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WNK kinases are a small group of unique serine/threonine
protein kinases that are conserved among multicellular organisms.
Mutations in WNK1–4 cause pseudohypoaldosteronism type II—a
form of hypertension. WNKs have been linked to the STE20
kinases and ion carriers, but the underlying molecular mechanisms
by which WNKs regulate cellular processes in whole animals are
unknown. The Caenorhabditis elegans WNK-like kinase WNK-1
interacts with and phosphorylates germinal centre kinase
(GCK)-3—a STE20-like kinase—which is known to inactivate
CLH-3, a CIC chloride channel. The wnk-1 or gck-3 deletion
mutation causes an Exc phenotype, a defect in the tubular
extension of excretory canals. Expression of the activated form of
GCK-3 or the clh-3 deletion mutation can partly suppress wnk-1
or gck-3 defects, respectively. These results indicate that WNK-1
controls the tubular formation of excretory canals by activating
GCK-3, resulting in downregulation of CIC channel activity.
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INTRODUCTION
WNK kinases are serine/threonine kinases that are characterized
by an atypical location of its catalytic lysine (Xu et al, 2000). There

are four mammalian WNK family members. WNK1–4 have been
identified as genes mutated in families of patients with pseudo-
hypoaldosteronism type II (PHAII) human hypertension (Wilson
et al, 2001). Mutations of the WNK1 gene found in PHAII subjects
consist of deletions in intron 1. These mutations are reported to
cause increased expression of the WNK1 protein, indicating that
hypertension could result from increased expression of WNK1.
The WNK1 knockout is an embryonic lethal mutation (Zambrowicz
et al, 2003), indicating that WNK1 is also required for a normal
development. Subsequently, WNK4 was shown to be a regulatory
kinase for ion channels, transporters and tight junction proteins,
indicating that WNK4 functions as a multifunctional regulator of
diverse ion transport pathways (Kahle et al, 2003; Yamauchi et al,
2004; Yang et al, 2007a, b). Although the mechanism by which
WNK4 regulates these transport pathways is unknown, recent
studies have shown that WNK1–4 lie upstream of the STE20
kinases, stress protein kinase (SPAK) and oxidation stress response
kinase 1 (OSR1), which are known to regulate cation/Cl co-
transport (Moriguchi et al, 2005; Vitari et al, 2005; Anselmo et al,
2006; Gagnon et al, 2006). To investigate the question of WNK
function in the context of the whole organism, we have taken a
genetic approach using Caenorhabditis elegans as a model system.

RESULTS AND DISCUSSION
C. elegans contains only one gene encoding the WNK-like
protein, wnk-1 (supplementary Fig 1A online). Recent studies
have shown that mammalian WNK1–4 interact with and
phosphorylate the STE20 kinases, SPAK and OSR1 (Moriguchi
et al, 2005; Vitari et al, 2005). As C. elegans germinal centre
kinase (GCK)-3 is a homologue of SPAK and OSR1 (Denton et al,
2005; supplementary Fig 1B online), we investigated whether the
biochemical interaction between WNK-1 and GCK-3 is conserved
in C. elegans. We transiently expressed FLAG-WNK-1 together
with T7-GCK-3 in human embryonic kidney (HEK) 293 cells. Cell
extracts were subjected to immunoprecipitation with the T7
antibody, followed by immunoblotting assay. We found that
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WNK-1 interacted with GCK-3 (Fig 1A, lane 3). Mammalian SPAK
and OSR1 have conserved carboxy-terminal (CCT) domains,
which recognize the RFX(V/I) motif present in WNK1–4
(Moriguchi et al, 2005; Vitari et al, 2005; Anselmo et al, 2006;
Gagnon et al, 2006; Villa et al, 2007). Gsk-3 also contains a CCT
domain (supplementary Fig 1B online) and the Gsk-3(1–499) form
lacking the CCT domain failed to bind to WNK-1 (Fig 1A, lane 7).
As WNK-1 contains two RFXV motifs (supplementary Fig 1A
online), we investigated whether these sites are responsible for
their association with GCK-3. The WNK-1(F1131A/F1220A) form,
in which both RFXV motifs have been mutated, is unable to
associate with GCK-3 (Fig 1A, lanes 4–6). Together, these results
indicate that WNK-1 association with GCK-3 involves an
interaction between the RFXV motif of WNK-1 and the CCT
domain of GCK-3.

Next, we investigated GCK-3 phosphorylation by WNK-1. We
produced a glutathione S-transferase (GST)-tagged kinase-negative
form of GCK-3(K137M) in bacteria and tested its ability to be
phosphorylated in vitro. We observed that WNK-1 phosphorylated

GCK-3 in a kinase-dependent manner (Fig 1B, lanes 1,3). We
carried out in vitro kinase assays using several deletion mutants of
GCK-3 (supplementary Fig 2 online). These assays showed that the
WNK-1 phosphorylation site is located in the 415–435 amino-acid
region of GCK-3, within which only one Ser 419 is present
(supplementary Fig 2 online). Mutation of this Ser 419 to an
alanine residue abolished phosphorylation of GCK-3 by WNK-1
(Fig 1B, lane 2), which is consistent with this being the main
phosphorylation site. To examine the role of Ser 419 phosphor-
ylation in the regulation of GCK-3, we mutated Ser 419 to either
alanine—to prevent phosphorylation—or aspartic acid—to mimic
phosphorylation—and assayed GCK-3 kinase activity by using an
amino-terminal fragment of another STE20 family member
p21-activated kinase 3 (PAK3), GST-PAK3(65–135) (Okabe et al,
2003), as a substrate. Mutation of Ser 419 to alanine or aspartic
acid had no effect on basal GCK-3 activity (Fig 1C, lanes 5,6). In
mammals, WNK1–4 activate SPAK and OSR1 by phosphorylating
their T-loop residues (Thr 233 of SPAK and Thr 185 of OSR1; Vitari
et al, 2005). As this site is conserved in C. elegans GCK-3
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Fig 1 | Biochemical analysis of Caenorhabditis elegans WNK-1 and GCK-3 expressed in mammalian cells. (A) An association between WNK-1 and

GCK-3 is shown. Human embryonic kidney (HEK) 293 cells were transfected with the indicated constructs. Cell lysates were immunoprecipitated (IP)

with the T7 antibody. Association was detected by immunoblotting (IB) with the appropriate antibodies. (B) WNK-1 phosphorylates GCK-3 in vitro.

HEK293 cells were transiently transfected with the FLAG-WNK-1 and FLAG-WNK-1(K344M). The proteins were immunoprecipitated with the FLAG

antibody and their kinase activities assayed using bacterially expressed GST-GCK-3(K137M) or GST-GCK-3(K137M/S419A) as substrates. Right panel

(CBB) shows the amounts of substrates used in this assay. (C) GCK-3 kinase activity. HEK293 cells were transfected with the indicated constructs. The

proteins were immunoprecipitated with the T7 antibody and their kinase activities assayed toward GST-PAK3(65–135). CBB, Coomassie brilliant blue

staining; GCK, germinal centre kinase; GST, glutathione S-transferase.
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(supplementary Fig 1B online), we introduced a mutation at
Thr 280. Interestingly, mutation of Thr 280 to glutamic acid—to
mimic phosphorylation—markedly enhanced GCK-3 activity
(Fig 1C, lane 3), whereas mutation of Thr 280 to alanine slightly
reduced the basal activity (lane 4). These results indicate that
phosphorylation of the T-loop in GCK-3, rather than phosphoryla-
tion of Ser 419, mediates activation of GCK-3 by WNK-1.
However, in vitro phosphorylation of recombinant GCK-3
proteins by WNK-1 or coexpression of GCK-3 with WNK-1 in
mammalian cells resulted in only weak activation of GCK-3 (data
not shown). Further studies will be needed to understand the
mechanism of GCK-3 activation by WNK-1.

To examine the physiological role of WNK-1 in the intact
organism, we isolated a presumptive null mutation in wnk-1
(tm487; supplementary Fig 3A online). The wnk-1(tm487) homo-
zygous mutant animals obtained from wnk-1/þ heterozygotes did
not grow beyond the early L2 larval stage (supplementary Fig 3B
online). The wnk-1(tm487) mutation also caused an Exc (for
excretory canal abnormal) phenotype. The excretory cell and its
associated gland, duct and pore cells form the C. elegans renal
system (Fig 2A; Buechner, 2002). To examine the morphology of
the excretory cell, we used a bgIs312 transgene, which expresses
green fluorescent protein in the excretory cell (Berry et al, 2003).
In wild-type L2 animals, the posterior canals terminated near
the anus (Fig 2B). By contrast, in wnk-1 L2 mutants, the
posterior canals ended at or anterior to the gonad (Fig 2C).
Introduction of the wild-type wnk-1 gene driven from the heat-
shock promoter (hsp-16.2) rescued the L2 arrest and Exc
phenotypes associated with wnk-1(tm487); this rescue was
dependent on WNK-1 kinase activity (Fig 2D,E). Analysis using
the deficiency eDf19 indicated that tm487 is a null allele (data not
shown). Thus, WNK-1 is essential for larval development and tube
formation of excretory canals.

We next constructed the deletion mutant gck-3(tm1296)
(supplementary Fig 3C online). This deletion resulted in
a truncated protein lacking the CCT domain. Although
gck-3(tm1296) homozygous young adults obtained from
gck-3/þ heterozygotes could initially produce some fertilized
eggs, they produced only unfertilized eggs 2 days after the final
moult. This phenotype seemed to be associated with the loss of
sperm cells from the spermatheca (supplementary Fig 3D online),
indicating that gck-3 is required for normal sperm function and
fertility in hermaphrodites; in addition, they also showed an Exc
phenotype. In young adult gck-3 animals, the canals were short
compared with those of wild-type animals (Fig 3A,B). Further-
more, the outer (basolateral) surface of the excretory canals grew
out to most of their normal distance, whereas the luminal (apical)
surface was shorter and bloated. This resulted in a wide canal with
long lumen-free protrusions at the ends (Fig 3B). These long
extensions indicated that canal outgrowth and guidance were
largely normal, but that the lumen either did not keep pace with
the canal growth, or shrank back from basal surface as the luminal
surface collapsed. Although gck-3(tm1296) mutants did not show
an early larval arrest phenotype, heterozygotes between
gck-3(tm1296) and the ozDf1-deficient mutant were arrested at
the early larval stage (data not shown), indicating that tm1296
might not be a null allele. The Exc phenotype of gck-3(tm1296)
mutants was rescued by transfection of the gck-3 wild-type
gene, but not by the kinase-negative gck-3(K137M), driven from
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Fig 2 | Genetic analysis of wnk-1 in Caenorhabditis elegans. (A) Diagrams

showing excretory canals. The excretory cell extends tube-like canals

dorsally on both sides during embryogenesis. On reaching the lateral

epidermis, these canals bifurcate and grow anteriorly and posteriorly for

nearly the length of the animal, creating an H-shaped canal system.

(B,C) Excretory canal morphologies in (B) wild-type and (C) wnk-1

worms at the L2 larval stage. The excretory canal is visualized using

pes-6pHgfp expression. End positions of the posterior canals are

indicated by red arrows; white arrowheads indicate positions of the

gonads. Right panels in (C) show posterior canals at high magnification;

anterior is to the left. Scale bars, 25 mm. (D–G) Rescue and suppression

of wnk-1 phenotypes. The wnk-1 mutants carrying the indicated

transgenes were examined for L2 arrest and Exc phenotypes. After

hatching, animals were subjected to heat treatment at 37 1C for 30 min.

This heat treatment was repeated three times at intervals of 24 h.

Fluorescent micrographs of wnk-1 mutants carrying the indicated

transgenes are shown. Enlarged images are also shown in (E), right, and

(F), bottom. Exc, excretory canal abnormal phenotype; gck, germinal

centre kinase; gfp, green fluorescent protein; hsp, heat-shock protein.
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the hsp-16.2 promoter (Fig 3C,D). Consistent with this, the wnk-1
and gck-3 genes are expressed in the excretory cell (Denton et al,
2005; Choe & Strange, 2007), indicating that both WNK-1 and
GCK-3 regulate tubular formation of the excretory canals.

To determine the importance of Ser 419 and Thr 280 phosphor-
ylation in GCK-3 function in vivo, we introduced a transgene
carrying gck-3(S419A) or gck-3(T280A) into gck-3 mutants. We

found that the gck-3(S419A) mutation still rescued the gck-3
defect (Fig 3E), whereas the gck-3(T280A) mutation had lost the
ability to rescue the defect (Fig 3F). This result is consistent with
the biochemical data, showing that phosphorylation of Thr 280
in GCK-3 is important for the activation of GCK-3. We next
confirmed that WNK-1 and GCK-3 act in the same pathway
in vivo. Expression of an activated form of GCK-3(T280E), but not
of wild-type GCK-3, in wnk-1 mutants was able to suppress both
the L2 arrest and Exc phenotypes (Fig 2G; supplementary Fig 4
online), indicating that WNK-1 functions upstream of GCK-3.
Furthermore, the wnk-1(F1131A/F1220A) mutation, defective in
its interaction with GCK-3, failed to rescue the wnk-1 defects
(Fig 2F). This supports the importance of the WNK-1–GCK-3
interaction for WNK-1 function in vivo. In the mammalian WNK–
STE20 pathway, WNK1 is activated by osmotic stress through the
phosphorylation of its T-loop residue (Ser 382; Zagorska et al,
2007), a residue that is conserved in C. elegans WNK-1 at Ser 495
(supplementary Fig 1A online). To test whether Ser 495 in WNK-1
is essential for its function, we constructed the wnk-1(S495A)
mutation, in which Ser 495 was converted to alanine. The
wnk-1(S495A) mutation still had the ability to rescue the wnk-1
defects (supplementary Fig 4 online).

In mammals, SPAK and OSR1 activate the Na-K-2Cl co-
transporter (NKCC) by interacting with its N-terminal RFX(V/I)
motif (Dowd & Forbush, 2003). C. elegans also has the nkcc-1
gene encoding an NKCC-like protein that contains the RFXV motif
(Fig 4A); however, the nkcc-1(ok1621) deletion mutation had no
effect on the morphology of the excretory canal (supplementary
Fig 5 online). Denton et al (2005) have shown that the RFXI motif
mediates the interaction of GCK-3 with CLH-3, a ClC anion
channel, and that knockdown of gck-3 by RNA interference
activates CLH-3. Thus, GCK-3 binds to and functions to inhibit
CLH-3. This raised the possibility that downregulating CLH-3
could suppress the gck-3 mutation. Therefore, we examined the
genetic interactions of clh-3 with gck-3. In clh-3(ok763) deletion
mutants, excretory canals were formed almost normally (Fig 4B);
in addition, we found that the clh-3(ok763) mutation was able
to partly suppress the Exc phenotype of gck-3(tm1296) mutants
(Fig 4B). These results support the possibility that the ClC anion
channel negatively regulates the tube formation of excretory
canals and that the WNK-1–GCK-3 cascade antagonizes the
inhibitory effect of CLH-3. Furthermore, the clh-3(ok763) muta-
tion partly restored fertility in gck-3(tm1296) mutants (Fig 4C).
This is consistent with the idea that GCK-3 negatively regulates
ClC channel activity in vivo.

The C. elegans excretory system functions as the worm’s renal
system, regulating tissue similarity and passing excess fluid along
the tubules (Buechner, 2002). Here, we have shown that the
WNK-1–GCK-3 pathway is important for tubular formation of the
excretory canals, and that this occurs by negative regulation of
CLH-3 ClC channel activity (Fig 4D). As the apical cytoskeleton is
a crucial component in canal tube morphogenesis (Buechner,
2002; Berry et al, 2003), it is possible that CLH-3 functions to
couple extension and lumen formation in a process that depends
on the cytoskeleton during canal extension. Our observation that
suppression of the gck-3 Exc defect by clh-3 was only partial raises
the possibility that other ion channels or transporters are also
regulated by the WNK-1–GCK-3 pathway. The redundancy
indicated here might explain why the clh-3 deletion itself has no
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Fig 3 | Genetic analysis of gck-3 in Caenorhabditis elegans. (A,B) Excretory

canal morphologies in wild-type (A) and gck-3 (B) worms at the young

adult stage. The excretory canal is visualized using pes-6pHgfp

expression. End positions of the posterior canals are shown by red

arrows. White arrowheads show positions of the vulva. Middle and lower

panels show posterior canals at high magnification. Scale bars, 25mm.

(C–F) Rescue of gck-3 Exc phenotype. The gck-3 mutants carrying the

indicated transgenes were examined for Exc phenotype. After hatching,

animals were subjected to heat treatment at 37 1C for 30 min. This heat

treatment was repeated five times at intervals of 12 h. Fluorescent

micrographs of gck-3 mutants carrying the indicated transgenes are

shown. Exc, excretory canal abnormal phenotype; gck, germinal centre

kinase; gfp, green fluorescent proteins; hsp, heat-shock protein.

Role of the WNK–STE20 pathway in Caenorhabditis elegans

N. Hisamoto et al

&2008 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 9 | NO 1 | 2008

scientificreport

73



effect on the tubular morphology. In addition to the Exc
phenotype, wnk-1 mutants showed an early larval arrest pheno-
type and gck-3 animals showed defects in fertilization. Interest-
ingly, wnk-1(tm487); Ex [wnk-1] animals were partly defective in
fertilization (data not shown). This phenotype is similar to that
observed in the gck-3 mutants. Furthermore, progenies hatched
from gck-3(tm1296); clh-3(ok763) homozygous mutants were
arrested at the early larval stage (data not shown), indicating that
the clh-3 mutation is unable to suppress the early larval arrest
phenotype. Thus, WNK-1 and GCK-3 are commonly involved in
the regulation of tube formation of excretory canals, fertilization
and larval development. Our findings suggest that the WNK-1–
GCK-3 pathway regulates the former two processes by inhibiting
the CLH-3 ClC channel and that CLH-3 is not implicated in the
regulation of larval development (Fig 4D). Further analysis of
C. elegans WNK-1 should provide further information on the role
of WNK family kinases.

METHODS
Strains. The strains used in this work are as follows:
bgIs312.
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312.
gck-3(tm1926)/dpy-21(e428) V; bgIs312.
clh-3(ok763)II; bgIs312.
clh-3(ok763)II; gck-3(tm1926)/dpy-21(e428) V; bgIs312.
nkcc-1(ok1621)IV; bgIs312.
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-wnk-1þ rol-6d].
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-wnk-1KMþ
rol-6d].
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-wnk-1F1131A/
F1220Aþ rol-6d].
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-wnk-1S495Aþ
rol-6d].
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-gck-3þ
rol-6d].
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wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp-gck-3T280Eþ
rol-6d].
wnk-1(tm487)/nT1[qIs48](IV, V); bgIs312; Ex[hsp vectorþ rol-6d].
wnk-1(tm487)IV; bgIs312; Ex[wnk-1þ rol-6d].
gck-3(tm1926)/dpy-21(e428) V; bgIs312; Ex[hsp-gck-3þ rol-6d].
gck-3(tm1926)/dpy-21(e428) V; bgIs312; Ex[hsp-gck-3KMþ
rol-6d].
gck-3(tm1926)/dpy-21(e428) V; bgIs312; Ex[hsp-gck-3T280Aþ
rol-6d].
gck-3(tm1926)/dpy-21(e428) V; bgIs312; Ex[hsp-gck-3S419Aþ
rol-6d].
gck-3(tm1926)/dpy-21(e428) V; bgIs312; Ex[hsp vectorþ rol-6d].
edf19/unc-24(e138) dpy-20(e1282) IV (CB3824).
ozDf1/sdc-3(y52y180) unc-76(e911) V (BS518).

The tm487 and tm1926 mutants were generated by the TMP/
UV method (Gengyo-Ando & Mitani, 2000).
Plasmid constructions. The gck-3 complementary DNA was
isolated by PCR using N2 cDNA library. To create the full length
of wnk-1 cDNA, a partial fragment of the wnk-1 cDNA was
isolated by PCR and ligated with the cDNA clone yk315d9. The
mutated wnk-1 and gck-3 cDNA fragments were generated
by PCR and inserted into the appropriate vectors. To construct
wnk-1 transgene, a 24-kb SpeI fragment of C46C2 was inserted
into pBluescript(SKþ ).
Biochemical experiments. Biochemical experiments were carried
out as described previously (Moriguchi et al, 2005).
Caenorhabditis elegans experiments. Microinjections of DNA
into C. elegans and microscopic observations were made as
described previously (Kawasaki et al, 1999). For the fertility assay,
we placed the worms individually onto 3 cm dishes with food and
counted the number of fertilized eggs produced each day. To
examine sperm cell nuclei, we fixed the worms in methanol
for 5 min, stained with 0.1 mg/ml of the DNA-binding dye 4,
6-diamidino-2-phenyl-indole and mounted on 2% agarose slides
for viewing using both fluorescence and Nomarski imaging.
Supplementary information is available at EMBO Reports online
(http://www.emboreports.org).
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