standard
deviation scale have been selected in the final model. This choice was consistent with recent
recommendations [25, 26]. For the other parameters in (9) standard non-informative prior
distributions were used.

4.2 Patient and country covariates
An important feature of the framework presented in equations (6) to (9) is its ability to
accommodate explanatory variables at patient and country level. There are several reasons
for wanting to do so in RCT-based statistical CEA modelling.

4.2.1 Subject level covariates—The selection of patient-level covariates in clinical
trials is usually a choice dictated by clinical considerations. There are however three main
justifications for including subject-level covariates in the cost-effectiveness modelling of
IPD. Firstly, adjustment for baseline imbalance of important prognostic factors between
groups [31]. This improves the efficiency of the estimation process and ensures that
‘treatment effects’ estimates are unbiased. The second reason is to obtain robust country-
specific outcome measures. If there is between countries variation in a given covariate - say
age - considered to be an important predictor of cost (effect) differences, then although age
may be balanced between treatment groups within each country, part of the between-country
variation in the cost-effectiveness results could be ascribed to by-country variation in mean

viiiIt could be argued that different decision makers may have different maximum willingness to pay to achieve one additional unit of
effectiveness. In this case equation (8) can be rewritten as INMBj = (Δej ·λj - Δcj)
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age. A final argument for including subject-level covariates is to look at effect modification
[31]. If the researcher believes that differential costs and effects may differ between sub-
groups of patients (e.g. by gender) then it is important to look at treatment-covariate
interactions. For simplicity, this paper does not explore treatment-covariate interaction at the
patient level, but the models presented here could be easily extended to this purpose. For an
application of these models to the case of patient and centre sub-group analysis see the
recent work by Nixon and Thompson [32].

4.2.2 Country/jurisdiction level covariates—Country-specific variables could also be
important predictors of between countries difference in costs and effects and it is reasonable
to expect that their role and selection will vary depending on the context of the study. There
are two main reasons for including country-level covariates in the type of models proposed
here. The first is to investigate if certain ‘contextual factors’ can help explain the observed
between-country variability in the results. Between-country difference in clinical treatment
protocols for the same condition, for instance, may explain between-country difference in
observed resource use and health outcomes. The same can be said for differences in country-
specific level of public expenditure in healthcare. Once these factors have been factored in,
they can improve the model’s predictions for those countries sharing the same mix of
contextual factors. A note of caution is due here. The researcher must be careful when
selecting these covariates as there are usually few countries in a typical multinational study
and statements about transferability of the results to countries outside the set of those
participating in the trial requires careful consideration. The second reason for including
country-level covariates is to look at covariate-treatment and cross-level covariates
interaction. The former should usually be used for exploratory work, as there are typically
very few observations at country level. The cross-level interaction can be used to explore
between-country variation of the treatment effect on costs and health outcome for specific
patient subgroups. This type of analysis would also be useful in single country multicentre
trials to explore whether the treatment effect for the more severe patients, for example, is
better in teaching hospitals than district general hospitals. Unfortunately the literature on
methods used to identify country-level characteristics that are expected to impact on costs
and effects in CEA is sparse. Grieve et al have explored the role of national Gross Domestic
Product (GDP) in explaining between country differences in differential cost estimates in an
observational study of stroke patients. In a recent study Drummond et al. [33] suggested
three types of variables that could characterise a country in the context of CEA: the
percentage of national GDP spent on healthcare, the reimbursement system for hospitals in a
given healthcare system, and the payment method used for physicians.

The second extension of the analytical framework proposed in this paper is aimed at
showing how to incorporate subject and country specific covariates in the modelling strategy
proposed so far. The model described in (6-9) can therefore be extended as follows

(10)

where  and  are patient-specific variables (e.g. age, gender, smoking status, etc.).
These variables are centred with respect to their trial-wide mean to improve the efficiency of
the estimation procedure [34].

Country-level covariates can be included in the expression for the difference in costs and
effects. The distinction here is important in that this incorporates an ‘effect modifier’, i.e. the
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treatment effects vary according to the level of the covariate(s). Therefore the random
effects on the difference in mean costs (δcj) and survival (δej) between countries in (7) can
be modified as follows to include country-specific information

(11)

where  and  are country-level covariates, and η’s are the coefficients associated with
the country-level regressions. The country-level covariates are centred with respect to the
trial overall mean, and are not weighted by the number of subjects in each centre. Notice

that the country-specific variable used in the cost equation  can be different from that

use in the effects equation . Non-informative priors are given to ϕ,γ,α,η, and θ
assuming normal distribution with mean zero and large variances, while a uniform prior on
the standard deviation scale was chosen for parameters τ in (11) as in (7).

4.3 Exploring the variability of the results between countries
The flexibility of BHLM for CEA using IPD facilitates the estimation of country-specific
measures of cost-effectiveness in a way that overcomes the limitations of a stratified
analysis, where each country is analysed independently from the others. This is achieved
through shrinkage estimation, which implements the idea that although different, country-
specific data might share some degree of similarity and as such, country-specific estimates
of treatment effect (on costs and effects) can borrow strength from each other. In other
words, country-specific estimates will be more or less pulled (i.e. shrunken) towards the
trial-wide treatment effect depending on the number of observations in each country and the
sampling variability around each country-specific estimate. The amount of shrinkage will
also depend on the size of the estimated between country variance.

The BHLM proposed in this paper are estimated via Bayesian MCMC methods, using the
freely available software package WinBUGS [35] and the code for the models described in
section 4.2 are reported in the appendix. A Bayesian approach allows inclusion of pre-
existing evidence in the form of prior information [36], and of the use of MCMC has the
benefit of producing the output in a convenient format for calculating cost-effectiveness
acceptability curves (CEACs). These curves represent the probability that the intervention is
cost-effective for a given level of decision maker maximum willingness to pay for additional
unit of outcome, given the available information. In the models presented in this paper, the
probability that the intervention is cost-effective in country j is simply the probability that
the INMBj in (8) is greater than zero (at a given λ value), which can be obtained directly
from the posterior distribution of the INMBj. For an extensive discussion of the reasons for
adopting a Bayesian perspective in CEA have see Luce and O’Hagan [37].

5. Motivating example: the ATLAS trial
The Assessment of Treatment with Lisinopril and Survival (ATLAS) study is a
multinational trial which enrolled 3164 patients in 19 countries, comparing low dose
(n=1596) and high dose (n=1568) of the ACE inhibitor lisinopril in patients with chronic
heart failure. Details of the main economic and clinical analyses have been reported
elsewhere [10, 11]. The case study makes use of a total of 3061 observations (low dose,
n=1545; high-dose, n=1516) from 17 countries; 2 countries have been excluded having
recruited a very low number of patients and/or an extremely unequal allocation of patients
between the two arms. Furthermore, from the end of year 3 patients were subject to
administrative censoring. Currently there are no methods in the literature that illustrate how
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to deal with censored cost-effectiveness data in a bivariate hierarchical modelling
framework. Therefore, for simplicity, the analysis uses data observed during the first three
years of the study. Due to these assumptions, the specific results of the analyses presented
here are not the same as in the main study report [10] and should not be interpreted as
definitive.

5.1 Trial-wide results
The starting point is to quantify the trial-wide cost-effectiveness results. Table 1 reports the
trial-wide results for the three models discussed in sections 3 and 4, that is the non-
hierarchical bivariate model (column 1) estimated implementing the methodology proposed
by O’Hagan, Stevens and Montmartin [23], the BHLM with no covariates (column 2) and
with the addition of subject- and country-level covariates (column 3).

As expected, the presence of a hierarchical structure in the data means that the differential
costs and survival gain estimates obtained using the non-hierarchical model have
excessively narrow credibility intervals (CrI). The 95% CrI estimated using the BHLM for
the differential cost are approximately five times wider. Similarly, the 95% CrI for the trial-
wide survival gain are 3.5 times wider than those obtained using the non-hierarchical
approach. These results are in line with those found by Manca et al. [8]. That is, analytical
approaches which ignore the hierarchical structure in multinational trial-based cost-
effectiveness data can generate inaccurate estimates of the differential mean costs, effects,
and of their credibility intervals.

In the BHLM with covariates, the patient-level cost and survival equations (eq. 10) use
patient’s age as covariate, whereas country-level cost and survival equations (eq. 11) employ
respectively the country’s mean life expectancy and the public expenditure in healthcare,
where the latter is expressed as percentage of the national GDP. It should be noted that (10)
assume that patient-level covariates affect the differential costs and survival estimates
indirectly, through its impact on the mean cost and survival in each arm of the trial. In model
(10) the effect of mean age on the mean cost (ϕc) and survival (ϕe) in the trial are
respectively 4.5 (95% CrI: 2.4 to 6.5) and -4.6 (95% CrI:-5.8 to -3.3), suggesting that the
mean cost and survival estimates in each country are clearly affected by the patient’s age,
and that on average a patient that is one year older than the overall trial mean would be
expected to cost £4.5 more and to live 4.6 days less than the average patient in the study
(results not reported in the table).

Similarly, country-specific variables seem to affect the estimated differential mean cost and
survival in the trial. Mean life expectancy has a positive impact on the differential cost,
indicating that those countries with mean life expectancy greater than the trial average will
experience an increased per patient cost (for those patients treated with high dose lisinopril)
of £11.7 (95% CrI: -74.8 to 98.7). On the survival side of the cost-effectiveness equation the
results reported in the last column of Table 1 suggests that those countries with higher (than
the overall mean) public expenditure in healthcare as % of national GDP can expect on
average a survival gain of 52.6 days (95% CrI: -18.9 to 124.7) in patients treated with high
dose lisinopril.

Finally, it should be noted that the inclusion of patient- and country-level covariates in the
BHLM model allows us to explain the between-country variability in the estimated

difference in survival. The estimate of  in fact, is reduced (by more than half) from 31 in
the BHLM with no covariates to 12 when adding explanatory variables. The opposite occurs
in the cost difference equation, where the addition of mean life expectancy actually
increases the between-country variation of the country-specific estimated differential cost.
We will come back to this latter result in section 5.2.3.
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5.2 Country-specific cost-effectiveness estimates
As mentioned in section 4, an additional advantage of using BHLM is that this methodology
facilitates the quantification of country-specific cost-effectiveness estimates, through
shrinkage estimation. To illustrate this point Figures 1 and 2 provide a graphical
representation of the country-specific differential cost and survival gain estimates (together
with their credibility intervals) obtained under the three models discussed above. The marker
and the horizontal bars represents respectively the posterior mean estimate and 95% CrI of
differential mean costs (Figure 1) and survival (Figure 2) obtained from MCMC estimation,
running 3 chains for 20,000 iterations following a burn-in period of 10,000 iterations.
Convergence was checked using the Gelman-Rubin convergence criteria [38], as
implemented in WinBUGS.

5.2.1 Non-hierarchical bivariate model—There are a number of interesting
considerations that can be made when comparing country-specific versus trial-wide CEA
results obtained under a non-hierarchical bivariate model, the most obvious relating to the
degree of within-country variability. Larger sampling uncertainty in country-specific
estimated differences in cost and survival gain is observed in those countries that recruited a
smaller number of patients into the trial (e.g. countries 2, 7, 11, and 14). This is to be
expected as some of these countries recruited a very small number of patients (e.g. country
2). Notice, though, that the sample size itself is not always a predictor of the degree of
sampling uncertainty around the estimated mean differences. The country-specific estimated
difference in costs for country 13 for instance (where n=49), has a narrower CrI than the
estimate for country 12 (where n=70). The same consideration can be made with respect to
the sampling uncertainty surrounding the differential survival estimates between countries
13 and 10. This phenomenon may be due to several factors. One is the degree of correlation
between observations within the same country, where the higher the correlation the narrower
the CrI and the variability of the observed cost (and survival) seen in the different countries.
Another explanation may be the fact that more expensive countries may have higher costs
and larger spread of costs.

More interestingly for the purpose of this paper is the between-country variability of the
CEA results, which leads to potentially different country-specific recommendations
regarding the value for money of the ‘intervention’ (i.e. high dose). For example, high-dose
(strictly) dominatesix low-dose in countries 4, 5, and 12, but is dominated by low-dose in
country 14. The question for the policy makers in these two countries is, therefore, whether
to consider the trial-wide results as the most valid results in their own context, or instead, to
rely only on the results obtained analysing data collected in their own jurisdictions.

5.2.2 Bivariate hierarchical model results without covariates—A comparison of
the above results with those obtained from a BHLM with no covariates suggests that, in
most cases thanks to the effect of the shrinkage estimation, jurisdictions-specific differential
cost and survival are much closer to their trial-wide counterparts. Countries 2, 4, and 12, for
example, display particularly large point estimates with correspondingly wide credibility
intervals using the non-hierarchical model. By explicitly modelling the hierarchical structure
in the data, the BHLM exploits similarities in the subject level data between countries (i.e.
they borrow strength), hence obtaining efficiency gains. A direct result is that the mean
country-specific estimates of differential costs and survival gains are shrunken towards the
trial-wide mean. Furthermore, country-specific estimates are more precise than those
obtained using a non-hierarchical modelling, as indicated by their 95% CrIs.

ixStrategy A strictly dominates strategy B when the former costs less and produces more benefits.
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5.2.3 Bivariate hierarchical model CEA results, with subject- and country-level
covariates—There might be important factors that, if considered, could contribute to
partially explain the observed between-country variability in cost-effectiveness. The
argument in favour of their inclusion in CEA of multinational IPD is that, if left
unaccounted for, these factors could inflate the between-country unobserved variability in
the results leading to potentially erroneous conclusions concerning the transferability of the
study findings. In this sense, it is reasonable to expect that a more realistic country-specific
estimate will lie between the two extremes results obtained with the (stratified) non-
hierarchical bivariate model and the BHLM with no covariates.

The application of the latter assumes perfect exchangeability between the information
conveyed by the 17 countries included in the analysis. However, it could be argued that
assuming perfect exchangeability may in some occasions be unreasonable. Additional
information available at country and patient level could be used to re-assess the between-
country variability in the cost-effectiveness results. Table 2 reports the mean values of a
selection of patient and country-specific variables that might be important to consider in the
ATLAS trial. These are variables that could be expected, a priori, to affect the country-
specific mean differential mean estimates of cost and survival gain, their sampling
uncertainty, and their between-country variability. Unfortunately, the country-specific
variables reported in this table were not collected as part of the ATLAS trial but have been
obtained ex post from published OECD health data [39].

An examination of the country-level summary statistics for the patient in the trial and of the
country-specific variables from OECD, indicates some degree of between-country
variability in these covariates. Mean age at randomisation for instance, ranges from a
minimum of 56.76 in country 10 to a maximum of 67.92 in country 15. Similarly, the mean
left ventricular ejection function (LVEF) varies from 0.3654 in country 13 to 0.6081 in
country 5.

Inter-country variability can also be detected when looking at variables such as life
expectancy (LE) in the total population at birth. This ranges from a minimum of 72.4 years
in country 10 to a maximum of 79.7 in country 1. Similarly, the total private (public)
expenditure on healthcare as a percentage of the national GDP varies respectively between
0.6% in country 5 (4.5% in country 11) and 7.6% in country 17 (7.1% in country 15).
Finally, the per-capita level of alcohol and tobacco consumption in the population over 15
years of age display a remarkable between-country variation with alcohol consumption
ranging from 5.5 units in country 12 to a maximum of 14.5 in country 11, and tobacco
consumption varying from 992 grams per capita in Country 7 to 2670 in country 14.

In the attempt to account for some of these between-country differences in factors that could
help explaining the between-country variability in cost-effectiveness results, we run the
BHLM with the addition of patient- and country-specific covariates. Results have been
already reported in Table 1 (with regard to the trial-wide estimates of differential costs and
survival) and Figures 1 and 2 (with regard to the country-specific shrunken estimates).

For simplicity of exposition this model used patient-specific age at randomisation (for both
costs and survival) as explanatory variable in the patient-level cost and survival equations,
public expenditure on healthcare as percentage of the national GDP in the country-specific
differential survival equation, and mean LE of the total population at birth in the country-
specific differential cost equation. The trial wide results have been discussed in section 5.1
and indicate that age has a positive impact on mean costs and survival in both arms.
Furthermore the greater the life expectancy in a specific country compared to the overall
trial-mean the greater the incremental cost. On the other hand, the higher the public
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investment in healthcare with respect to the overall mean in the countries participating in the
ATLAS trial, the higher the expected survival benefit that one can expect. It is important to
notice that the inclusion of subject- and country-specific variables helps to reduce the
between-country variability in the differential survival. This does not occur for the cost side.
A closer look at the between-country distribution of the variables used for the cost equation
at patient (i.e. age) and country level (i.e. LE) may help to shed light on this apparently
contradicting result. Patients recruited in the trial from country 10 tend are in fact the oldest
in the trial sample as well as having (on average) the lowest life expectancy at birth, and
these factors will set country 10 somewhat apart from the others when estimating country-
specific differential costs conditional on these variables, therefore increasing the between-
country variation in the estimated mean difference in cost.

Figures 1 and 2 show the impact of including patient- and country-level covariates in the
model, by plotting the country-specific treatment effects on costs and survival. The level of
shrinkage, now conditional on the covariates included in the model, is more attenuated for
some jurisdictions thereby capturing potentially important differences between countries.
Results for countries 7 and 14, for example, are now different from those obtained using the
BHLM without covariates suggesting that low-dose lisinopril dominates high dose.
Similarly, results suggest that in countries 9 and 10 high-dose no longer dominates low-
dose, while in some other countries (e.g. 4 and 5) the conclusions remain the same
regardless of the model choice. Like in the case of the BHLM with no covariates, the impact
of shrinkage is both qualitative and quantitative and varies across countries in the trial.

Figure 3, plots the country-specific cost-effectiveness planes for a selection of countries in
the trial.

These graphs show the country-specific confidence ellipses obtained from (i) the non-
hierarchical bivariate model, (ii) the BHLM with covariates, and contrasting these against
the (iii) trial-wide confidence ellipse derived from the BHLM with covariates trial-wide
results. For some countries, the application of a BHLM in combination with patient and
country covariates affects both, the joint sampling uncertainty and the point estimates of
differential mean costs and survival, leading in some cases to opposite recommendations
regarding the cost-effectiveness of high dose lisinopril. Country 2 for instance is shrunken
towards the overall mean obtained from the BHLM with covariates. Similar behaviour is
observed in countries 3 and 9. On the other hand countries 10 and 14 show that the addition
of covariates to their specific cost-effectiveness estimates slightly increases the joint
variability of (Δc,Δe), for the reasons discussed earlier in this section. Figure 4 plots the
CEACs for the same set of countries inspected in figure 3.

A brief inspection of the CEACs confirms that the use of the trial-wide result does hide an
important piece of information for location-specific policy makers. In fact, not only there is
clearly variation in the cost-effectiveness by country but there is also considerable variation
in the decision uncertainty at a given λ level, represented by the probability that the
intervention (i.e. high-dose) is cost-effective. These results suggest that it is impossible to
predict the impact on the results deriving from the explicit consideration of patients- and
country-specific covariates. In country 2 for instance, where the sample size was very small
(n=24) the probability of high dose being cost-effective is still considerably low despite the
country-specific results had been heavily shrunken towards the trial-wide BHLM estimate.
In other words, although the treatment effects are shrunken towards the trial overall mean in
country 2, the probability that the intervention is cost-effective is still penalised.
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6. Discussion
This paper proposes a novel approach to the analysis of individual patient-level cost-
effectiveness data collected in multinational RCTs, by extending the use of Bayesian
bivariate hierarchical modelling for healthcare economic evaluation purposes.

Two recent contributions [5, 32] have proposed methods somewhat similar to those
advocated in this manuscript. Nixon and Thompson [32] have used Bayesian modelling for
cost-effectiveness IPD to illustrate ways in which alternative research questions could be
investigated (i.e. sub-groups CEA at patient and centre level) while relaxing basic
assumptions often made in regression analysis (i.e. common variance between treatment
arms for costs and effects, alternative parametric assumptions for costs and effects). There
are three main differences between the methods proposed in this paper and those advocated
by Nixon and Thompson. First, we consider the inclusion of explanatory variables at both
patient and country level. Second, our example includes a much larger number of higher
level units (i.e. 17) compared to the Nixon and Thompson example which was based on 5
units only. We feel this is an important distinction as a greater confidence can be placed on
our country specific random effects being draws from an appropriate distribution; this also
allows us to correlate the country specific effects across the two equations. This leads us to
the third difference between the two papers, that is, unlike Nixon and Thompson who only
consider a bivariate model by linking individual level random terms across the equations
(due to the small number of higher level units in their case study), we consider a bivariate
model where both the country and the individual level terms are each correlated across
equations.

Pinto et al [5] recently explored alternative shrinkage estimation methods presenting a
simulation exercise based on summary country-level cost-effectiveness estimates from a
large multinational RCTs. The authors explore the impact of univariate versus bivariate
shrinkage, for costs and effects as well as exploring the impact of different distributions for
the random effects at country level. We take a different approach by using individual
patient-level cost-effectiveness data. In addition, while Pinto et al. obtained shrinkage
estimates through an empirical Bayes estimation procedure we chose to implement a fully
Bayesian analysis. The advantages of our approach compared to empirical Bayes are
outlined in section 4.3 above. A final difference relates to the fact that, unlike the methods
proposed here, the methods proposed by Pinto et al. did not include covariates at patient and
country level. While the inclusion of these variables is still possible in their model, such an
analysis based on summary data only would be subject to a number of issues (e.g.
aggregation bias [40-42], patient sub-group analysis [43]) which have been well rehearsed in
the meta-regression literature.

It could be argued that knowing ‘which country is which’ will convey some information
about the costs in a given country, hence violating the exchangeability assumption. While
this may be true for absolute costs in each treatment arm, knowing that one country has
higher costs than another may not tell us much about the differential costs (and indeed the
differential health outcomes). The approach proposed here is standard methodology in many
Bayesian random effects meta-regression models, where the knowledge of the
characteristics of the trials which enter the model does not prevent the analyst from making
a prior assumption of exchangeability. Gelman et al. [25] (chapter 5, section 5.2) argue that
“In virtually any statistical application, it is natural to object to exchangeability on the
grounds that the units actually differ. [...] The fact that the experiments differ implies that θj
[the parameter of interest in the unit j] differ, but it might be perfectly acceptable to consider
them as drawn from a common distribution”. The authors continue saying “Objecting to
exchangeability for modelling ignorance is no more reasonable than objecting to an iid
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model for samples from a common population, objecting to regression models in general, or,
for that matter, objecting to displaying points in a scatter plot without individual labels. As
with regression, the valid concern is not about exchangeability, but encoding relevant
knowledge as explanatory variables where possible.” (p. 124). In essence, “...the usual way
to model exchangeability with covariates is through conditional independence [...]. In this
way exchangeable models become almost universally applicable, because any information to
distinguish different units should be encoded ....” (p. 123).

The models presented and discussed in this paper assume joint bivariate Normality of costs
and effects at patient and country-level. Although the ‘Normal’ case is a very general
framework in multivariate statistical modelling, it can be argued that especially for CEA
data one may need to use alternative parametric distributions that describe the data more
appropriately. In this sense, the product normal formulation facilitates a more flexible
modelling process which allows the use of different distributions for costs (i.e. Gamma) [32,
44] and effects (i.e. Binomial, Poisson). However, Bayesian modelling outside the bivariate
normality framework is highly complex. Future work will explore the impact of alternative
distributional assumptions.

A further issue concerns the selection of country specific variables for the economic
analysis. Unfortunately, when country-level data are not collected as part of the study, as is
the case in the vast majority of multinational and multicentre RCTs, the selection of country
(centre)-specific variables must rely on some judgment regarding which readily available
statistics can be used as proxy to explain between-country variability in costs (and effects).
In the present study, the country-specific variables reported in Table 2 were chosen among
those suggested to be factors that might affect the cost-effectiveness of a health technology
between countries [1], and it is recognised that their explanatory power may be limited. The
issue of which variable to use to adjust for factors that may have an impact on the difference
in cost and effects is both a theoretical and an empirical one, and it deserves further
research.

Should we be concerned about whether there is statistically significant difference between
country-specific estimates? Cook et al. have advocated a prior approach, based on a test for
homogeneity [45], in which multinational economic RCT data are analysed to assess the
appropriateness of a ‘pooled’ CEA. The general idea is to follow the methods used to
analyse clinical data from such trials, where tests of homogeneity are typically performed
before pooling the data. The authors suggest that if there is no evidence of treatment-by-
centre interaction the data can be pooled for analysis across centres/countries, thus offering
improved precision of cost-effectiveness ratios for each country. The authors takes a strong
statistical inferential view stressing that their interest is “...not in whether the countries differ
with respect to their average clinical or economic outcome but rather whether there are
important differences in their effect of treatment among the countries” [45]. While this is
one possible way to explore the variability of the results between countries, it could be
argued that decisions based on the test of interaction could be misled by the fact that this test
is often underpowered, and that non-statistically significant between-country differences in
the treatment effect may still lead to different decisions in each jurisdiction. More
importantly, policy-makers are clearly interested in jurisdiction-specific results, and as
argued above results from pooled analyses might not be as informative as they could be.

Finally, as decision makers’ information needs increase, requiring cost-effectiveness
evidence comparing all available treatment strategies, in many circumstances cost-
effectiveness studies will need to synthesise both IPD and summary data from trials (and
other sources) to reflect all available evidence relating to all relevant management options
[46]. In this sense, the framework outlined in this paper is highly suitable for evidence
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synthesis for cost-effectiveness modelling as it can be used to incorporate not only prior
information regarding the treatment strategies compared in the trial, but also information on
the clinical and cost-effectiveness of alternative treatment strategies in any form this may be
available (i.e. summary or IPD).

Appendix: WinBUGS code for BHLM with country and patient covariates
Supplementary Material Appendix.
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Figure 1. Pooled and country-specific cost differences obtained using alternative modelling
strategies
Markers indicate country-specific mean differential cost estimates, horizontal bars across the
markers represent 95% credibility intervals. The covariates used in the cost difference
equation are patient’s age and country-specific mean life expectancy, both expressed as
departure from the overall mean.
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Figure 2. Pooled and country-specific survival gains obtained using alternative modelling
strategies
Markers indicate country-specific mean differential cost estimates, horizontal bars across the
markers represent 95% credibility intervals. The covariates used in the survival equation
were patient’s age expressed as departure from the overall mean and public expenditure in
health expressed as percentage of the GDP.
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Figure 3. Shrinkage on the cost-effectiveness plane
The y-axis and x-axis represent, respectively, the estimated difference in mean survival and
difference in mean costs. The markers represent the country specific mean estimate of the
point with co-ordinates (Δcj,Δsj), together with the relative 95% confidence ellipse.

Manca et al. Page 23

Med Decis Making. Author manuscript; available in PMC 2008 February 19.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Country-specific cost-effectiveness acceptability curves obtained using alternative
modelling strategies for selected countries
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Table 1

Trial-wide CEA results in the ATLAS trial§

Bayesian bivariate non-
hierarchical model BHLM no covariates BHLM with covariates

Differential cost (UK pounds): Δ̂c 8.2 (-32.9 to 50.1) 11.9 (-192.8 to 217.1) 10.3 (-200.4 to 222.1)

 Mean life expectancy#: η̂c — — 11.7 (-74.8 to 98.7)

Survival gain (days): Δ̂e 24.9 (0.2 to 51.2) 40.2 (-50.9 to 132.8) 35.2 (-64.8 to 136.6)

 Public expenditure in health*,#: η̂e 52.6 (-18.9 to 124.7)

Between-country variance in differential cost: τ̂c
2 — 61 (42 to 117) 71 (42 to 155)

Between-country variance in survival gain: τ̂e
2 — 31 (18 to 73) 12 (7 to 31)

§
Results are reported for four different models: Coefficients and 95% confidence (credibility) intervals (in parentheses). N = 3061. MCMC

estimates are obtained after 40,000 iterations and a 20,000 iterations burn-in period

*
As percentage of the GDP

#
Expressed as departure from the overall mean
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