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(1) Introduction.-This note describes some nonlinear networks which can
learn a spatial pattern, in "black and white," of arbitrary size and complexity.
These networks are a special case of a collection of learning machines on which
were introduced in reference 1, where a machine capable of learning a list of
"letters" or "events" was described. We list in heuristic terminology some of
the properties which arise in the learning of patterns:

(a) "Practice makes perfect": Given a "black and white" pattern of arbitrary
size and complexity, a nonlinear network on can be found which learns this
pattern to any prescribed degree of accuracy.

(b) An isolated machine never forgets: If the pattern is learned to a fixed
degree of accuracy by M, then = will remember the pattern to at least this
degree of accuracy until a new pattern is imposed upon on.

(c) Overt practice is unnecessary: J remembers the pattern without prac-
ticing it overtly.

(d) Contour enhancement: If 91Z learns the pattern to a "moderate" degree of
accuracy, then M¶'s memory of the pattern spontaneously improves after prac-
tices ceases. As a result, when M recalls the pattern, its contours are enhanced
in the sense that "darks get darker" and "lights get lighter."

(e) A new pattern can always be learned: Even if ) knows one pattern to
an arbitrary degree of accuracy, this pattern can be replaced by any other
pattern by a sufficient amount of practice.

(2) The Machine.-The nonlinear network which describes = is defined as
follows for any fixed number n > 1 of states and any reaction time r> 0.

xi(t) = -axi(t) + Z.m=inxm(t - T)ymj(t) + Ij(t), (1)
(*)

Yjk(t) = Zjk(t) [2m;=iZjm(t) ]-1, (2)
and

jk(t)= UZjk(t) + 3xJ(t - T)Xk(t), (3)
where i,j,k = 1,2,... ,n. (*) describes the following process.

Let G be a graph with vertices V = { vj: i = 1,2,... ,n } and directed edges
E = {ejk: j,k = 1,2,. . .,n}. Eachvf is drawn as a point and ejk is drawn as an
arrow facing from v1 to vk. x,(t) describes a process going on at vj, and yjk(t)
describes a process going on at the arrowhead Njk of ek. Equation (1) has the
following interpretation. At time t - T, each vm emits a signal of size /3xm(t - r)
into ems. This signal travels along emi at finite velocity until it reaches Nm. at
time t. The signal thereupon activates the process ymi(t), and a quantity
f3Xm(t - T)ymi(t) is instantaneously transmitted fronm Njm to vi, and thereby
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changes the rate of growth ±2(t) of x2(t). Since this is true for every m = 1,2,...,
n, the total signal received by vi from all vm at time t is 32m=.1nxm(t - )ymi(t).
xi(t) also spontaneously decays at the rate - ax,(t). Ii(t) is the input signal to
vi created by the pattern.

yjk(t) in (2) is the ratio of functions zjm(t) which, as (3) shows, cross-correlate
the signal ,3xj(t - T) received by Njm from vj at time t with the value xm(t) of the
contiguous vertex vm at time t.
These equations can be derived from simple psychological postulates and have

a suggestive neural interpretation. They are studied mathematically in
reference 3, and are extended to more realistic neural equations in reference 4,
which, for example, contain the Hartline-Ratliff equation5 as a special case.
The "contour enhancement" in property (d) above will thereupon be seen as an
extension of contour enhancement as it is usually discussed in terms of lateral
inhibition.

(3) Spatial Patterns.-For purposes of learning a spatial pattern, arrange the
vertices v, in a rectangular grid. Not all inputs Ii(t) in (1) represent spatial
patterns. For example, the pattern "A" does not depend on the absolute
"blackness" of its lines, but only on their relative blackness as compared to the
surround. A pattern is therefore defined as an input Ii(t) of the form

I,(t) = OI(t), i= 1,2,...,n, (4)

where the Oi's are arbitrary, but fixed, nonnegative numbers whose sum can be
taken equal to 1 without loss of generality. The pattern "A" is the same
whether or not we view it in steady light or flickering light. I(t) can therefore
oscillate quite wildly without changing the pattern described by the 0f's. In
fact the following theorem holds, which describes the way in which the proba-
bilities yjk(t) = zjk(t)[2;m=1nZjm(t)]-1 and the correspondingly defined proba-
bilities Xk(t) = xk(t) [2m=1nxm(t) ]I- learn an arbitrary pattern. Other facts and
generalizations concerning this learning process are contained in reference 3.
THEOREM 1. Suppose u > 2(a - ) > 0 and f > 0. Let n be any fixed number

of states and let r be any fixed nonnegative reaction time. Let Ii(t) = LI(t) be any
pattern with I(t) nonnegative, continuous, and bounded, and such that positive
constants k and To exist for which

e'I(v)dv > keat, t >To.(5

Then for arbitrary nonnegative and continuous initial data in (*), the limits Qi -
lim X,(t) and Pjk = lim yjk(t) exist, and obey the equations
tag0c t-XlC

Pot== Qua= j, ij = 1,2,.. .,n. (6)

Equation (6) says that the probability Xi(t) of vs and the correlations yji(t) of
all Nji touching vf learn the relative weight Oi of the pattern, just so long as the
absolute intensity I(t) of the pattern is not "too small" in the sense of (5). I(t)
can in fact oscillate very wildly without violating (5). A pattern can therefore
be learned to arbitrary accuracy if only it is presented sufficiently often. In
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order to learn ever more subtle gradations of shading in the pattern, it suffices to
take the number n of vertices in the rectangular grid ever larger.
Equation (5) requires that I(t) take on positive values at arbitrarily large

values of t. We now describe what happens if a "truncated" pattern I,(w)(t) =

0,I(w)(t) is presented, where I(w)(t) = I(t), 0 < t < w, and I(w)(t) = 0, t > w.
That is, M is exposed to the pattern only in the time interval [O,w).
THEOREM 2. Suppose u > 2(a - /3) > 0 and 6 > 0. Let n > 2 (to avoid

trivialities) and r > 0. Let Ii(t) = O,t > w, for all i = 1,2 ... ,n. Then for arbi-
trary nonnegative and continuous data in [w - T,w], the limits Qj and Pjj exist and
lie in the interval [mi(w),Mi(w) ], where

mi(w) = min{Xj(w),ykt(w): k = 1,2,... n

and

Mi(w) = maxIX,(w),y,,(w): k = 1,2,.. .n}.

Denoting the functions of (*) which are exposed to Ii,() (t) by superscripts
"(w)" (for example, Xi(t) becomes Xi(w)(t)), we find the following corollary.
COROLLARY 1.

lim lim X(W)(t) = lim lim y1i(W)(t) = 0 i,j = 1,2,... ,n. (7)

Proof: By Theorem 1, lim mj(w) = lim Mi(w) = 6j.
These theorems say that if the pattern is exposed to MW during [O,w) and if w

is taken sufficiently large, then M will learn the pattern to an arbitrary degree of
accuracy and will remember the pattern to at least this degree of accuracy there-
after. M does this without "practicing overtly" because the outputs xi(t) from
M decay exponentially to 0 for t > w whenever a > /3 > 0.
Contour enhancement occurs in M because of the following corollary, which

describes the "envelope"

Yi(t) = max {yki(t): k = 1,2,.. .,n}

and

yi(t) = min {yki(t): k = 1,2,...,n

of correlations whose arrowheads Nti touch vi.
COROLLARY 2. For w sufficiently large, one of the following alternatives holds

for each i = 1,2 ...
(a) Yi.w (t) > Xi(wl)(t) 2 ol, Ys(W) (t) 2 O, and Yi(w) (t) is monotone decreasing for

t > w; or
(b) 0i > Xi(w) (t) 2 yi(w) (t), 0, 2 Y,(') (t), and yi(w) (t) is monotone increasing for

t>w or
(c) Yi(w') (t) 2 0, 2 yi(w) (t), Y(w) (t) 2 Xi(w) (t) > y(°) (t), Yi(w) (t) is monotone

decreasing, and y (w) (t) is monotone increasing for t > w.
In other words, after a sufficient amount of exposure to the pattern, the

envelope of correlations "spontaneously" approaches the pattern probabilities 0t.
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Suppose, for example, that OI = 0, which designates a "black" portion of the
pattern at state va. Then case (a) holds, in which Yi(w°)(t) decreases towards zero.
That is, "darks get darker."
To see how M1l recalls a pattern, suppose that a pattern has been practiced

over a long time interval [O,w) and that the outputs xi(t) have decayed nearly to
zero in the subsequent interval [w,W]. We now show that if even a single speck
of light is thereupon shined on the machine at a given vertex (say vi), then r
time units later the pattern will reappear in all its glory at all the vertices vi if
the reaction time r is sufficiently large. Since all xj(W) _ 0 we find by (1) that

x1(t) -axi(t) + I(t), t E [WJW + r],

where I(t) represents the speck of light shined on vl. Thus a signal is emitted
from v1 to all points vi. By Theorem 2, yli(t) E O, for t e [W,W + r], and thus

xi(t) - ax1(t) + 3x1(t - r)Oj. (8)

Suppose T is so large that xl(t) has a chance to decay back toward zero before it
receives the signal which it has created in ell. Then by (8),

(t
x1(t) A-a83Oiect eavxi(v - r)dv,

for all i = 1,2,. .. ,n, and in particular

Xj(t) __ ,=

The outputs xi(t) therefore reproduce the relative shadings Oi of the original
pattern.
The very act of recalling the pattern helps to destroy Mt's memory of it, be-

cause the speck of light is itself a pattern of the form Ii(t) = 0jI(t) with O1 = 1
and all 0, = 0, j 0 1. This is not true of all the machines introduced in reference
1. An outstar can, for example, recall as many times as it pleases without
destroying its memory. An obvious artifice for preserving Mt's memory under
recall is to postulate that every output from M creates a proportional "feedback
input" which is returned to MnZ through the external medium surrounding X,
much as we "hear ourselves talk." The outstar does not require this artifice
because it has a source vertex vl which never receives memory-destroying non-
linear feedback from other vertices when it is perturbed by a "speck of light."
Although as a graph the pattern-learning machine of this note can be viewed as n
outstars connected together, the dynamics of this machine is not simply the
sum of the dynamics of connected outstars. It would be highly desirable to be
able to recapture the stability of an outstar's memory even in a graph whose
vertices are interconnected. Reference 4 shows that (*) must be altered to
include lateral inhibitory signals and thresholds to achieve this effect. In other
words, lateral inhibition and thresholds "localize" the dynamics of the graph.
Even if t knows a given pattern perfectly at time t = T, it can relearn any

other pattern thereafter. This is because the values of (*)'s variables in the
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interval [T - r,T] can be viewed as the initial data for (*) in the interval (T, co).
Since these values are nonnegative and continuous, and Theorems 1 and 2 hold
for all nonnegative and continuous initial data, our contention is proved.

* The preparation of this work was supported in part by the National Science Foundation
(NSF GP-7477).
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