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Synergistic transcription factors<p>A new strategy is proposed for identifying synergistic transcription factors by function conservation, leading to the identification of 51 homotypic transcription-factor combinations.</p>

Abstract

Background: Previous methods employed for the identification of synergistic transcription
factors (TFs) are based on either TF enrichment from co-regulated genes or phylogenetic
footprinting. Despite the success of these methods, both have limitations.

Results: We propose a new strategy to identify synergistic TFs by function conservation. Rather
than aligning the regulatory sequences from orthologous genes and then identifying conserved TF
binding sites (TFBSs) in the alignment, we developed computational approaches to implement the
novel strategy. These methods include combinatorial TFBS enrichment utilizing distance
constraints followed by enrichment of overlapping orthologous genes from human and mouse,
whose regulatory sequences contain the enriched TFBS combinations. Subsequently, integration of
function conservation from both TFBS and overlapping orthologous genes was achieved by
correlation analyses. These techniques have been used for genome-wide promoter analyses, which
have led to the identification of 51 homotypic TF combinations; the validity of these approaches
has been exemplified by both known TF-TF interactions and function coherence analyses. We
further provide computational evidence that our novel methods were able to identify synergistic
TFs to a much greater extent than phylogenetic footprinting.

Conclusion: Function conservation based on the concordance of combinatorial TFBS enrichment
along with enrichment of overlapping orthologous genes has been proven to be a successful means
for the identification of synergistic TFs. This approach avoids the limitations of phylogenetic
footprinting as it does not depend upon sequence alignment. It utilizes existing gene annotation
data, such as those available in GO, thus providing an alternative method for functional TF
discovery and annotation.

Background
The expression of genes is regulated by transcription factors
(TFs), which interact with the basic transcription machinery

to activate or repress transcription after binding to TF bind-
ing sites (TFBSs; also called cis-acting elements) in target
genes and interacting with other DNA binding proteins. In
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eukaryotic organisms, transcriptional regulation of a gene's
spatial, temporal, and expression level is generally mediated
by multiple TFs [1-3]. Therefore, the identification of syner-
gistic TFs and the elucidation of relationships among them
are of great importance for understanding combinatorial
transcriptional regulation and gene regulatory networks.

Currently, the identification of synergistic TFs comes pre-
dominantly from two general approaches. The first is by the
use of experimental data such as gene expression, chromatin
immunoprecipitation (ChIP)-chip, and protein-protein inter-
action data. For this approach, the majority of studies ana-
lyzed gene expression data across a variety of experimental
conditions to infer synergistic relationships between TFs [4-
9]. Statistically significant motif combinations are predicted
based on stronger co-expression patterns regulated by two or
more TFs than the expression patterns regulated by a single
one. With the advance in protein-DNA binding assays [10],
researchers have also integrated ChIP data with microarray
expression or protein-protein interaction data to infer syner-
gistic binding of cooperative TFs [11-14]. The second com-
monly used approach is computational identification of TF
combinations. In this case, synergistic TFs were predicted by
either enrichment analysis of co-occurring TFBSs on the
upstream sequences of genes relative to appropriate back-
ground sequences or by comparative genomics using phylo-
genetically conserved sequences between closely related
species [15-17].

Despite the success of these approaches, both have limita-
tions. The approach based on experimental observation
needs a priori knowledge, such as gene expression patterns in
a certain tissue, which restricts synergistic TF determination
to those tissues or cells studied and thus prevents the discov-
ery of TF combinations from multiple biological conditions.
Conversely, computational approaches can predict TF combi-
nations on a large scale, but they usually lack the ability to
functionally annotate synergistic TFs. Furthermore, methods
based on phylogenetically conserved sequences, although
they can greatly reduce the false prediction rate [18], have
limitations related to missing potentially significant observa-
tions. Moreover, if the species are very closely related, non-
functional sequences may not have diverged enough to allow
functional sequence motifs to be identified; conversely, if the
species are distantly related, short conserved regions may be
masked by nonfunctional background sequences.

In the current study, rather than utilizing these traditional
approaches, we propose a novel strategy to identify TF com-
binations by function conservation, which can be imple-
mented at two levels. The first is functional conservation of
TFs between species. Based on the strong possibility that each
specific TF plays the same role in regulating gene expression
between closely related species, the occurrence of its binding
sites is expected to be more highly enriched in promoter
sequences of orthologous genes than in promoter sequences

of non-orthologous genes. The second is functional conserva-
tion of TFBSs between promoter sequences of individual
orthologous genes. For identifying TF combinations, the gen-
eral pattern of TFBS arrangement on promoters of ortholo-
gous genes is most likely more important than the precise
positions of the binding sites [19]. To apply these concepts to
synergistic TF discovery, it is important to develop appropri-
ate computational approaches that are able to integrate func-
tion conservation from both TFs and TFBSs with analytical
methodologies. We thus utilized human and mouse ortholo-
gous promoter sequences to first enrich TFBS combinations
with distance constraints on a genome-scale and subse-
quently performed enrichment analyses of common ortholo-
gous genes (that is, genes that overlapped between mouse and
human with particular homotypic TFBSs) whose regulatory
sequences contain the identified TFBS combinations. We
then integrated the function conservation from both levels by
using Pearson correlation coefficients.

Genome-wide promoter analyses have led not only to the
development of computational approaches but also to the
identification of 51 homotypic TF combinations using known
TFBSs from precompiled position weight matrices (PWMs) in
the TRANSFAC database [20]. As a first step toward discov-
ering functional TF networks, we have further used the devel-
oped computational approaches to predicate interactions
between heterotypic TFs (that is, two different TFs). The
strength of this proposed strategy, as opposed to the other
described methods, lies in the fact that this strategy does not
depend on sequence alignment, but rather genome informa-
tion, for the discovery of functionally conserved TF combina-
tions. Therefore, TF combinations with different functions
can be obtained simultaneously, which is a key first step
towards identifying functional TF networks.

Results
Strategy overview
The overall analysis procedures are shown in Figure 1. The
input data comprised more than 10,000 human and mouse
orthologous promoter sequence pairs from the Database of
Transcriptional Start Sites (DBTSS) [21]. To incorporate
functional conservation of TFBS combinations into the anal-
ysis, we first performed a genome-wide search to obtain all
potential TFBSs for each individual promoter sequence using
the Match® program and 234 unique PWMs from the profes-
sional TRANSFAC 9.1 database [22]. We then employed dis-
tance constraints to select co-occurring TFBSs in individual
promoter sequences. The degree of enrichment for TFBS
combinations was computed and represented as LODco

scores, which represent the frequency of co-occurrence for
particular TFBSs in promoter sequences with respect to ran-
dom expectation for the co-occurrence of the same TFBSs
(see Materials and methods). The assumption behind this
enrichment analysis is that random co-occurrence of TFBSs
has less or no distance constraint when compared to
Genome Biology 2007, 8:R257
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functional TFBSs, although specific distance constraints may
vary for different TFBSs. To incorporate functional conserva-
tion of TFs into the analysis, we estimated the degree of
enrichment by using the hypergeometric distribution, which
was represented as LODog scores, for overlapping human and
mouse orthologous genes whose promoter sequences con-
tained the enriched TFBS combinations.

The integration of function conservation from both levels was
achieved by the estimation of correlation between LODco and
LODog. We hypothesized that if the enriched TFBS combina-
tions had functional significance, then the enrichment of
common orthologous genes would correlate with the LODco

scores from both human and mouse promoter sequences,
since functional TFBSs are expected to be highly conserved

Flowchart of analysis proceduresFigure 1
Flowchart of analysis procedures.
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between orthologous gene promoter sequences from closely
related species. The degree of correlation would therefore
allow us to identify combinatorial TFs that potentially regu-
lated genes in a synergistic fashion. For the selection of signif-
icant correlations, we performed permutation tests to obtain
p values, which were used to set up filtering criteria for mul-
tiple tests. Functional TF combinations were predicted based
on p value cutoff threshold (q-value < 0.05) in both human
and mouse and further validated by both known TF-TF inter-
actions and function coherence based on Gene Ontology (GO)
annotation of common mouse and human genes containing
co-occurring TFBSs [23,24].

Enrichment of TFBS combinations and orthologous 
genes containing the binding sites
For the enrichment of functionally co-occurring TFBSs, we
first employed 234 PWMs, which represent unique TFs in the
TRANSFAC 9.1 database, to identify homotypic TFBS combi-
nations (that is, two or more binding sites for the same TF on
the same gene). As one of the important components of the
approach, a total of 18 between-TFBS distances were defined
and used to obtain co-occurring TFBSs from individual pro-
moter sequences. Enrichment of TFBS combinations was
estimated on a genome-scale by comparing co-occurring
TFBS frequencies in known promoter sequences to those
from random background sequences.

Figure 2a,b show the overall enrichment results of TFBS com-
binations for 9 selected distance constraints and one without
distance constraints from all 234 PWMs. A LODco score > 0
exemplifies a higher frequency of TFBSs per promoter
sequence when compared to background sequences. Thus,
the larger the LODco score, the greater the enrichment of a
particular TFBS. The results show that the distributions of
LODco scores obtained from orthologous human and mouse
promoters have similar patterns. Whereas the distribution of
LODco scores from the no distance constraint situation is sig-
nificantly shifted in isolation to the left, LODco score distribu-
tions from distance constraints are shifted to the right along
with the smaller between-TFBS distances. Similar results
were also obtained for enrichment of common orthologous
genes containing the identified TFBS combinations, as can be
seen from the LODog distributions in Figure 2c.

We also performed further analyses to test the statistical sig-
nificances of LODco and LODog score distributions from indi-
vidual distance constraints using Wilcoxon signed-rank tests.
The results indicated that both median LODco and LODog

scores from individual distance constraints were significantly
larger than those from no distance constraint (p < 10-15), fur-
ther confirming the enrichment of co-occurring TFBSs and of
common orthologous genes. It is important to note that
median LODco scores from individual distance constraints
increase along with smaller between-TFBS distance (Figure
2d), with p values ranging from 2 × 10-4 to 2 × 10-16 for human
and from 5 × 10-8 to 2 × 10-16 for mouse. These findings are,

however, not observed for LODog scores (Figure 2d), for
which no significant p values exist from the comparisons
between adjacent distance constraints. These results suggest
that not all enriched TFBSs represent functional TFBS combi-
nations and, further, that synergistic interactions may not be
applicable to every homotypic TF combination.

Integrating function conservation to identify TFs 
having synergistic interactions
Since functional co-occurrence may not be applicable to every
TF and not all enriched TFBSs are functional TFBS combina-
tions, it is therefore important to integrate function conserva-
tion from different levels to predict TFs that have synergistic
interactions. We employed Pearson correlation coefficients to
determine whether the 19 LODco scores and their correspond-
ing LODog scores for each individual TFBS correlated with
each other. Since functional TFBSs are highly conserved
between orthologous gene promoters, we expect that a higher
rate of overlapping orthologous genes whose promoters con-
tain the co-occurring TFBSs indicates that the enriched co-
occurring TFBSs represent functional ones from individual
distance constraints. Therefore, correlations detect the agree-
ment between TFBS enrichment and orthologous gene
enrichment, no matter whether all the enriched TFBSs are
functional ones or not. Figure 3a,b shows the overall distribu-
tions and frequencies of correlation coefficients from all 234
TFBSs for human and mouse. While correlation coefficients
cover a broad range from -0.84 to 0.99, only a small portion
of TFBSs display strong correlations for their LODco and
LODog scores, which is in agreement with the conclusion from
enrichment analyses.

To estimate the statistical significance of the correlations, we
performed permutation tests using randomly paired LODco

with LODog scores for each TFBS and utilized the resulting p
values to set up a cutoff threshold for multiple analyses. Using
a threshold q-value < 0.05, we were able to identify 51 homo-
typic TF combinations (Table 1) from both human and
mouse, with p values ranging from 3 × 10-3 to < 10-4 and cor-
relations ranging from 0.35 to 0.98. Of these 51 TF combina-
tions, some have relatively smaller correlations when
compared to the remaining TFBSs that were not selected
because they did not meet the established threshold criteria
(Figure 3a,b). This is because TFBSs with similar LODco and
LODog trends along distance constraints have smaller p val-
ues from permutation tests; this trend is nicely illustrated by
two TFs, one that met the threshold criterion (E2F1; Figure
4a) and one that did not (MYOGENIN; Figure 4b). Although
correlations for E2F1 are smaller than those for MYOGENIN,
E2F1 p values are much more significant than those from
MYOGENIN. Closer observation indicates that LODco and
LODog scores for E2F1 show a similar trend (Figure 4a), with
both increasing as between-TFBS distance decreases. By con-
trast, LODco and LODog scores for MYOGENIN do not show
this trend (Figure 4b), resulting in less statistical significance,
even though LODco and LODog scores are highly correlated.
Genome Biology 2007, 8:R257
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Further investigation indicated that overlapping human and
mouse orthologous genes whose promoters contain predicted
MYOGENIN binding site combinations had no functional
association with MYOGENIN regulated genes based on GO
analysis (see below), suggesting that MYOGENIN may not be
a functional pair.

Evaluation by known TF-TF interactions
To assess the validity of the predicted TF combinations, we
first used TRANSCompel® professional version 10.4 to deter-
mine if known TF combinations were statistically enriched in
the 51 identified TFs [23]. The TRANSCompel® database con-
tains approximately 180 experimentally proven composite
elements of two or more binding sites; of these approximately
180 composite elements, 15 are synergistic combinations of
homotypic TFs. Interestingly, 7 of these known combinations
are in the 51 selected TFs, including CEBPB, CREB, E2F1,
HNF1, HNF3B, OCT1, and PIT. To estimate the degree of
enrichment, we performed a Fisher's exact test comparing the

occurrence of known TF combinations in the 51 identified TFs
to all 234 TFs. The results indicated that known TF combina-
tions were significantly enriched in the 51 selected TFs (p =
0.035) compared to those TFs that did not meet the selection
criterion (p = 0.59). These results indicated that our approach
was able to identify to a great extent functionally co-occurring
TFs, which exemplifies the validity of our methods.

Evaluation by function coherence
It is a well-established fact that TFs control cellular biological
processes by targeting groups of genes encoding proteins with
similar functions. Based on this fact, we performed function
coherence analyses to determine if genes whose promoter
sequences contained the co-occurring TFBSs had known bio-
logical functions associated with the TF predicted to bind to
them. Two of the 51 selected TFs, namely E2F1 and NFAT, are
of particular interest, as the genes that they regulate have well
established physiological roles by previous studies. E2F1 reg-
ulates cell cycle progression via transcriptional regulation of

Distribution of LODco and LODog from different distance constraintsFigure 2
Distribution of LODco and LODog from different distance constraints. (a) LODco distribution of 234 TFBSs from 9 selected distance constrains (for example, 
D20 stands for between-TFBS distance of 20 bp) and the one without a distance constraint (None) for human (hs). (b) LODco distribution of 234 TFBSs 
from 9 selected distance constraints and the one without a distance constraint for mouse (mm). (c) LODog distribution of 234 TFBSs from 9 selected 
distance constraints and the one without a distance constraint. (d) Median LODco scores for both human (hs_LODco) and mouse (mm_LODco) and median 
LODog scores.
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proliferation-associated and cell cycle-related genes [25-28],
while NFAT plays a central role in inducible gene
transcription in the process of immune response and in the
regulation of T-cell activation and differentiation [29-33].

Accordingly, we examined the functional association of genes
with predicted synergistic TFBSs by looking for similar
enriched GO biological process categories in overlapping
human and mouse orthologous genes. This was done by first
identifying the statistically over-represented GO biological
process categories for genes whose promoter sequences con-
tained the co-occurring TFBSs by DAVID [34], followed by
looking for common GO biological process categories
between human and mouse genes from the same distance
constraint. Notably, genes whose promoter sequences con-
tain co-occurring TFBSs display strong function coherence to
the corresponding TFs binding to them, as shown in Table 2,
in which enriched GO biological process categories and their
p values from Fisher's exact tests are listed from eight dis-
tance constraints. These results indicate that identified genes
with co-occurring E2F1 binding sites are involved in cell cycle
control, sterol metabolism, and nucleotide and nucleic acid
metabolism; notably, the biological process of cell cycle is
over-represented at most distance constraints tested. In the
case of NFAT, major over-represented biological functions
include homophilic cell adhesion and immune response. As
mentioned above, immune response is directly controlled by
NFAT transcription factor. Overall, these results provide
strong evidence for the functional co-occurrence of the iden-
tified TFs, and again exemplify the validity of our novel
approaches.

Function annotation for the identified synergistic TFs
As mentioned above, it is well known that TFs control cellular
biological processes via transcriptional regulation of groups

of genes with similar functions. The roles of a particular TF in
cellular processes can, therefore, be deduced from the known
physiological functions of the TF's target genes.

To perform function annotation, while minimizing false pos-
itives, we first sought to identify distance constraints that had
significant correlations between LODco and LODog scores
from the 51 identified TFs. Accordingly, 10,000 random cor-
relations were computed for each distance constraint using
permuted LODco and LODog scores from the 51 TFs and used
to estimate the statistical significance for real correlations.
Correlations from human promoter analyses displayed signif-
icance for between-TFBS distances of 20 bp up to 90 bp, with
p values ranging from 0.044 to 0.006 (Figure 5). Although
correlations from mouse promoter analyses were not signifi-
cant, 8 distance constraints (between-TFBS distances of 20
and 90 bp for human and mouse) were nevertheless used for
function annotation. Common human and mouse ortholo-
gous genes containing the synergistic binding sites were
subsequently submitted to DAVID for GO analysis. The selec-
tion of biological process categories for TF function annota-
tion was based on the following criteria: biological process
categories are in common in at least five distance constraints
between human and mouse; there exist at least five distance
constraints in both human and mouse whose p values for the
common biological process are less than 0.05.

Function annotation results are shown in Table 3, where
potential biological functions for 38 synergistic TFs are listed
(significant categories were not detected from the other 13
TFs). A brief search of PubMed revealed that annotated bio-
logical functions for at least 18 of these 38 synergistic TFs are
in good agreement with previously reported findings by oth-
ers [35-56]. For example, earlier findings indicated that
HNF1 was involved in the regulation of the expression of

Distribution and frequency of LODog and LODco correlations from 19 distance constraints for individual TFBSsFigure 3
Distribution and frequency of LODog and LODco correlations from 19 distance constraints for individual TFBSs. (a) Distribution and frequency of correlation 
for all 243 TFBSs (grey) and for the 51 selected TFBSs (blue) from human (hs). (b) Distribution and frequency of correlation for all 243 TFBSs (grey) and 
for the 51 selected TFBSs (blue) from mouse (mm).
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Table 1

Correlations (R) and p values (P) from both human (hs) and mouse (mm) for the 51 homotypic TF combinations

TFs Rhs Phs Rmm Pmm

FAC1 0.98 <0.0001 0.98 <0.0001

MAZ 0.98 <0.0001 0.98 <0.0001

GC 0.97 <0.0001 0.99 <0.0001

ZF5 0.97 <0.0001 0.97 <0.0001

EGR 0.97 <0.0001 0.99 <0.0001

TBP 0.95 <0.0001 0.95 <0.0001

SP1 0.93 <0.0001 0.95 <0.0001

NFAT 0.93 <0.0001 0.91 <0.0001

ETF 0.92 <0.0001 0.92 <0.0001

KROX 0.90 <0.0001 0.90 <0.0001

XVENT1 0.90 <0.0001 0.86 <0.0001

ZIC3 0.90 <0.0001 0.91 <0.0001

CETS168 0.88 <0.0001 0.90 <0.0001

MZF1 0.88 <0.0001 0.89 <0.0001

PAX4 0.88 <0.0001 0.88 <0.0001

LDSPOLYA 0.87 <0.0001 0.84 <0.0001

FREAC7 0.87 <0.0001 0.84 <0.0001

OCT1 0.86 <0.0001 0.85 <0.0001

MMEF2 0.83 <0.0001 0.57 0.0007

CACBINDING PROTEIN 0.82 <0.0001 0.85 <0.0001

DEAF1 0.82 <0.0001 0.73 <0.0001

MINI19 0.78 <0.0001 0.56 0.0032

E12 0.78 0.0001 0.83 0.0001

CEBPB 0.77 <0.0001 0.80 0.0001

PU1 0.77 <0.0001 0.82 <0.0001

FOX 0.76 0.0001 0.72 <0.0001

IRF7 0.75 <0.0001 0.78 <0.0001

HNF1 0.75 0.0014 0.86 <0.0001

CETS1P54 0.74 <0.0001 0.74 <0.0001

LBP1 0.73 <0.0001 0.77 <0.0001

HNF3B 0.73 0.0006 0.67 0.0005

OSF2 0.72 0.0019 0.69 0.0005

CP2 0.71 0.0001 0.82 <0.0001

LEF1TCF1 0.70 0.0003 0.72 <0.0001

NRF2 0.68 0.0011 0.70 0.0008

TFIII 0.68 0.0005 0.65 0.0007

DBP 0.67 <0.0001 0.77 <0.0001

GATA1 0.66 0.0002 0.81 <0.0001

PIT1 0.66 <0.0001 0.67 <0.0001

HELIOSA 0.66 0.0026 0.65 0.0022

MYCMAX 0.66 0.0004 0.77 0.0001

LFA1 0.66 <0.0001 0.81 <0.0001

SRY 0.654 0.0012 0.69 0.0007
Genome Biology 2007, 8:R257
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human organic anion transporter 3 [39], IRF in antiviral
defense and immune activation [40], NRF2 in mammalian
mitochondrial biogenesis [42], and Zic3 in neurogenesis [55].
All these results provide further evidence in support of our
novel approaches.

Functional conservation of TFBSs obviates problems 
associated with phylogenetic footprinting
Unlike phylogenetic footprinting, which searches for con-
served TFBSs between individual orthologous genes by
sequence alignment, our approach of enriching TFBS combi-
nations involved first obtaining all potential TFBSs on a
genome-scale and then looking for TFBS combinations based
on the pattern of binding site arrangement on promoter
sequences. For homotypic TF combinations, the pattern
might include the number of TFBSs and relative between-
TFBS distance. Utilizing this approach, conserved TFBS com-
binations that are located in different positions on the pro-
moter sequences of orthologous genes can be identified, thus
eliminating problems caused by low sequence similarity and
sequence insertion or deletion.

Detailed analysis of identified E2F1 binding sites exemplifies
this point; Figure 6a shows conservation of putative E2F1
binding sites on human and mouse promoter sequences from
a between-TFBS distance of 20 bp. Overall, the arrangement
of TFBSs is highly conserved (with the exception of one extra
binding site in the mouse STAG1 gene). In some genes, such
as the TSPAN14 and FBN2 genes, E2F1 binding sites are in
exactly the same position on mouse and human promoters,
while in other genes, such as the E2F1 and YY1 genes, the
TFBS pairs are in vastly different locations. We thus hypoth-
esize that it is very unlikely that traditional approaches like
phylogenetic footprinting could identify all of these putative
synergistic TF interactions. To test this hypothesis, we used
the rVista program to perform phylogenetic footprinting to
search for conserved binding sites between human and
mouse promoter sequences for all genes [57]. Notably,
although phylogenetic footprinting detected synergistic
TFBSs for four genes, it missed the remainder (Figure 6a). It
is important to note that the majority of these genes are regu-

lated by E2F1, as their promoters were experimentally proven
to be bound by E2F1. These genes include STAG1 [58], YY1
[58], CDCA7L [58], RNF167 [58], FBN2 [58], NULP1 [58],
DTNB [58], MYBL2 [59], and E2F1 [25,60]. Phylogenetic
footprinting was not able to detect any E2F1 binding site in
promoters of the E2F1, STAG1, YY1, CDCA7L, and NULP1
genes.

To investigate whether the predicted combinatorial TFBSs
that were not detected by phylogenetic footprinting are truly
functional ones, we searched for genes whose promoters have
experimentally proven synergistic E2F1 binding sites. One
promoter of the above five genes, the E2F1 promoter, was
well-characterized from both human and mouse to be
synergistically bound by E2F1 (representing a self-regulatory
loop) [25,60]. Sequence comparisons of both E2F1 binding
sites (Figure 6b), as well as the entire promoter sequences
from both human and mouse, indicated that our predicted
E2F1 binding sites were exactly those experimentally proven,
functional E2F1 binding site combinations on E2F1 promot-
ers. This observation suggests that other predicted synergistic
E2F1 binding sites, without experimental evidence, likely rep-
resent functionally conserved elements, despite the fact that
the relative locations of binding sites might vary between spe-
cies. A good example is the ACVR1 gene with two E2F1 bind-
ing site clusters containing a total of five putative binding
sites, which show a similar arrangement between orthologous
genes but are located at different positions on the promoter.
A closer examination demonstrates that these two clusters are
highly conserved in regards to both nucleotide sequence and
spacing between each binding site within each cluster (Figure
6b), suggesting that they are indeed functionally conserved.
Importantly, phylogenetic footprinting detected only one of
the five E2F1 binding sites in the ACVR1 gene.

Quantitative comparisons of function conservation 
with other methods
The above results indicated that our approach was able to
identify more truly functional TFBSs than phylogenetic foot-
printing. We also performed further studies to make quanti-
tative comparisons of our function conservation method with

CREB 0.64 0.0003 0.55 0.0020

AP3 0.63 0.0007 0.62 0.0012

DELTAEF1 0.61 0.0016 0.52 0.0019

CAAT 0.57 0.0004 0.52 0.0030

S8 0.57 0.0004 0.64 <0.0001

E2F1 0.60 0.0001 0.67 <0.0001

NMYC 0.54 0.0005 0.58 0.0002

SRF 0.45 0.0001 0.35 0.0006

Correlations between 19 LODco and their corresponding LODog scores for each of 51 homotypic TF combinations are listed. Also listed are the 
statistical significances of the correlations computed from permutation tests using randomly paired LODco with LODog scores.

Table 1 (Continued)

Correlations (R) and p values (P) from both human (hs) and mouse (mm) for the 51 homotypic TF combinations
Genome Biology 2007, 8:R257
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phylogenetic footprinting and the enhancer element locator
(EEL) algorithm [61]; the latter also employs distance con-
straints to help identify interacting TFs. To facilitate this
analysis, we obtained a set of 6,183 human genes whose pro-
moters were experimentally proven to be bound by E2F1
within 1 kb upstream of the TSS in HeLa cells [58]. Out of
these promoters, 1,591 (Additional data file 1) are in the pro-
moter list of human genes used in this study and have at least
one E2F1 binding site (PWM: E2F1_Q3_01). We first sought
to obtain promoters with combinatorial E2F1 binding sites
with given distance constraints. We subsequently computed
the conditional probability that synergistic E2F1 binding sites
are spaced in a given distance constraint, given E2F1 binding
sites in these E2F1 target promoters. This conditional
probability, as measured from real promoters, was then com-
pared to those measured from promoters with shuffled
sequences and used to compute the statistical significance for
each individual distance constraint. We observed significance
of E2F1 synergy for distance constraints from 10 bp to 600 bp
(p values from 5 × 10-4 to 6 × 10-34 with q-value < 0.001) and
obtained the corresponding promoters (Table 4).

Using these human gene promoters with combinatorial E2F1
binding sites (see Additional data file 2), we next assessed the
sensitivity and specificity for detecting synergistic E2F1 com-
binations by function conservation and phylogenetic
footprinting. In this analysis, real promoters were used as
true positives and the corresponding randomized promoters
with shuffled nucleotides as true negatives. Sensitivity (the
fraction of promoters that were identified to have combinato-
rial E2F1 binding sites) was defined as the proportion of true
positives over combined true positives and false negatives,
and specificity as the proportion of true negatives over com-
bined true negatives and false positives, the latter being the

fraction of randomized promoters that were identified to have
synergistic E2F1 combinations. We applied our function con-
servation, phylogenetic footprinting (using rVista), and EEL
(stand-alone version for pairwise analysis) to the selected
human and their corresponding mouse orthologous gene pro-
moters. Results indicated that our function conservation
approach had much higher sensitivity (approximately ten-
fold) than phylogenetic footprinting for all distance con-
straints tested, as shown in Table 4. On the other hand, both
approaches had equally excellent specificity with no false pos-
itives detected using three sets of shuffled promoter
sequences. We were also curious to know the sensitivity of
detecting promoters with any number of conserved E2F1
binding sites by phylogenetic footprinting. Notably, although
phylogenetic footprinting was able to detect 12.9% of the 575
E2F1 target human promoters with one or more E2F1 binding
sites, the positive rate was still much lower than those from
our function conservation approach (20.3%) for combinato-
rial TFBS detection.

Results of this analysis further indicated that the EEL algo-
rithm was able to detect conserved pairs or clusters of E2F1
sites in only 9 of the 575 target human promoters, demon-
strating a much lower sensitivity (1.6%) than our function
conservation approach. It is interesting to note that EEL
detected multiple single E2F1 sites in many target human
promoters. Although these E2F1 sites may not be conserved
ones based on the underlying premise of the EEL algorithm,
we nonetheless manually calculated all possible combina-
tions of E2F1 sites for each target promoter. The overesti-
mated positive rates are listed in Table 4, where EEL still
displays much lower sensitivity (approximately 0.5-fold) than
our function conservation approach for all distance con-
straints tested. Furthermore, false positives were detected by

Distribution of LOD scores for selected TFBSs from all distance constraintsFigure 4
Distribution of LOD scores for selected TFBSs from all distance constraints. (a) LODco scores of both human (hs_LODco) and mouse (mm_LODco) and 
LODog scores for E2F1. Also shown are the correlations of LODog and LODco for human (Rhs) and mouse (Rmm) and corresponding p values. (b) LODco scores 
of both human (hs_LODco) and mouse (mm_LODco) and LODog scores for MYOGENIN. Also shown are the correlations of LODog and LODco for human 
(Rhs) and mouse (Rmm) and corresponding p values.
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the EEL algorithm using three sets of shuffled promoter
sequences (Table 4), indicating lower specificity for EEL.
Taken together, these results indicated that our approach was
able to identify conserved TFBS combinations to a much
greater extent than phylogenetic footprinting and the EEL
algorithm.

Prediction of heterotypic TF interactions and TF-TF 
interaction networks
In an effort to expand our analyses to a more complex, per-
haps more physiologically relevant situation, we applied our
novel approaches to identify potential heterotypic TF combi-
nations using the selected 51 TFs; a total of 1,275 TF combina-
tions was considered. Correlations between LODco and LODog

scores for these TF combinations had similar distributions to
those from homotypic TF combinations, ranging from -0.96

Table 2

Enriched GO biological process categories for self-synergistic E2F1 and NFAT from between-TFBS distance 20 bp to 90 bp

E2F1 NFAT

Distance No. of genes Function categories No. of genes Function categories

D20 16 Cell cycle (0.07/0.09) 72 Homophilic cell adhesion (0.03/0.01)

D30 31 Sterol metabolism (0.004/0.004) 119 Homophilic cell adhesion (0.02/0.001)

Immune response (0.06/0.003)

Response to biotic stimulus (0.06/0.01)

Regulation of T cell activation (0.04/0.02)

Regulation of lymphocyte activation (0.07/0.002)

D40 49 Cell cycle (0.02/0.007) 166 Homophilic cell adhesion (0.04/0.006)

Sterol metabolism (0.04/0.01) Immune response (0.04/0.008)

Nucleotide and nucleic acid metabolism (0.04/0.07) Response to biotic stimulus (0.06/0.03)

Regulation of T cell activation (0.07/0.03)

D50 64 Sterol metabolism (0.01/0.02) 205 Homophilic cell adhesion (0.01/0.0006)

Cell cycle (0.005/0.02) Immune response (0.08/0.03)

Nucleotide and nucleic acid metabolism (0.01/0.02)

D60 72 Cell cycle (0.002/0.009) 255 Immune response (0.03/0.002)

Sterol metabolism (0.001/0.01) Homophilic cell adhesion (0.03/0.002)

Nucleotide and nucleic acid metabolism (0.008/0.02) Response to biotic stimulus (0.09/0.01)

Regulation of lymphocyte activation (0.06/0.02)

Regulation of T cell activation (0.03/0.07)

Cell-substrate adhesion (0.005/0.01)

D70 83 Cellular physiological process (0.002/0.02) 300 Homophilic cell adhesion (0.002/0.0005)

Cell cycle (0.005/0.02) Immune response (0.01/0.01)

Nucleotide and nucleic acid metabolism (0.02/0.04) Response to biotic stimulus (0.05/0.08)

Sterol metabolism (0.002/0.003) Regulation of lymphocyte activation (0.05/0.02)

Cell-substrate adhesion (0.008/0.02

Regulation of T cell activation (0.04/0.009)

D80 99 Nucleotide and nucleic acid metabolism (0.006/0.008) 341 Homophilic cell adhesion (0.0009/0.00001)

Cell cycle (0.001/0.03) Immune response (0.02/0.0004)

Sterol metabolism (0.003/0.004) Response to biotic stimulus (0.07/0.004)

Cellular physiological process (0.001/0.01) Regulation of lymphocyte activation (0.03/0.03)

Cell-substrate adhesion (0.01/0.02)

D90 107 Nucleotide and nucleic acid metabolism (0.003/0.003) 392 Homophilic cell adhesion (0.0001/0.000001)

Cell cycle (0.002/0.06) Immune response (0.04/0.0008)

Sterol metabolism (0.004/0.006) Regulation of lymphocyte activation (0.05/0.04)

Cellular physiological process (0.001/0.006) Response to biotic stimulus (0.06/0.009)

Cell-substrate adhesion (0.02/0.04)

The number of overlapping orthologous human and mouse genes whose promoters have at least two TF binding sites within certain distance 
constraints (for example, D20 for a between-TFBS distance of 20 bp) is listed under "No. of genes". The statistical significances of commonly 
enriched biological process categories from both human and mouse genes are listed in parentheses (p value mouse/p value human).
Genome Biology 2007, 8:R257
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to 0.99 for human and from -0.94 to 0.99 for mouse (data not
shown). Statistical significance of the correlations estimated
from permutation tests indicated that the number of signifi-
cant TF combinations was overwhelming, even when a highly
stringent cutoff threshold was applied (q-value < 0.01). Nev-
ertheless, we selected 78 heterotypic TF combinations that
passed the cutoff threshold and also had high correlations in
both human and mouse (R > 0.85) for further TF interaction
analysis. We felt that this combination of using a low q-value
along with a high correlation coefficient would allow us to
minimize false positive predictions.

As shown in Figure 7, TF-TF interaction networks, utilizing
these 78 heterotypic TF pairs constructed by the InterViewer
program [62], segregated into two clusters, with a single link
between PIT1 and CETS1P54. Thirty-six TFs were predicted
to have significant interactions with one another and are rep-
resented in the figure. The smaller cluster consists of 19
synergistic TF pairs from 15 TFs, while the remaining 58 syn-
ergistic TF pairs constitute the larger cluster from 21

individual TFs. It is important to note that the binding sites
for the TFs in the smaller cluster are almost all AT-enriched,
while conversely, those in the larger cluster are mostly GC-
enriched. A closer look at the smaller cluster reveals that
HNF3B, FOX and FREAC7 (also called FOXL1), all members
of the forkhead box family of transcription factors ((([63], are
directly coupled to each other, suggesting that these TFs from
the same family may function in a synergistic fashion. We
have also performed a PubMed search to determine if SP1 is
known to physically interact with any of the 13 factors to
which it is connected by this analysis; we chose to delve into
SP1 further as it is one of the first TFs discovered and has been
highly studied. We found experimental evidence that SP1
physically interacts with EGR [64], CP2 [65], MZF1 [66],
MAZ [67], PU1 [68], CETS1P54 (ETS-1) [69], E2F1 [70], ETF
(TEF-1) [71], and KROX [72]. While SP1 binds to the GC-box
elements and ZF5 is the analogous factor of SP1 [73,74], a
couple of the factors could not be identified in PubMed by the
gene names listed in Figure 7, so their interactions with SP1
are unknown. Overall, these data suggest that this approach
is valid for identifying heterotypic TF interactions.

Discussion
The identification of combinatorial TFs and the elucidation of
relationships among them are of great importance for under-
standing transcriptional regulation as well as TF networks.
Previous approaches employed for the identification of func-
tional TF combinations are based on either TFBS enrichment
from co-regulated genes or phylogenetic footprinting.
Although both approaches have proven to be successful, they
each have limitations. To explore alternative approaches, we
propose a new strategy to look for synergistic TFs by function
conservation, which was implemented from functional con-
servation of TFs between species and corresponding TFBSs
between orthologous genes.

Although prior to our study there had not been a genome-
wide function-based approach for the prediction of
combinatorial TFs, several previous studies employed dis-
tance constraints to help identify interacting TFs [9,16,61],
including the EEL algorithm [61]. A side-by-side comparison
of the function conservation approach versus EEL is included
in Table 5. It is important to point out that the core
approaches for computing functional conservation at both
levels were based on genome-scale information of ortholo-
gous genes, from which both TFBS combinations and com-
mon orthologous genes whose regulatory sequences contain
the identified TFBS combinations were enriched. Integration
of function conservation from both levels by correlation anal-
ysis led to the final prediction of combinatorial TFs. While GO
analysis could provide functional annotation for the
predicted TF combinations, it was employed mainly as part of
our procedures to validate our approaches. Therefore, our
validated approaches are readily applicable to other genomes
for the prediction of physically interacting TFs and TF net-

LODog and LODco correlation of 51 selected TFBSs from each distance constraintFigure 5
LODog and LODco correlation of 51 selected TFBSs from each distance 
constraint. (a) Correlation of LODog and LODco for all individual distance 
constraints for both human (Rhs) and mouse (Rmm). (b) The distribution of 
correlation coefficients from 100,000 permuted pairs of LODco with LODog 
scores from the between-TFBS distance of 30 bp from human. The relative 
locations for correlation coefficients from D30 and D90 are also shown.
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Table 3

Function annotation for 51 homotypic TF combinations

TFs GO biological process categories

AP3 Cell adhesion; cellular localization; cellular process; extracellular matrix organization and biogenesis; innate immune 
response; intracellular transport; second-messenger-mediated signaling

CAAT* Cell cycle; cell division [36]; cell organization and biogenesis; chromosome organization and biogenesis; DNA-dependent 
DNA replication; nucleobase, nucleoside, nucleotide and nucleic acid metabolism; protein localization; steroid 
biosynthesis

CACBINDING PROTEIN Calcium ion transport; cellular process; intracellular signaling cascade; morphogenesis; nervous system development; 
organ development; regulation of signal transduction

CEBPB Cellular carbohydrate metabolism

CETSP154 Cell organization and biogenesis; cellular localization; cellular process; organelle organization and biogenesis; protein 
localization; ribosome biogenesis; ubiquitin cycle; vesicle-mediated transport

CETS168 Cellular physiological process

CP2 N/A

CREB N/A

DBP Apoptosis; cell adhesion; endocytosis; innate immune response; intracellular signaling cascade; lipid metabolism; 
phosphate transport; protein kinase cascade; response to endogenous stimulus; RNA processing

DEAF1 N/A

DELTAEF1 Cell adhesion

E12 N/A

E2F1* Cell cycle [25-28]; cholesterol metabolism; nucleobase, nucleoside, nucleotide and nucleic acid metabolism; sterol 
metabolism

EGR* Apoptosis; brain development; cell cycle; cell proliferation; central nervous system development; development [49]; 
endocytosis; enzyme linked receptor protein signaling pathway; galactose metabolism; intracellular signaling cascade; 
metal ion transport; nervous system development [49]; protein amino acid phosphorylation; protein kinase cascade; 
small GTPase mediated signal transduction; synaptic transmission; transcription [37]; ubiquitin cycle

ETF* Cell cycle; cell proliferation; cellular lipid metabolism; central nervous system development; dephosphorylation; 
endocytosis; enzyme linked receptor protein signaling pathway; gluconeogenesis; heart development; hexose 
biosynthesis; intracellular signaling cascade; muscle development; neurite morphogenesis [38]; programmed cell death; 
protein kinase cascade; regulation of nucleocytoplasmic transport; response to DNA damage stimulus; small GTPase 
mediated signal transduction

FAC1 Cell adhesion; cell cycle; cellular lipid metabolism; endocytosis; I-kappaB kinase/NF-kappaB cascade; intracellular 
signaling cascade, via spliceosome; proteolysis; secretion. carbohydrate metabolism; DNA repair; nuclear import; 
protein kinase cascade; protein localization; response to endogenous stimulus; RNA splicing; ubiquitin cycle; vesicle-
mediated transport; cytoplasm organization and biogenesis; innate immune response; endoplasmic reticulum to Golgi 
vesicle-mediated transport; microtubule cytoskeleton organization and biogenesis; wound healing; protein amino acid 
glycosylation

FOX N/A

FREAC7 N/A

GATA1 N/A

GC* Apoptosis [35]; cell proliferation [35]; actin cytoskeleton organization and biogenesis; cell cycle; cellular lipid 
metabolism; central nervous system development; endocytosis; enzyme linked receptor protein signaling pathway; 
endoplasmic reticulum to Golgi vesicle-mediated transport; gluconeogenesis; hexose biosynthesis; muscle development; 
nervous system development; Notch signaling pathway; nucleocytoplasmic transport; protein kinase cascade; small 
GTPase mediated signal transduction; synaptic transmission; transmembrane receptor protein tyrosine kinase signaling 
pathway; ubiquitin cycle; vesicle-mediated transport

HELIOSA Cellular physiological process; development; homophilic cell adhesion; regulation of metabolism

HNF1* Organic anion transport [39]; innate immune response

HNF3B Lipid metabolism; DNA metabolism

IRF7* Immune response [40]

KROX* Actin cytoskeleton organization and biogenesis; cell cycle; enzyme linked receptor protein signaling pathway; 
intracellular signaling cascade; nervous system development [50]; phosphate metabolism; regulation of neurotransmitter 
levels; small GTPase mediated signal transduction; system development; ubiquitin cycle

LBP1* Apoptosis [51]; cellular process; intracellular signaling cascade; protein amino acid phosphorylation; protein kinase 
cascade

LDSPOLYA Development; aromatic amino acid family metabolism; intracellular signaling cascade

LEF1TDF1 N/A
Genome Biology 2007, 8:R257
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LFA1 N/A

MAZ* Apoptosis; brain development; cell adhesion; cell cycle; cell differentiation; endocytosis; enzyme linked receptor protein 
signaling pathway; intracellular signaling cascade; muscle development [41]; nervous system development; development 
[41]; protein amino acid phosphorylation; protein kinase cascade; regulation of actin filament length; small GTPase 
mediated signal transduction; Wnt receptor signaling

MINI19 N/A

MMEF2 N/A

MYCMAX Cellular metabolism; macromolecule metabolism

MZF1* Cell proliferation [52]; cell adhesion; cell cycle; cell differentiation; cell-cell signaling; enzyme linked receptor protein 
signaling pathway; hemopoiesis [52]; metal ion transport; nervous system development; neurotransmitter secretion; 
organ development; regulated secretory pathway; regulation of transcription, DNA-dependent; skeletal development; 
synaptic transmission; Wnt receptor signaling pathway

NFAT* Immune response [29-31]; homophilic cell adhesion; organ development

NMYC Cellular physiological process

NRF2* Organelle organization and biogenesis [42]; cellular physiological process; protein transport

OCT1 Apoptosis; cell-cell adhesion; cellular physiological process; protein transport

OSF2 N/A

PAX4 Cell proliferation; enzyme linked receptor protein signaling pathway; gamma-aminobutyric acid signaling pathway; 
inflammatory response; programmed cell death; regulation of kinase activity

PIT1 Proteolysis

PU1 Cell adhesion; regulation of kinase activity; regulation of transferase activity

S8* Development [46]

SP1* Cell differentiation [53]; cell proliferation [53]; apoptosis [35]; cell adhesion; cell cycle; cell-cell signaling; cellular lipid 
metabolism; central nervous system development; endocytosis; nervous system development; neurogenesis; 
nucleocytoplasmic transport; organelle organization and biogenesis; phosphate metabolism; protein kinase cascade; 
response to endogenous stimulus; Rho protein signal transduction; small GTPase mediated signal transduction; synaptic 
transmission; transcription from RNA polymerase II promoter; transmembrane receptor protein tyrosine kinase 
signaling pathway; ubiquitin cycle; vesicle-mediated transport

SRF N/A

SRY Cell adhesion; cellular process; intracellular signaling cascade; mRNA processing; organic acid metabolism; response to 
DNA damage stimulus; RNA metabolism; RNA splicing; steroid metabolism

TBP Protein transport; establishment of protein localization; RNA processing

TFIII* Cell adhesion; cell differentiation; cell organization and biogenesis; chromatin modification; enzyme linked receptor 
protein signaling pathway; intracellular signaling cascade; nervous system development; organ development; protein 
kinase cascade; protein modification; transcription, DNA-dependent [54]

XVENT1 Cell cycle; cell growth; cell proliferation; cellular biosynthesis; establishment of cellular localization; inflammatory 
response; innate immune response; intracellular signaling cascade; lipid metabolism; mitochondrion organization and 
biogenesis; protein complex assembly; protein kinase cascade; response to endogenous stimulus; response to oxidative 
stress; RNA processing; RNA splicing; secretion; transcription from RNA polymerase II promoter

ZF5* Actin polymerization and/or depolymerization; cell cycle; cell proliferation; cellular lipid metabolism; endocytosis; 
enzyme linked receptor protein signaling pathway; endoplasmic reticulum to Golgi vesicle-mediated transport; 
glycoprotein biosynthesis; hexose metabolism; induction of programmed cell death [47]; intracellular signaling cascade; 
JNK cascade; MAPKKK cascade; neurogenesis; phospholipid biosynthesis; protein amino acid glycosylation; protein 
kinase cascade; RNA splicing, via transesterification reactions; small GTPase mediated signal transduction; stress-
activated protein kinase signaling pathway; ubiquitin cycle; vesicle-mediated transport; transcription from RNA 
polymerase II promoter [48]

ZIC3* Cell adhesion; cell cycle; apoptosis; cell proliferation; cell-cell signaling; chromatin modification; cytoskeleton 
organization and biogenesis; development [56]; endocytosis; enzyme linked receptor protein signaling pathway; hexose 
metabolism; MAPKKK cascade; nervous system development; neurogenesis [55]; protein kinase cascade; small GTPase 
mediated signal transduction; striated muscle development; transmembrane receptor protein tyrosine kinase signaling 
pathway; vesicle-mediated transport

*TFs have corresponding functions proven by experiments from previous studies. N/A stands for no enriched or conserved biological function 
categories from this study.

Table 3 (Continued)

Function annotation for 51 homotypic TF combinations
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works. This is likely the case as long as relative complete
genes and promoter sequences are available for these
genomes so that orthologous genes between closely related
species can be determined correctly by pairwise alignment
and cluster analysis.

The enrichment of functional TFBSs plays an important role
in the integration of function conservation from different
levels by correlation analyses, as the functional conservation
of TFs is based on genes whose promoter sequences contain

over-represented binding sites. In this study, TFBS enrich-
ment was achieved by first obtaining all potential TFBSs on a
genome-scale, followed by searching for TFBS combinations
by using distance constraints. Although this method was suc-
cessful, other methods can also be used as long as they are
able to identify over-represented TFBSs or reliably distin-
guish functional from non-functional TFBSs. Therefore, the
strategy of function conservation is not limited to synergistic
TF discovery, but is applicable to single TFs and even tran-
scriptional regulatory modules.

Functionally conserved E2F1 binding sites in human and mouse genesFigure 6
Functionally conserved E2F1 binding sites in human and mouse genes. (a) Schematic alignment of functionally conserved E2F1 binding sites between human 
(hs) and mouse (mm) promoter sequences from between-TFBS distance of 20 bp. Also listed are the numbers of conserved E2F1 binding site(s) detected 
by phylogenetic footprinting (PF). Asterisks indicate promoters of genes with experimentally proven E2F1 binding sites. (b) Sequence alignment of 
synergistic E2F1 binding sites from the E2F1 gene and two E2F1 binding site clusters from the ACVR1 gene. Core motifs are shown in upper case letters, 
and the distances between adjacent binding sites are shown in brackets. Also shown are the locations of each binding site in relation to the transcription 
start site.

Gene        PF Hit

E2F1* 0

MYBL2* 1

STAG1* 0

YY1* 0

PRDM16 1

CDCA7L* 0

RNF167* 2

REEP3 0

ACVR1 1

FBN2* 2

PX19 0

NULP1* 0

DTNB* 2

TSPAN14 2

HOOK3 0

FBXL14 0

-1000bp -800bp -600bp -400bp -200bp +1bp

hs
mm

ACVR1
pb73-                   pb35-pb778-pb409-pb939-

Human gcctgcccCGCGCgcc(19bp) gccccgccCGCGCcta(11bp) acccgtgcCGCGCggc(808bp) ccccgcccCGCGCcgc(0bp)ccccgc
||| ||||||||| ||      ||||||||||||||||       ||||||||||||| |        |||||||||||||||     | ||| 

Mouse gcccgcccCGCGCccc(16pb) gccccgccCGCGCcta(10bp) ccccgtgcCGCGCgcc(510bp) tcccgcccCGCGCcgc(1bp)cgccgt
pb251-                  pb961-pb596- pb127-pb357-

(a)

(b)
E2F1

 12-83-
Human ttcGCGGCaaaaagga(1bp) ttgGCGCGtaaaagtg

||||||||||||||||     ||||||||||||||||
Mouse ttcGCGGCaaaaagga(1bp) ttgGCGCGtaaaagtg

-793 -776
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The distinct advantage of using distance constraints for
enrichment of TFBSs is that it not only provided a simple
means for enriching functional TFBS combinations for a large
number of genes, but it also allowed us to compute correla-
tion with many enrichment results. The latter is especially
important, as a large number of TFBS enrichments with
changing LODco score trends would contribute more to func-
tional TFBS identification, when compared to a small number
of TFBS enrichments identified by other methods. The valid-
ity of using distance constraints for enriching TFBS
combinations was demonstrated not only by our study, in
which the LODco scores from no distance constraint were sig-
nificantly smaller than those with distance constraints (p <
10-15), but also previous studies by other authors [9,16].

A related question is if there exist optimal distance con-
straints for all TFBSs, which would result in significant and
optimal correlations between LODco and LODog scores for
individual distance constraints. We reasoned that an optimal
distance constraint is most likely to have not only a signifi-
cantly large correlation but also a higher correlation than
those from its two adjacent distance constraints. Interest-
ingly, although LODog and LODco scores displayed general
patterns of increasing correlations along with smaller
between-TFBS distance (data not shown), none of these cor-

relations were statistically significant (p > 0.3), based on ran-
dom correlations from 10,000 permuted LODco and LODog

scores from the same distance constraint. Although no
optimal distance constraints were found for all TFBSs, we
noticed that correlations between TFBS enrichment and com-
mon orthologous gene enrichment from those 51 selected
TFBS combinations displayed significance for some, but not
all, distance constraints (Figure 5). These results indicated
that optimal distance constraints, if any, might vary among
different TFBSs.

The incorporation of functional conservation of TFs can pro-
vide further stringency for synergistic TF discovery, since
computational methods for enriching or characterizing func-
tional TFBSs are likely to contain false predictions. In this
study, the analyses of concordance of TFBS enrichment with
overlapping orthologous gene enrichment are clearly appro-
priate for identifying functional TF combinations, as correla-
tions detect the agreement between TFBS enrichment and
orthologous gene enrichment, no matter whether all the
enriched TFBSs are functional ones or not. We thus employed
correlation analyses to achieve integration of function conser-
vation from both TF and TFBS levels. Although correlation
between LODco and LODog scores from each individual TFBS
would provide a direct measurement for its functional co-

Table 4

Significance of E2F1 synergy for different distance constraints and sensitivity/specificity for detecting synergistic E2F1 combinations by 
function conservation, phylogenetic footprinting, and EEL algorithm from experimentally proven E2F1 binding human promoters

P(synergy/no. of TFBSs)

Distance Real
sequences

Randomized
sequences

P value No. of
genes*

PRF
† FPRF

‡ PRPF
§ FPRPF

¶ PREEL
¥ FPREEL

#

D10 0.039 0.027 1.6E-04 48 10.4% 0.0% 2.1% 0.0% 6.3% 0.0%

D20 0.077 0.041 3.0E-17 92 8.7% 0.0% 3.3% 0.0% 3.3% 0.0%

D30 0.109 0.064 1.1E-18 125 8.8% 0.0% 2.4% 0.0% 5.6% 0.0%

D40 0.139 0.084 2.2E-21 159 11.9% 0.0% 3.1% 0.0% 5.7% 0.0%

D50 0.171 0.098 1.6E-31 192 12.5% 0.0% 3.1% 0.0% 6.8% 0.0%

D60 0.186 0.119 2.4E-24 209 12.0% 0.0% 3.3% 0.0% 8.1% 0.0%

D70 0.215 0.141 6.0E-26 244 12.7% 0.0% 2.9% 0.0% 7.8% 0.0%

D80 0.243 0.154 6.0E-34 272 14.7% 0.0% 2.9% 0.0% 8.1% 0.4%

D90 0.265 0.167 7.1E-38 293 14.3% 0.0% 3.1% 0.0% 7.8% 0.7%

D100 0.280 0.177 4.6E-40 309 14.2% 0.0% 3.2% 0.0% 8.1% 0.6%

D200 0.400 0.312 1.2E-22 419 17.7% 0.0% 2.6% 0.0% 7.6% 1.9%

D300 0.477 0.393 2.6E-19 487 18.1% 0.0% 2.5% 0.0% 7.2% 2.7%

D400 0.524 0.459 4.9E-12 527 19.7% 0.0% 2.3% 0.0% 7.4% 3.2%

D500 0.559 0.505 5.3E-15 557 20.3% 0.0% 2.2% 0.0% 7.7% 3.2%

D600 0.579 0.547 5.0E-04 575 20.2% 0.0% 2.1% 0.0% 8.0% 3.3%

D700 0.600 0.578 1.1E-02 - - - - - - -

D800 0.612 0.604 1.9E-01 - - - - - - -

D900 0.618 0.617 4.9E-01 - - - - - - -

None 0.618 0.619 5.2E-01 - - - - - - -

*The number of genes whose promoters have at least two E2F1 binding sites. †PRF : positive rate from our function conservation approach. ‡FPRF: 
false positive rate from our function conservation approach. §PRPF: positive rate from phylogenetic footprinting approach. ¶FPRPF: false positive rate 
from phylogenetic footprinting approach. ¥PREEL: positive rate from EEL algorithm. #FPREEL: false positive rate from EEL algorithm.
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occurrence, it did not necessarily reflect the degree of similar
changing trends between LODco and LODog scores, which was
especially important for the detection of functionally co-
occurring TFBSs, as not all enriched TFBSs truly represent
functional interactions. We also found that permutation tests
for estimating the statistical significance of correlations is
appropriate for not only setting up the cutoff threshold for the
selection of the most statistically significant correlations from
multiple analyses, but also for selecting TFBSs with similar
trends between LODco and LODog scores.

The validity of functional conservation of TFBSs was also
assessed by experiments from our previous investigations. In
a study to identify common transcriptional regulatory ele-
ments in a group of interleukin-17 target genes [75], we
employed a similar approach to obtain all potential TFBSs
and looked for conserved TFBSs based on the pattern of TFBS
arrangement on promoter sequences. TFs NF-κB and C/EBP
were found to mediate combinatorial regulation for inter-
leukin-17 target genes, which was validated by both luciferase
reporter gene and gel shift assays. These observations provide
direct proof that our computational methods can predict
functional TFBSs.

In another investigation, we utilized a similar approach to
identify over-represented TFBSs in a group of genes induced
in the intestine of iron-deficient rats [76]. Microarray and
clustering analyses led to the identification of 228
upregulated genes during iron-deficiency across several
stages of postnatal development. We pulled promoter
sequences for these genes in rats, mice and humans and per-
formed enrichment analysis for TFBSs. Our results indicated
that SP1-like binding sites were significantly over-repre-
sented in our experimental genes in all three species com-
pared to random background sequences. Our analyses also
predicted that SP1or a related TF could function in a synergis-
tic fashion with the FOX TF to regulate some of our identified
genes. We then inspected the promoter sequences of genes
containing the predicted binding sites for the location and
sequence of the TFBSs. Strikingly, we found that the SP1 and
FOX binding sites were highly conserved in many of these
genes; in some cases, the sequence and location in the pro-
moters across species was identical while in other cases, the
sequence and spacing were conserved, but the relative loca-
tion of the binding sites was variable. These observations
again emphasize the point that traditional methods such as
phylogenetic footprinting are likely to miss important, con-
served elements, and further that our novel approaches are a

Topology of TF-TF interaction networkFigure 7
Topology of TF-TF interaction network. TF-TF relationships based on 78 synergistic TF combinations from different PWMs. Also shown are 
representative motif logos from both the small and the large clusters.

FOX
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Genome Biology 2007, 8:R257



http://genomebiology.com/2007/8/12/R257 Genome Biology 2007,     Volume 8, Issue 12, Article R257       Hu et al. R257.17
valid alternative method that should prove useful for func-
tional TFBS prediction.

Conclusion
Previous methods employed for the identification of func-
tional TF combinations are based on either TFBS enrichment
from co-regulated genes or phylogenetic footprinting. In this
study, we have proposed the use of function conservation for
the identification of TF combinations and have developed
computational approaches to implement this novel strategy.
These approaches include functional TFBS enrichment based
on the pattern of binding site arrangement on promoters of
orthologous genes by distance constraint, enrichment of
overlapping orthologous genes whose regulatory sequences
contain the enriched TFBS combinations, and integration of
function conservation from both TF and TFBS levels by corre-
lation analyses. To assess the usefulness of these approaches,
we have applied them to human and mouse orthologous
promoter sequences. Genome-wide promoter analyses have
led to the identification of 51 homotypic TF combinations,
which were validated by both known TF-TF interactions and
function coherence analyses. The main advantage of our
strategy lies in the fact that it does not depend on sequence
alignment but rather genome information, thus providing an
alternative method for functional TF discovery and annota-
tion. We have further compared our approach directly with
phylogenetic footprinting and clearly demonstrated that
function conservation analysis was better able to predict syn-
ergistic, functional TFBSs. Overall, this study has introduced
a novel approach for the discovery of functional TFBSs, which
should be applicable to any species for which genome infor-
mation is available.

Materials and methods
Promoter sequence sources
Orthologous genes between human and mouse were obtained
from the 'relational table between human and mouse mutu-

ally orthologous genes' in DBTSS, which contains approxi-
mately 12,020 orthologous gene pairs. Out of these
orthologous genes, 10,046 have defined promoter sequences
for both human and mouse. Alternative promoter 1 was used
for all genes, as alternative promoter 1 is the most upstream
promoter in the case of multiple alternative promoters for a
gene in DBTSS. Promoter sequences within 1 kb upstream of
the annotated TSS of the 10,046 genes for both human (Addi-
tional data file 3) and mouse (Additional data file 4) were
extracted from DBTSS and used for TFBS detection with the
repeat sequences unmasked.

TFBS detection
To perform the measurement for significant co-occurrence of
TFBSs, an appropriate randomly generated background
model is necessary. A Perl script was written to shuffle the
DNA sequences within each promoter to create background
sequences that have the same nucleotide content as the origi-
nal promoter sequences. These background sequences are
preferable to using intergenic sequences, which usually are
AT-rich or exonic sequences whose nucleotide distributions
tend to be biased. The resulting two sets of shuffled sequences
from human and mouse, together with the original two sets of
promoter sequences, were used for TFBS detection. To pro-
vide important information for estimating statistical signifi-
cance for single gene pairwise comparisons, multiple shuffled
sequences as background are usually employed. In our case,
however, multiple sets of shuffled promoter sequences as
background are not necessary, since no direct pairwise gene
comparisons were performed; instead, comparisons were
performed on a genome-scale using all shuffled sequences as
background. The Match® program [22], for which the profile
parameter was set to be 'minimize the sum of false positives
and negatives', was employed to conduct searches for TFBSs
using vertebrate position weight matrices from the profes-
sional TRANSFAC 9.1 database. To eliminate redundant
PWMs for the same TF (prefix of the 'Identifier'), the one with
largest TFBS enrichment (see next section) or with highest
quality control for building the PWM was selected, which

Table 5

Comparison of function conservation approach with EEL algorithm

Function conservation EEL algorithm

TFBS detection Finding all potential TFBSs Finding all potential TFBSs

Distance constraint used Yes Yes

Alignment technique used None Non-direct DNA sequence alignment

Distance between TFBSs Any Relatively close

Number of genes compared Identification of conserved TFBSs at multiple 
gene level

Identification of conserved TFBSs at single gene 
level

Parameters used for predicting interacting TFs Conserved TFBS with function conservation of 
TFs at multiple gene (genome scale) level

Conserved TFBS with TF binding affinity at 
single gene level

Sensitivity* Higher Lower

Specificity* Higher Lower

*Relative comparison results between the function conservation approach and EEL algorithm from this study.
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resulted in 234 PWMs (Additional data file 5) for unique fac-
tors in this study.

Enrichment of TFBS combinations by distance 
constraints
The co-occurrence of TFBSs was defined as two or more bind-
ing sites in the same promoter, which can be TFBSs either
from the same PWM or from two PWMs. For combinatorial
TFBS enrichment, distance constraints were first applied for
the selection of co-occurring TFBSs with a certain defined
maximum between-TFBS distance, which is the largest
number of nucleotides allowed between the end of the first
TFBS and the start of the next TFBS. In the case of two PWMs,
the distance constraints were applied to TFBSs from 2 differ-
ent PWMs but not from an identical PWM, and the number of
TFBS from each individual PWM may vary. To prevent dou-
ble counting of TFBSs, two overlapping matches for the same
PWM were considered as a single match and the one closer to
the next co-occurring TFBS was counted. A total of 18 dis-
tances were defined, ranging from the smallest 10 bp to the
largest 900 bp, for which 10 bp increments were used for
those with distance constraints of less than 100 bp and 100 bp
increments for those with distance constraints of more than
100 bp. The counts of co-occurring TFBSs from distance con-
straints with smaller between-TFBS distances were also
included in those with larger between-TFBS distances. The
occurrence of TFBSs without a distance constraint was also
computed, but overlapping TFBSs were counted only once.
All calculations were separately computed using in-house
developed Perl scripts (Additional data file 6).

The log odds ratio (LOD) was used to measure TFBS enrich-
ment, which is the frequency of co-occurrence for a particular
TFBS in real promoter sequences with respect to random
expectation for the co-occurrence of the same TFBS from one
corresponding set of shuffled promoter sequences:

Where fr(#TFBS/#promoters) is the TFBS frequency per
gene from real promoter sequences, and fs(#TFBS/#promot-
ers) is the frequency from shuffled promoter sequences.

Enrichment analyses of overlapping orthologous genes
For enrichment analyses of overlapping orthologous genes,
genes whose promoter sequences contain at least two co-
occurring TFBSs were obtained from both human and mouse.
The p value for the between species enrichment of overlap-
ping orthologous genes, which contained the same TFBS
combinations from the same enforced distance constraint in
both human and mouse, was computed using a hypergeomet-
ric distribution:

Where S1 and S2 are the numbers of genes whose promoters
possess the co-occurring TFBSs from either mouse or human,
respectively; N is the total number of orthologous gene pairs
used in this study (N = 10,046); and c is the number of com-
mon orthologous genes between S1 and S2. The resulting p
value is the chance probability of observing c or more com-
mon orthologous genes from two sets of size S1 and S2 drawn
from a set of N gene pairs. The enrichment analyses of over-
lapping orthologous genes were performed for both original
and shuffled promoter sequences. The latter, as described
below, was obtained for the purpose of normalization.

For computing the correlation between the TFBS enrichment
utilizing distance constraints and the overlapping ortholo-
gous gene enrichment, the p values of overlapping ortholo-
gous gene enrichment from original promoter sequences
were first (-)log transformed and then normalized with the
corresponding (-)log transformed p values from shuffled
promoter sequences. To have a similar scale as LODco, the
LOD for overlapping orthologous gene enrichment was com-
puted as follows:

Analyses of correlations between the TFBS 
enrichment and the overlapping orthologous gene 
enrichment
Pearson correlation coefficients were employed to estimate
the correlation between the 19 LODco and their corresponding
LODog scores for each TFBS combination, and permutation
tests were employed to estimate the statistical significance of
the correlation. To perform the permutation tests, the 19
LODco and their corresponding LODog scores from each TFBS
combination were randomly paired and used for random cor-
relation computation. The procedures were repeated 10,000
times to reach a random distribution and to give sufficient
power for the estimation of p values. The resulting p values
were used to set up a cutoff threshold (q-value < 0.05) for the
selection of the most statistically significant correlation from
multiple analyses.

Abbreviations
DBTSS, Database of Transcriptional Start Sites; EEL,
enhancer element locator; GO, Gene Ontology; LOD, log odds
ratio; PWM, position weight matrices; TF, transcription fac-
tor; TFBS, transcription factor binding site.
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The following additional data are available with the online
version of this paper. Additional data file 1 contains promoter
sequences of 1,591 human genes from [58] with at least one
E2F1 binding site (PWM: E2F1_Q3_01). Additional data file
2 contains promoter sequences of 575 human genes from [58]
with at least two E2F1 binding sites of between-TFBS distance
≤ 600 bp. Additional data file 3 contains promoter sequences
within 1 kb upstream of the annotated TSS for the 10,046
human genes. Additional data file 4 contains promoter
sequences within 1 kb upstream of the annotated TSS for the
10,046 mouse genes. Additional data file 5 lists the matrix ID
in the TRANSFAC database for the 234 PWMs used in this
study. Additional data file 6 contains PERL scripts for com-
puting TFBS combinations by distance constraints.
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Acknowledgements
The authors would like to thank SM Gallo for modifying some of the Perl
scripts to make them more efficient. JFC was supported by NIH Grants 5
R21 DK068349 and 1R01 DK074867.

References
1. Kel OV, Romaschenko AG, Kel AE, Wingender E, Kolchanov NA: A

compilation of composite regulatory elements affecting
gene transcription in vertebrates.  Nucleic Acids Res 1995,
23:4097-4103.

2. Halfon MS, Carmena A, Gisselbrecht S, Sackerson CM, Jimenez F,
Baylies MK, Michelson AM: Ras pathway specificity is deter-
mined by the integration of multiple signal-activated and tis-
sue-restricted transcription factors.  Cell 2000, 103:63-74.

3. Garten Y, Kaplan S, Pilpel Y: Extraction of transcription regula-
tory signals from genome-wide DNA-protein interaction
data.  Nucleic Acids Res 2005, 33:605-615.

4. Pilpel Y, Sudarsanam P, Church GM: Identifying regulatory net-
works by combinatorial analysis of promoter elements.  Nat
Genet 2001, 29:153-159.

5. Chiang DY, Moses AM, Kellis M, Lander ES, Eisen MB: Phylogenet-
ically and spatially conserved word pairs associated with
gene-expression changes in yeasts.  Genome Biol 2003, 4:R43.

6. Das D, Banerjee N, Zhang MQ: Interacting models of coopera-
tive gene regulation.  Proc Natl Acad Sci USA 2004,
101:16234-16239.

7. Keles S, van der Laan M, Eisen MB: Identification of regulatory
elements using a feature selection method.  Bioinformatics 2002,
18:1167-1175.

8. Tsai HK, Lu HH, Li WH: Statistical methods for identifying
yeast cell cycle transcription factors.  Proc Natl Acad Sci USA
2005, 102:13532-13537.

9. Yu X, Lin J, Zack DJ, Qian J: Computational analysis of tissue-
specific combinatorial gene regulation: predicting interac-
tion between transcription factors in human tissues.  Nucleic
Acids Res 2006, 34:4925-4936.

10. Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK,
Hannett NM, Harbison CT, Thompson CM, Simon I, et al.: Tran-
scriptional regulatory networks in Saccharomyces cerevisiae.
Science 2002, 298:799-804.

11. Banerjee N, Zhang MQ: Identifying cooperativity among

transcription factors controlling the cell cycle in yeast.
Nucleic Acids Res 2003, 31:7024-7031.

12. Kato M, Hata N, Banerjee N, Futcher B, Zhang MQ: Identifying
combinatorial regulation of transcription factors and binding
motifs.  Genome Biol 2004, 5:R56.

13. Smith AD, Sumazin P, Das D, Zhang MQ: Mining ChIP-chip data
for transcription factor and cofactor binding sites.  Bioinformat-
ics 2005, 21(Suppl 1):i403-412.

14. Nagamine N, Kawada Y, Sakakibara Y: Identifying cooperative
transcriptional regulations using protein-protein
interactions.  Nucleic Acids Res 2005, 33:4828-4837.

15. Hannenhalli S, Levy S: Predicting transcription factor
synergism.  Nucleic Acids Res 2002, 30:4278-4284.

16. Yu X, Lin J, Masuda T, Esumi N, Zack DJ, Qian J: Genome-wide pre-
diction and characterization of interactions between tran-
scription factors in Saccharomyces cerevisiae.  Nucleic Acids Res
2006, 34:917-927.

17. Zhu Z, Shendure J, Church GM: Discovering functional tran-
scription-factor combinations in the human cell cycle.
Genome Res 2005, 15:848-855.

18. Wasserman WW, Sandelin A: Applied bioinformatics for the
identification of regulatory elements.  Nat Rev Genet 2004,
5:276-287.

19. Odom DT, Dowell RD, Jacobsen ES, Gordon W, Danford TW,
MacIsaac KD, Rolfe PA, Conboy CM, Gifford DK, Fraenkel E: Tissue-
specific transcriptional regulation has diverged significantly
between human and mouse.  Nat Genet 2007, 39:730-732.

20. Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hor-
nischer K, Karas D, Kel AE, Kel-Margoulis OV, et al.: TRANSFAC:
transcriptional regulation, from patterns to profiles.  Nucleic
Acids Res 2003, 31:374-378.

21. Yamashita R, Suzuki Y, Wakaguri H, Tsuritani K, Nakai K, Sugano S:
DBTSS: DataBase of Human Transcription Start Sites,
progress report 2006.  Nucleic Acids Res 2006, 34:D86-89.

22. Kel AE, Gossling E, Reuter I, Cheremushkin E, Kel-Margoulis OV,
Wingender E: MATCH: A tool for searching transcription fac-
tor binding sites in DNA sequences.  Nucleic Acids Res 2003,
31:3576-3579.

23. Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie
A, Reuter I, Chekmenev D, Krull M, Hornischer K, et al.: TRANS-
FAC and its module TRANSCompel: transcriptional gene
regulation in eukaryotes.  Nucleic Acids Res 2006, 34:D108-110.

24. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM,
Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.: Gene ontology:
tool for the unification of biology. The Gene Ontology
Consortium.  Nat Genet 2000, 25:25-29.

25. Johnson DG, Ohtani K, Nevins JR: Autoregulatory control of
E2F1 expression in response to positive and negative regula-
tors of cell cycle progression.  Genes Dev 1994, 8:1514-1525.

26. Sala A, Nicolaides NC, Engelhard A, Bellon T, Lawe DC, Arnold A,
Grana X, Giordano A, Calabretta B: Correlation between E2F-1
requirement in the S phase and E2F-1 transactivation of cell
cycle-related genes in human cells.  Cancer Res 1994,
54:1402-1406.

27. Fan J, Bertino JR: Functional roles of E2F in cell cycle
regulation.  Oncogene 1997, 14:1191-1200.

28. DeGregori J, Johnson DG: Distinct and overlapping roles for
E2F family members in transcription, proliferation and
apoptosis.  Curr Mol Med 2006, 6:739-748.

29. Rao A: NF-ATp: a transcription factor required for the co-
ordinate induction of several cytokine genes.  Immunol Today
1994, 15:274-281.

30. Crabtree GR, Clipstone NA: Signal transmission between the
plasma membrane and nucleus of T lymphocytes.  Annu Rev
Biochem 1994, 63:1045-1083.

31. Rao A, Luo C, Hogan PG: Transcription factors of the NFAT
family: regulation and function.  Annu Rev Immunol 1997,
15:707-747.

32. Masuda ES, Imamura R, Amasaki Y, Arai K, Arai N: Signalling into
the T-cell nucleus: NFAT regulation.  Cell Signal 1998,
10:599-611.

33. Macian F: NFAT proteins: key regulators of T-cell develop-
ment and function.  Nat Rev Immunol 2005, 5:472-484.

34. Dennis G Jr, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lem-
picki RA: DAVID: Database for Annotation, Visualization, and
Integrated Discovery.  Genome Biol 2003, 4:P3.

35. Kaczynski J, Cook T, Urrutia R: Sp1- and Kruppel-like transcrip-
tion factors.  Genome Biol 2003, 4:206.
Genome Biology 2007, 8:R257

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7479071
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11051548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11051548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11051548
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15684410
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11547334
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12844359
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15534222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15534222
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12217908
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157877
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16982645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16982645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16982645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12399584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14627835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14627835
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15287978
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15961485
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16126847
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12364607
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16464824
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15930495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15930495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15131651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17529977
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12520026
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12824369
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16381825
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10802651
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8137237
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9121768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9121768
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17100600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17100600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17100600
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8068174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8068174
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7979236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7979236
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9143705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9143705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9794241
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15928679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15928679
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12734009
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12620113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12620113


http://genomebiology.com/2007/8/12/R257 Genome Biology 2007,     Volume 8, Issue 12, Article R257       Hu et al. R257.20
36. Gronostajski RM: Roles of the NFI/CTF gene family in tran-
scription and development.  Gene 2000, 249:31-45.

37. Sukhatme VP: Early transcriptional events in cell growth: the
Egr family.  J Am Soc Nephrol 1990, 1:859-866.

38. Yasunami M, Suzuki K, Houtani T, Sugimoto T, Ohkubo H: Molecu-
lar characterization of cDNA encoding a novel protein
related to transcriptional enhancer factor-1 from neural pre-
cursor cells.  J Biol Chem 1995, 270:18649-18654.

39. Kikuchi R, Kusuhara H, Hattori N, Shiota K, Kim I, Gonzalez FJ, Sug-
iyama Y: Regulation of the expression of human organic anion
transporter 3 by hepatocyte nuclear factor 1alpha/beta and
DNA methylation.  Mol Pharmacol 2006, 70:887-896.

40. Mamane Y, Heylbroeck C, Genin P, Algarte M, Servant MJ, LePage C,
DeLuca C, Kwon H, Lin R, Hiscott J: Interferon regulatory fac-
tors: the next generation.  Gene 1999, 237:1-14.

41. Bossone SA, Asselin C, Patel AJ, Marcu KB: MAZ, a zinc finger
protein, binds to c-MYC and C2 gene sequences regulating
transcriptional initiation and termination.  Proc Natl Acad Sci
USA 1992, 89:7452-7456.

42. Scarpulla RC: Nuclear activators and coactivators in mamma-
lian mitochondrial biogenesis.  Biochim Biophys Acta 2002,
1576:1-14.

43. Wirth T, Pfisterer P, Annweiler A, Zwilling S, Konig H: Molecular
principles of Oct2-mediated gene activation in B cells.  Immu-
nobiology 1995, 193:161-170.

44. Kramer PR, Krishnamurthy R, Mitchell PJ, Wray S: Transcription
factor activator protein-2 is required for continued luteiniz-
ing hormone-releasing hormone expression in the forebrain
of developing mice.  Endocrinology 2000, 141:1823-1838.

45. Petersenn S, Rasch AC, Penshorn M, Beil FU, Schulte HM: Genomic
structure and transcriptional regulation of the human
growth hormone secretagogue receptor.  Endocrinology 2001,
142:2649-2659.

46. Norris RA, Kern MJ: Identification of domains mediating tran-
scription activation, repression, and inhibition in the paired-
related homeobox protein, Prx2 (S8).  DNA Cell Biol 2001,
20:89-99.

47. Numoto M, Yokoro K, Koshi J: ZF5, which is a Kruppel-type
transcriptional repressor, requires the zinc finger domain
for self-association.  Biochem Biophys Res Commun 1999,
256:573-578.

48. Kaplan J, Calame K: The ZiN/POZ domain of ZF5 is required
for both transcriptional activation and repression.  Nucleic
Acids Res 1997, 25:1108-1116.

49. Beckmann AM, Wilce PA: Egr transcription factors in the nerv-
ous system.  Neurochem Int 1997, 31:477-510. discussion 517-476.

50. Schumacher M, Guennoun R, Mercier G, Desarnaud F, Lacor P, Bena-
vides J, Ferzaz B, Robert F, Baulieu EE: Progesterone synthesis
and myelin formation in peripheral nerves.  Brain Res 2001,
37:343-359.

51. Powell CM, Rudge TL, Zhu Q, Johnson LF, Hansen U: Inhibition of
the mammalian transcription factor LSF induces S-phase-
dependent apoptosis by downregulating thymidylate syn-
thase expression.  EMBO J 2000, 19:4665-4675.

52. Gaboli M, Kotsi PA, Gurrieri C, Cattoretti G, Ronchetti S, Cordon-
Cardo C, Broxmeyer HE, Hromas R, Pandolfi PP: Mzf1 controls cell
proliferation and tumorigenesis.  Genes Dev 2001, 15:1625-1630.

53. Thomas K, Wu J, Sung DY, Thompson W, Powell M, McCarrey J,
Gibbs R, Walker W: SP1 transcription factors in male germ
cell development and differentiation.  Mol Cell Endocrinol 2007,
270:1-7.

54. Kassavetis GA, Geiduschek EP: Transcription factor TFIIIB and
transcription by RNA polymerase III.  Biochem Soc Trans 2006,
34:1082-1087.

55. Inoue T, Ota M, Mikoshiba K, Aruga J: Zic2 and Zic3 synergisti-
cally control neurulation and segmentation of paraxial mes-
oderm in mouse embryo.  Dev Biol 2007, 306:669-684.

56. Grinberg I, Millen KJ: The ZIC gene family in development and
disease.  Clin Genet 2005, 67:290-296.

57. Loots GG, Ovcharenko I, Pachter L, Dubchak I, Rubin EM: rVista for
comparative sequence-based discovery of functional tran-
scription factor binding sites.  Genome Res 2002, 12:832-839.

58. Bieda M, Xu X, Singer MA, Green R, Farnham PJ: Unbiased location
analysis of E2F1-binding sites suggests a widespread role for
E2F1 in the human genome.  Genome Res 2006, 16:595-605.

59. Hanada N, Lo HW, Day CP, Pan Y, Nakajima Y, Hung MC: Co-reg-
ulation of B-Myb expression by E2F1 and EGF receptor.  Mol
Carcinogenesis 2006, 45:10-17.

60. Hsiao KM, McMahon SL, Farnham PJ: Multiple DNA elements are
required for the growth regulation of the mouse E2F1
promoter.  Genes Dev 1994, 8:1526-1537.

61. Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E,
Taipale J: Genome-wide prediction of mammalian enhancers
based on analysis of transcription-factor binding affinity.  Cell
2006, 124:47-59.

62. Ju BH, Park B, Park JH, Han K: Visualization and analysis of pro-
tein interactions.  Bioinformatics 2003, 19:317-318.

63. Tan Y, Adami G, Costa RH: Maintaining HNF6 expression pre-
vents AdHNF3beta-mediated decrease in hepatic levels of
Glut-2 and glycogen.  Hepatology 2002, 35:790-798.

64. Kutoh E, Schwander J: Sp1 interacts with the consensus
sequence for Egr-1 gene product with a cellular factor(s) and
activates the transcription through this element.  Biochem Bio-
phys Res Commun 1993, 194:1475-1482.

65. Xia J, Zhou ZH, Bubien JK, Fuller CM, Markert JM, Mapstone TB,
Gillespie GY, Benos DJ: Molecular cloning and characterization
of human acid sensing ion channel (ASIC)2 gene promoter.
Gene 2003, 313:91-101.

66. Le Mee S, Fromigue O, Marie PJ: Sp1/Sp3 and the myeloid zinc
finger gene MZF1 regulate the human N-cadherin promoter
in osteoblasts.  Exp Cell Res 2005, 302:129-142.

67. Parks CL, Shenk T: Activation of the adenovirus major late pro-
moter by transcription factors MAZ and Sp1.  J Virol 1997,
71:9600-9607.

68. Lopez-Rodriguez C, Corbi AL: PU.1 negatively regulates the
CD11c integrin gene promoter through recognition of the
major transcriptional start site.  Eur J Immunol 1997,
27:1843-1847.

69. Sugimoto H, Okamura K, Sugimoto S, Satou M, Hattori T, Vance DE,
Izumi T: Sp1 is a co-activator with Ets-1, and Net is an impor-
tant repressor of the transcription of CTP:phosphocholine
cytidylyltransferase alpha.  J Biol Chem 2005, 280:40857-40866.

70. Karlseder J, Rotheneder H, Wintersberger E: Interaction of Sp1
with the growth- and cell cycle-regulated transcription fac-
tor E2F.  Mol Cell Biol 1996, 16:1659-1667.

71. Wang SX, Elder PK, Zheng Y, Strauch AR, Kelm RJ Jr: Cell cycle-
mediated regulation of smooth muscle alpha-actin gene
transcription in fibroblasts and vascular smooth muscle cells
involves multiple adenovirus E1A-interacting cofactors.  J Biol
Chem 2005, 280:6204-6214.

72. Beauchef G, Kypriotou M, Chadjichristos C, Widom RL, Poree B,
Renard E, Moslemi S, Wegrowski Y, Maquart FX, Pujol JP, et al.: c-
Krox down-regulates the expression of UDP-glucose dehy-
drogenase in chondrocytes.  Biochem Biophys Res Commun 2005,
333:1123-1131.

73. Zhao C, Meng A: Sp1-like transcription factors are regulators
of embryonic development in vertebrates.  Dev Growth Differ
2005, 47:201-211.

74. Yanagidani A, Matsuoka M, Yokoro K, Tanaka H, Numoto M: Identi-
fication of human autoantibodies to the transcriptional
repressor ZF5.  J Autoimmunity 2000, 15:75-80.

75. Shen F, Hu Z, Goswami J, Gaffen SL: Identification of common
transcriptional regulatory elements in interleukin-17 target
genes.  J Biol Chem 2006, 281:24138-24148.

76. Collins JF, Hu Z: Promoter analysis of intestinal genes induced
during iron-deprivation reveals enrichment of conserved
SP1-like binding sites.  BMC Genomics 2007, 8:420.
Genome Biology 2007, 8:R257

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10831836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10831836
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2129480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2129480
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7629195
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16793932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16793932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16793932
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10524230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10524230
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1502157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1502157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1502157
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12031478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12031478
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8530140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8530140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10803593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10803593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10803593
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11356716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11356716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11356716
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11244566
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10080939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10080939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10080939
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9092617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9092617
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9307998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9307998
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10970859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10970859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10970859
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11445537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11445537
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17462816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17462816
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17073756
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17490632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17490632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17490632
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15733262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15733262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11997350
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16606705
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7958837
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16413481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16413481
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12538268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11915024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11915024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11915024
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8352806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8352806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8352806
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12957380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15541732
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9371624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9371624
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9295016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16157598
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8657141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8657141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8657141
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15576380
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15982635
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15921495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15921495
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16798734
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005439
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18005439

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Strategy overview
	Enrichment of TFBS combinations and orthologous genes containing the binding sites
	Integrating function conservation to identify TFs having synergistic interactions
	Evaluation by known TF-TF interactions
	Evaluation by function coherence
	Function annotation for the identified synergistic TFs
	Functional conservation of TFBSs obviates problems associated with phylogenetic footprinting
	Quantitative comparisons of function conservation with other methods
	Prediction of heterotypic TF interactions and TF-TF interaction networks

	Discussion
	Conclusion
	Materials and methods
	Promoter sequence sources
	TFBS detection
	Enrichment of TFBS combinations by distance constraints
	Enrichment analyses of overlapping orthologous genes
	Analyses of correlations between the TFBS enrichment and the overlapping orthologous gene enrichment

	Abbreviations
	Authors' contributions
	Additional data files
	Acknowledgements
	References

