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re-replication in prokaryotic and eukaryotic cells
Olaf Nielsen1+ & Anders Løbner-Olesen2++

1University of Copenhagen, Copenhagen, Denmark and 2Roskilde University, Roskilde, Denmark

DNA replication is an extremely accurate process and cells have 
evolved intricate control mechanisms to ensure that each region 
of their genome is replicated only once during S phase. Here, 
we compare what is known about the processes that prevent re- 
replication in prokaryotic and eukaryotic cells by using the model 
organisms Escherichia coli and Schizosaccharomyces pombe as 
examples. Although the underlying molecular details are differ-
ent, the logic behind the control mechanisms is similar. For exam-
ple, after initiation, crucial molecules required for the loading of 
replicative helicases in both prokaryotes and eukaryotes are inac-
tivated until the next cell cycle. Furthermore, in both systems the 
β-clamp of the replicative polymerase associates with enzymatic 
activities that contribute to the inactivation of the helicase load-
ers. Finally, recent studies suggest that the control mechanism 
that prevents re-replication in both systems also increases the 
synthesis of DNA building blocks.
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Introduction
Genomic DNA is organized differently in prokaryotic and eukaryotic 
cells. The bacterium Escherichia coli contains a single circular chromo­
some and replication is initiated bi-directionally from a fixed origin 
(oriC; Fig 1). Consequently, a single initiation event will ensure rep­
lication of the entire 4.6 Mbp genome in a process that is completed 
when the two divergent replication forks collide at the opposite side of 
the circular chromosome.

In eukaryotic cells, the genomic DNA is distributed between mult­
iple chromosomes that are contained within the nucleus. At S phase, 
replication is simultaneously initiated from many different origins 
that are scattered throughout the genome (Fig 1), and replication is 
completed when all replication forks have either met a convergent 

fork from an adjacent origin or reached the telomeres at the end of 
the chromosomes.

In the fission yeast Schizosaccharomyces pombe, many potential 
replication origins are found in intragenic regions of the 12.5 Mbp 
genome distributed across three chromosomes. However, only a 
limited subset of these is used in a given S phase. Furthermore, the 
specific origins that actually fire vary from one S phase to another, 
suggesting that origin selection occurs by a stochastic mechanism.

Replicating once, and only once
Despite these differences in organization, both cell types are faced 
with the challenge of ensuring that the entire genome is replicated 
once, and only once, in any given S phase. At face value, this prob­
lem seems to be different depending on whether cells have a single 
origin or many scattered ones. However, under optimal nutritional 
conditions, E. coli cells are able to grow with a doubling time that 
is much shorter than the time required for replication and segre­
gation of the chromosome (S + G2 phases). Consequently, initiation 
of replication occurs one, two or even three generations before cell 
birth, depending on the growth rate (Cooper & Helmstetter, 1968). 
Fast-growing cells are therefore born with chromosomes containing 
several active origins of replication, and such cells are also able to 
coordinate initiation at multiple—but identical—origins (Fig 1).

In both E. coli and fission yeast, initiation of replication is 
coupled to cell growth and is triggered by a specific signal that 
is generated when the cell has obtained a critical mass. Once acti­
vated, each replication origin is inhibited from re-firing until the 
next S phase (see below). Furthermore, in eukaryotic cells, pas­
sive replication by an incoming fork also prevents an origin that 
has not yet fired from firing until the next S phase. Together, these 
mechanisms ensure that the entire genome is replicated only once 
in each cell cycle.

Mechanisms of initiation
Initiation of replication in both E. coli and S. pombe occurs by a 
series of discrete steps. First, the origin recognition complex 
(ORC) is formed by the recruitment of replication factors to origin 
sequences. Subsequently, loading of the replicative helicase con­
verts the ORC into a pre-replicative complex (pre-RC)—a process 
often referred to as ‘licensing’. This paves the way for loading of the 
polymerase itself; in both organisms, the crucial step seems to be 
loading of the helicase.
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The S. pombe ORC is a six-subunit complex that consists of the 
three proteins Orc1, Orc2 and Orc4, each of which contain an AAA+ 
ATP-binding domain (Kong & DePamphilis, 2002). Orc proteins 
specifically associate with origins of replication (autonomously rep­
licating sequences (ARSs); Fig 2). One of the ORC subunits, Orc4, 
contains several AT-hook motifs in its amino-terminal domain, 
which interact with the AT-rich origin sequences. The ORC is bound 
to chromatin throughout the cell cycle and therefore its binding is 
unlikely to regulate initiation (Lygerou & Nurse, 1999). In E. coli, the 
ORC is formed by DnaA, which is the only protein that is specific 
to replication initiation at oriC. The DnaA protein associated with 
either ATP or ADP binds to three 9-bp binding sites within the origin 
of replication called R1, R2 and R4 (reviewed by Kaguni, 2006; Mott 
& Berger, 2007). Similar to the situation in yeast, the ORC remains 
bound to the origin of replication throughout most of the cell cycle 
(Samitt et al, 1989).

The transition from the ORC-like stage to a pre-RC stage rep­
resents the next step in the initiation process. In fission yeast, the 
pre-RC is formed in late M and G1 phases, when the two initiation 
factors Cdt1 and Cdc18 facilitate loading of the replicative helicase. 
Both proteins are cell-cycle regulated, being absent from late S phase 
until cells exit mitosis (see below). Cdc18 is yet another AAA+ 
ATPase, whereas the biochemical function of Cdt1 is unknown. 
Our understanding of pre-RC formation is largely based on studies 
of Cdc6, the budding yeast orthologue of Cdc18, but we anticipate 
that the mechanism in fission yeast is similar. The presence of Cdc18 
and Cdt1 at the ORC enables the recruitment of several complexes 
of minichromosome maintenance (MCM) 2–7 hexamers, in a cyclic 
process that requires hydrolysis of ATP on both Cdc18 and on ORC 
subunits (Randell et al, 2006). The MCM2–7 complex is believed to 
act as the replicative helicase, although biochemical evidence for 
this is still circumstantial.

Assembly of the replisome at the pre-RC and activation of the 
replication process involve several additional factors, including 
Cdc45 and the GINS complex (reviewed by Legouras et al, 2006). 
In addition, the activity of two protein kinases is required at this 
stage: cyclin-dependent protein kinase (Cdk)—the main driver 
of the cell cycle in fission yeast—and the conserved Hsk1–Dfb1 
kinase (also known as Ddk). The phosphorylation targets for 
Cdk were recently identified as Sdl2 and Sdl3 in budding yeast 
(Zegerman & Diffley, 2007; Tanaka et al, 2007).

In E. coli, pre-RC formation is initiated by further binding of DnaA 
to the weaker recognition sites within the origin—that is, R3 and R5, 
which are indifferent to the nucleotide-bound status of DnaA—and 
to three I-boxes (McGarry et al, 2004; Kawakami et al, 2005) that 
are specific for DnaA-ATP. With the help of the accessory proteins 
IHF, HU and DiaA (Ryan et al, 2002; Keyamura et al, 2007), this 
induces formation of a DnaA–DNA nucleoprotein complex on oriC, 
where the DNA is remodelled to a right-handed DNA wrapped 
around a right-handed DnaA-ATP filament (Erzberger et al, 2006). 
The DnaA–DNA complex promotes duplex opening in an adjacent  
AT-rich region. This open complex is stabilized by the binding of 
DnaA-ATP to specific 6-bp sequences found in the single-stranded 
region (Speck & Messer, 2001). The requirement for DnaA-ATP in 
origin remodelling explains why this configuration of the protein is 
limiting for initiation in vivo (Nishida et al, 2002; Riber et al, 2006). 
Subsequently, the DnaA protein recruits the hexameric DnaB helicase 
associated with ATP-bound DnaC as a B6C6 complex to the single-
stranded region of the open complex. DnaC loads the DnaB helicase 
on the open complex to promote further duplex opening to form the 
pre-RC stage. During this process, ATP is hydrolysed and DnaC is 
released. In E. coli, there does not seem to be any control on the pre-
RC stage and the transition to replication proceeds immediately by 
the loading of two or three DNA polymerase III holoenzymes on the 
origin (McInerney et al, 2007). When dNTPs are present, replication 
can then commence (Herrick & Sclavi, 2007).

The spatial arrangement of DnaA protein domains involved in 
nucleotide binding, DNA binding and oligomerization is similar to 
the fission yeast initiation factor Cdc18, and it has been suggested 
that the helical DNA-binding domain could direct similar functioning 
AAA+ domains to their respective origins (Erzberger et al, 2002). It is 
worth noting that both DnaA and Cdc18 can switch between active 
and inactive configurations depending on the nature of the bound 
nucleotide, and that this molecular switch is one of the determinants 
for initiation control.

Cascades of initiation
As discussed above, rapidly growing E. coli cells contain many ori­
gins of replication that all fire simultaneously (Fig 1), and synchro­
nous initiation presumably results from the release of the DnaA 
protein from the first initiated origin in a cell. This will momentarily 
increase the DnaA:oriC ratio for remaining ‘old’ origins and their ini­
tiation will follow in a cascade-like manner—known as the initia­
tion cascade (Lobner-Olesen et al, 1994). Eukaryotic cells are faced 
with a similar problem: origins are selected by a stochastic mecha­
nism, and therefore there is a risk that large chromosomal regions 
will occasionally remain unreplicated during any given S phase. 
Analogous to the initiation cascade model, it has been proposed 
that a crucial replication factor is rate limiting for initiation. As rep­
lication proceeds, this factor is released and can be redistributed to 
other origins, thereby increasing their probability of firing (Lucas  

Initiation

Early initiation

Late initiation

S. pombeE. coli

Fig 1 | Initiation of replication at multiple origins in Escherichia coli and 

Schizosaccharomyces pombe. Origins that have not yet initiated are shown 

in green, whereas those initiated or passively replicated are shown in red. 

The E. coli cell is fast-growing with S + G2 phases spanning more than two 

generation times. Consequently, initiations occur in synchrony at four 

cellular origins. For simplicity, only one chromosome with six autonomously 

replicating sequences is shown in the S. pombe cell. Four of these are firing, 

whereas two are being passively replicated.
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et al, 2000). The nature of this factor has not been established, but  
it would have to be a protein that is not degraded in the initiation 
process—that is, not Cdt1 or Cdc18 (see below).

Mechanisms to prevent re-initiation
In both E. coli and S. pombe, inactivation of the helicase loader pro­
teins has a crucial role in preventing immediate re-firing of a recently 
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Fig 2 | Mechanisms of replication initiation, and the prevention of re-replication in Escherichia coli and Schizosaccharomyces pombe. The symbols for the different 

replication proteins are indicated in the figure with the exception of the replicative DNA polymerase (green) and the DNA-loaded β-clamp–proliferating cell nuclear 

antigen (PCNA; yellow rings). The replicative DNA polymerase is indicated as a dimer, although recent evidence suggests, at least in E. coli, that the replicase might be a 

trimer (McInerney et al, 2007). For simplicity, DnaA and Cdc18 have been given the same symbol as these proteins share homology in important functional domains. 

In the steps after pre-replicative complex formation, the E. coli process is shown on the upper strand/leftward fork, whereas the fission yeast system is illustrated by the 

lower strand/rightward fork. In E. coli, the newly synthesized DNA is unmethylated at GATC sites (blue, middle panel)—that is, DNA is hemi-methylated immediately 

after passage of the replication fork. As the fork progresses further away, both strands become methylated (lower panel). In fission yeast, Cdk phosphorylation of ORC 

and Cdc18 (indicated by ‘P’) prevent binding of the MCM2–7 complex to the ORC and causes SCF-mediated destruction of Cdc18. ARS, autonomously replicating 

sequence; CDK, cyclin-dependent kinase; MCM, minichromosome maintenance; ORC, origin recognition complex; Pre-RC, pre-replicative complex; RIDA, regulatory 

inactivation of DnaA; SCF, an E3 ubiquitin ligase.
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activated origin. In E. coli, the DnaA protein is the target for this regula­
tion, whereas fission yeast cells regulate both Cdt1 and Cdc18. In both 
systems, inhibition of re-replication is accomplished both by physically 
preventing pre-RC assembly and by a reduction in the activity of AAA+ 
ATPase proteins. This is mediated by post-translational inactivation of 
the proteins and by the modulation of gene expression.

Prevention of pre-RC assembly
The E. coli origin of replication is rich in GATC sites, which is the 
substrate for the Dam methyltransferase. As methylation is a post-
replicational process, newly replicated origins are methylated on 
only one strand (Fig 2). These hemi-methylated origins are bound 
(sequestered) by SeqA, a protein with high affinity for hemi-methyl­
ated GATC sites (Lu et al, 1994). Sequestration renders the origin 
inaccessible to DnaA for approximately one-third of the generation 
time to prevent immediate re-initiation (Campbell & Kleckner, 1990; 
von Freiesleben et al, 2000).

Origin sequestration is instrumental not only in preventing the 
immediate re-initiation at an origin, but also in preparing the ori­
gin for the next round of initiation. During sequestration, the DnaA 
protein is only able to bind the high affinity sites R1, R2 and R4, to 
re-set the origin to the ORC stage (Nievera et al, 2006). Although 
sequestration lasts less than one generation, it ensures that succes­
sive initiations at the same origin are separated by a doubling time, 
because it provides a time window during which the origin can­
not be initiated and the amount of DnaA-ATP is reduced to a level 
that cannot sustain initiation (see below). Consequently, a period of 
growth is necessary before origins of replication are released from 
sequestration and can re-initiate.

In eukaryotic cells, the increase in Cdk activity that initiates 
S phase has an additional function in preventing re-replication 
during S, G2 and M phases. The importance of this mechanism 
follows from the observation that G2 cells can be manipulated to 
erroneously enter another round of S phase by temporarily inac­
tivating a temperature-sensitive Cdk allele (Hayles et al, 1994). 
Cdk seems to inhibit re-initiation of DNA replication partly by 
phosphorylating subunits in the ORC (Fig 2), thereby prevent­
ing de novo assembly of pre-RCs until Cdk activity becomes low 
again as cells exit mitosis (Nguyen et al, 2001; Vas et al, 2001). 
Phosphorylation of the ORC has not been reported to involve  
a sequestration mechanism as in E. coli; presumably it simply  
prevents recruitment of Cdt1 and Cdc18.

Post-translational inactivation of AAA+ proteins
The activity of the DnaA protein is reduced during S phase by a pro­
cess known as the ‘regulatory inactivation of DnaA’ (RIDA; Fig 2), in 
which the active ATP-bound DnaA protein is converted to the inac­
tive ADP-bound form by ATP hydrolysis (Katayama et al, 1998). RIDA 
activity involves two proteins: the DnaA-related protein Hda (Kato 
& Katayama, 2001) and the β-clamp of the DNA polymerase (Pol) 
III holoenzyme (encoded by the dnaN gene; Katayama et al, 1998). 
These proteins form a complex even before the clamp is loaded onto 
the DNA (Kawakami et al, 2006). However, only the DNA-loaded 
β-subunit of Pol III in complex with the Hda protein stimulates the 
ATPase activity of DnaA to promote conversion of DnaA-ATP to the 
inactive DnaA-ADP (Su’etsugu et al, 2004). At the end of the ini­
tiation process, hydrolysis of DnaA-ATP by RIDA is accelerated 
because new replication forks are formed, and more β-clamps are 
loaded onto the DNA.

In fission yeast, the two helicase-loader proteins Cdc18 and Cdt1 
also become inactivated after initiation of replication, but here this is 
accomplished by physical degradation rather than biochemical inac­
tivation. The increase in Cdk activity that brings about S phase also 
causes phosphorylation of Cdc18, which targets the protein for SCF-
mediated ubiquitination and subsequent degradation by proteolysis 
(Fig 2; Jallepalli et al, 1997). The importance of this regulation is clear 
from the fact that ectopic over-production of Cdc18 causes massive 
re-initiation of DNA replication (Nishitani & Nurse, 1995).

The Cdt1 protein also becomes degraded after successful initiation 
of DNA replication, but this process does not require Cdk. Instead, 
Cdt1 is targeted for degradation by a different E3 ubiquitin ligase, the 
Cullin4–Ddb1–Roc1 complex (Ralph et al, 2006). Interestingly, Cdt1 
ubiquitination is tightly coupled to its function in initiation by means of 
two different mechanisms. First, substrate recognition requires a spe­
cific adaptor protein, the WD40-repeat protein Cdt2, which becomes 
transcriptionally induced when cells enter S phase (Liu et al, 2005). 
Second, Cdt1 only becomes ubiquitinated when it is associated with 
the proliferating cell nuclear antigen (PCNA) processivity clamp of the 
polymerase (Fig 2; Arias & Walter, 2006, Jin et al, 2006; Nishitani et al, 
2006; Senga et al, 2006). Presumably, Cdt1 molecules are consumed 
when they have been actively engaged in initiation. Therefore, enzy­
matic activities that negatively regulate helicase-loader proteins seem 
to associate with the processivity clamp in both E. coli and S. pombe.

Modulation of gene expression
E. coli does not seem to regulate DnaA activity by degrading the pro­
tein; however, in addition to RIDA, a second mechanism for reducing 
DnaA activity in the post-initiation period exists. This method uses the 
sequestration mechanism to reduce expression of the dnaA gene. On 
replication, the dnaA gene promoter region, which is rich in GATC 
sequences, is hemi-methylated and sequestered for the same time 
period as the origin of replication. Sequestration of the dnaA pro­
moter completely blocks transcription of the dnaA gene (Campbell 
& Kleckner, 1990). As the dnaA gene is close to the origin, sequestra­
tion of dnaA is virtually coincident with sequestration of oriC, and 
de novo DnaA synthesis is prevented during the origin sequestration 
period (Fig 2). In cells in which origin and dnaA gene sequestration 
no longer coincide, DnaA synthesis continues during origin seques­
tration. In such cells, re-initiations occasionally occur at some origins 
within the same cell cycle (Riber & Lobner-Olesen, 2005).

Transcription of the genes encoding the helicase-loader pro­
teins Cdc18 and Cdt1 also oscillates in fission yeast and is high in 
late mitosis and G1 (Hofmann & Beach, 1994; Kelly et al, 1993). 
However, this is actively controlled by the cell-cycle-regulated MBF 
transcription factor complex rather than by an intricate system that 
monitors ongoing replication.

Titrating DnaA to reservoir sites
During origin sequestration, replication generates new DnaA protein-
binding sites outside oriC. These titrate DnaA protein away from the 
origin and, in the absence of de novo DnaA synthesis (Campbell & 
Kleckner, 1990), efficiently reduce the intracellular concentration of 
DnaA protein available for initiation (Fig 2). The E. coli chromosome 
contains a hierarchy of 308 evenly distributed R-type DnaA boxes 
with different affinities for the DnaA protein. The datA locus, which 
contains five R-type DnaA boxes, seems to have the highest DnaA-
binding capacity, and might bind to several hundred molecules of 
DnaA protein associated with either ATP or ADP. The datA locus is 
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located approximately 470 Kbp away from oriC and is replicated 
within the period of origin sequestration during which no new DnaA 
protein is synthesized. This generates a sink for free DnaA protein 
(Kitagawa et al, 1998).

Coupling nucleotide synthesis to chromosome replication
In most cells, the intracellular concentration of DNA precursors 
(dNTPs) is low and can only sustain limited chromosome replica­
tion unless they are continuously synthesized to match the demand 
of ongoing replication forks. Upregulation of dNTP synthesis 
in S phase is carefully controlled because imbalances between 
the four individual nucleotide pools, as well as balanced devia­
tion from the normal level, are mutagenic (reviewed by Mathews, 
2006). In both E. coli and fission yeast, dNTPs are synthesized from 
their corresponding NTPs exclusively by the ribonucleotide reduc­
tase (RNR) complex. RNR is a heterodimeric tetramer consisting of 
two large and two small subunits. RNR activity is the rate-limiting 
step in dNTP synthesis.

The RNR subunits of E. coli are encoded by the nrdAB operon, 
and nrdAB expression is adjusted to DNA synthesis (reviewed by 
Herrick & Sclavi, 2007). Transcription of nrdAB is induced at the time 
of initiation by a DnaA-independent mechanism ( Jacobson & Fuchs, 
1998). Superimposed on this cell-cycle regulation is modulation 
of transcription by the DnaA protein (Augustin et al, 1994). DnaA 
was initially reported to stimulate nrdAB transcription ( Jacobson  
& Fuchs, 1998) although a recent study indicates that DnaA-ATP—
but not DnaA-ADP—is an efficient repressor of its transcription (Gon  
et al, 2006). The nrdAB expression level is therefore determined by 
the DnaA-ATP:DnaA-ADP ratio.

The RIDA-imposed variation in DnaA-ATP:DnaA-ADP ratio 
throughout the cell cycle (Kurokawa et al, 1999) could therefore 
couple dNTP synthesis to the elongation step of chromosome rep­
lication. Before initiation, when the cellular DnaA-ATP:DnaA-ADP 
ratio is high (Kurokawa et al, 1999), DnaA regulation would favour 
nrdAB repression. After initiation, RIDA is accelerated, resulting in a 
reduced DnaA-ATP:DnaA-ADP ratio and consequently an increase 
in nrdAB transcription. Therefore, the RNR level is increased in 
S phase, resulting in an increased synthesis of dNTPs to match the 
demand from the ongoing replication forks.

Precursor synthesis in eukaryotic cells is also adjusted to ongo­
ing DNA replication by the regulation of RNR activity; however, the 
molecular basis is different. In S. pombe, transcription of the gene 
encoding the large subunit (Cdc22) is cell-cycle regulated (Fernandez 
Sarabia et al, 1993). In addition, assembly of RNR is actively pre­
vented outside S phase by the presence of the RNR inhibitor protein 
Spd1 (Liu et al, 2003). When cells enter S phase, Spd1 is degraded by 
the same pathway that downregulates the Cdt1 helicase loader—that 
is, the Cullin4–Ddb1–Roc1 E3 ubiquitin ligase and the adaptor pro­
tein Cdt2 (Holmberg et al, 2005; Liu et al, 2005). It is unclear whether 
the degradation of Spd1—similar to the degradation of Cdt1—is  
coupled to PCNA.

Perspectives
The development of the eukaryotic type of genome organization—
with multiple chromosomes and many scattered origins of replica­
tion—was probably important for the expansion of genome size that 
allowed the development of complex organisms. Taken at face value, 
control of replication seems to be organized differently in prokary­
otic and eukaryotic cells; however, the control mechanisms found 

in the two systems seem to regulate the same steps in the process. 
First, in both prokaryotes and eukaryotes the crucial step in the estab­
lishment of a replication origin is loading of the replicative helicase. 
This process is mediated when the concentration of the helicase- 
loading AAA+ ATPases builds up to a certain threshold in the cell. In 
E. coli, this seems to be the rate-limiting step; loading of the repli­
cative polymerase and initiation immediately follows. In S. pombe, 
further progress requires the action of S-phase-activating kinases. 
Second, once an origin of replication has fired, re-firing is prevented 
for a period of time. In both systems, this is accomplished by a com­
bination of physical modification of the origin and/or associated 
protein factors (by sequestration or by phosphorylation), such that 
the helicase loader cannot access it, and by removing the helicase- 
loader activity. Eukaryotic cells literally get rid of the protein by 
switching on ubiquitin-mediated degradation. The prokaryotic cell 
does not have this option and therefore it is dependent on several 
other methods of reducing the active concentration of the helicase 
loader, such as through hydrolysis of its bound ATP, binding of the 
loader to unproductive sites or downregulation of its expression. The 
development of ubiquitin-mediated protein degradation made these 
mechanisms redundant.

In this review, we have attempted to draw parallels between the 
basic mechanisms that prevent re-replication in two simple uni-
cellular model organisms. Failure to restrict replication to once 
per cell cycle leads to DNA damage through the generation of 
double-stranded breaks and can result in development of tumours 
(reviewed by Arias & Walter, 2007). It is therefore not surprising that 
metazoans have evolved additional mechanisms—such as inactiva­
tion of Cdt1 by Geminin binding—to minimize the likelihood of 
untimely replication initiations.
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