Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1988 Aug;58(2):186–188. doi: 10.1038/bjc.1988.189

Matrix heparan sulphate, but not endothelial cell surface heparan sulphate, is degraded by highly metastatic mouse lymphoma cells.

R Hennes 1, F Frantzen 1, R Keller 1, V Schirrmacher 1, R Schwartz-Albiez 1
PMCID: PMC2246756  PMID: 2971387

Full text

PDF
186

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altevogt P., Kurnick J. T., Kimura A. K., Bosslet K., Schirrmacher V. Different expression of Lyt differentiation antigens and cell surface glycoproteins by a murine T lymphoma line and its highly metastatic variant. Eur J Immunol. 1982 Apr;12(4):300–307. doi: 10.1002/eji.1830120409. [DOI] [PubMed] [Google Scholar]
  2. Bar-Ner M., Kramer M. D., Schirrmacher V., Ishai-Michaeli R., Fuks Z., Vlodavsky I. Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by highly metastatic lymphoma cells. Int J Cancer. 1985 Apr 15;35(4):483–491. doi: 10.1002/ijc.2910350411. [DOI] [PubMed] [Google Scholar]
  3. Bar-Ner M., Mayer M., Schirrmacher V., Vlodavsky I. Involvement of both heparanase and plasminogen activator in lymphoma cell-mediated degradation of heparan sulfate in the subendothelial extracellular matrix. J Cell Physiol. 1986 Aug;128(2):299–306. doi: 10.1002/jcp.1041280223. [DOI] [PubMed] [Google Scholar]
  4. Becker M., Moczar M., Poupon M. F., Moczar E. Solubilization and degradation of extracellular matrix by various metastatic cell lines derived from a rat rhabdomyosarcoma. J Natl Cancer Inst. 1986 Aug;77(2):417–424. [PubMed] [Google Scholar]
  5. Fogel M., Altevogt P., Schirrmacher V. Metastatic potential severely altered by changes in tumor cell adhesiveness and cell-surface sialylation. J Exp Med. 1983 Jan 1;157(1):371–376. doi: 10.1084/jem.157.1.371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallagher J. T., Lyon M., Steward W. P. Structure and function of heparan sulphate proteoglycans. Biochem J. 1986 Jun 1;236(2):313–325. doi: 10.1042/bj2360313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Keller R., Furthmayr H. Isolation and characterization of basement membrane and cell proteoheparan sulphates from HR9 cells. Eur J Biochem. 1986 Dec 15;161(3):707–714. doi: 10.1111/j.1432-1033.1986.tb10497.x. [DOI] [PubMed] [Google Scholar]
  8. Keller R., Silbert J. E., Furthmayr H., Madri J. A. Aortic endothelial cell proteoheparan sulfate. I. Isolation and characterization of plasmamembrane-associated and extracellular species. Am J Pathol. 1987 Aug;128(2):286–298. [PMC free article] [PubMed] [Google Scholar]
  9. Kramer M. D., Robinson P., Vlodavsky I., Barz D., Friberger P., Fuks Z., Schirrmacher V. Characterization of an extracellular matrix-degrading protease derived from a highly metastatic tumor cell line. Eur J Cancer Clin Oncol. 1985 Mar;21(3):307–316. doi: 10.1016/0277-5379(85)90130-0. [DOI] [PubMed] [Google Scholar]
  10. Kramer R. H., Vogel K. G. Selective degradation of basement membrane macromolecules by metastatic melanoma cells. J Natl Cancer Inst. 1984 Apr;72(4):889–899. [PubMed] [Google Scholar]
  11. Lindahl U., Hök M. Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem. 1978;47:385–417. doi: 10.1146/annurev.bi.47.070178.002125. [DOI] [PubMed] [Google Scholar]
  12. Nakajima M., Irimura T., Di Ferrante D., Di Ferrante N., Nicolson G. L. Heparan sulfate degradation: relation to tumor invasive and metastatic properties of mouse B16 melanoma sublines. Science. 1983 May 6;220(4597):611–613. doi: 10.1126/science.6220468. [DOI] [PubMed] [Google Scholar]
  13. Pauli B. U., Schwartz D. E., Thonar E. J., Kuettner K. E. Tumor invasion and host extracellular matrix. Cancer Metastasis Rev. 1983;2(2):129–152. doi: 10.1007/BF00048966. [DOI] [PubMed] [Google Scholar]
  14. Schirrmacher V., Bosslet K. Clonal analysis of expression of tumor-associated transplantation antigens and of metastatic capacity. Cancer Immunol Immunother. 1982;13(1):62–68. doi: 10.1007/BF00200203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schirrmacher V., Shantz G., Clauer K., Komitowski D., Zimmermann H. P., Lohmann-Matthes M. L. Tumor metastases and cell-mediated immunity in a model system in DBA/2 mice. I. Tumor invasiveness in vitro and metastasis formation in vivo. Int J Cancer. 1979 Feb;23(2):233–244. doi: 10.1002/ijc.2910230215. [DOI] [PubMed] [Google Scholar]
  16. Schwartz R., Kniep B., Müthing J., Mühlradt P. F. Glycoconjugates of murine tumor lines with different metastatic capacities. II. Diversity of glycolipid composition. Int J Cancer. 1985 Nov 15;36(5):601–607. doi: 10.1002/ijc.2910360514. [DOI] [PubMed] [Google Scholar]
  17. Schwartz R., Schirrmacher V., Mühlradt P. F. Glycoconjugates of murine tumor lines with different metastatic capacities. I. Differences in fucose utilization and in glycoprotein patterns. Int J Cancer. 1984 Apr 15;33(4):503–509. doi: 10.1002/ijc.2910330414. [DOI] [PubMed] [Google Scholar]
  18. Vlodavsky I., Fuks Z., Bar-Ner M., Ariav Y., Schirrmacher V. Lymphoma cell-mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: relationship to tumor cell metastasis. Cancer Res. 1983 Jun;43(6):2704–2711. [PubMed] [Google Scholar]
  19. Vlodavsky I., Schirrmacher V., Ariav Y., Fuks Z. Lymphoma cell interaction with cultured vascular endothelial cells and with the subendothelial basal lamina: attachment, invasion and morphological appearance. Invasion Metastasis. 1983;3(2):81–97. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES