Accessing The Columbia Clinical Repository

Stephen B. Johnson, Ph.D., George Hripcsak, M.D.,
Joan Chen, M.S., Paul Clayton, Ph.D.

Center for Medical Informatics
Columbia Presbyterian Medical Center
New York, NY 10032

The Columbia Clinical Repository is the
foundation of the Clinical Information System
at the Columbia Presbyterian Medical Center
(CPMC). The Repository is implemented as a
relational database on an IBM mainframe,
using a generic design that employs a small
number of tables. Client applications on
remote platforms send and receive data
through Database Access Modules (DAMs),
which support the HL7 protocol, while
applications on the mainframe manipulate
data through DAMs supporting a locally
defined “"query template”. Implementation
using static (compiled) SQL is compared to
dynamic (ad hoc) SQL in terms of efficiency
and flexibility.

INTRODUCTION

Clinical databases are the foundation of
clinical information systems. Systems such as
HELP (1], TMR (2], RMRS [3], and STOR [4]
have revealed many important issues about
the management of clinical data and the ways
in which clinical applications need to access
that data. The Columbia Clinical Repository
benefitted greatly from the experience of these
systems, particularly the HELP system. In a
manner similar to these other systems, The
Repository is designed to:

* support transactions for one patient at a
time, in an efficient manner;

* store controlled vocabulary (data elements)
as defined in the Medical Entities Dictionary
(MED) [5];

* enable Medical Logic Modules (MLMs) to
monitor patient events as they occur in the
CIS and notify health care personnel as
necessary [6].

The Repository is interesting in that it is
implemented as a relational database using a
generic design that employs a very small
number of tables [7]. This approach allows
new data elements to be stored in the

0195-4210/94/$5.00 © 1994 AMIA, Inc.

281

database simply by defining them in the
MED, rather than adding new columns to
tables. This model is similar to a relational
model developed independently for the HELP
system [8]; however, unlike the HELP
relational design, the Repository tables are
normalized. The relational design is
generated from a conceptual schema
(expressed in the Entity-Relation formalism)
which is based on a model of clinical events
[9l.

Additional information about the Repository is
maintained in a "metadatabase" [10], a
relational database that contains the MED,
the collection of Medical Logic Modules, and
information about how messages (data
transactions) are routed to ancillary systems.
One of the most important consequences of
representing the MED in a relational form is
that patient data can be queried by a class of
medical entity in an efficient manner. For
example, one can query whether a patient has
any drug order in the class "antibiotics",
without having to explicitly specify each such
medication.

The Repository is intended to serve as a
complete electronic medical record, and has
the ability to store both in-patient and out-
patient data in a longitudinal manner
(spanning all encounters with the hospital).
The coded data that is currently available
includes demographics, laboratory results,
and pharmacy orders. There is also a great
wealth of narrative clinical data (radiology,
pathology, cardiology, operative reports,
discharge summaries, etc.).

The most challenging issue confronting the
developers of the Repository is providing
access to clinical data both for applications
running on the same platform (e.g., the Event
Monitor that executes Medical Logic
Modules), and for client applications making
requests from other platforms on the network.
The remainder of the paper describes the
different techniques used to provide access to

data, and discusses the advantages and
disadvantages of the various approaches.

METHODS

The Columbia Clinical Repository is
implemented on an IBM mainframe using the
DB2 database management system. Clinical
applications running locally on the same
platform (under the CICS system) include a
home-grown results review application and
the Event Monitor. Applications on remote
platforms include ancillary systems uploading
clinical data (laboratory, pharmacy,
cardiology, radiology, pathology, etc.), a
primary care information system, and a
resident sign-out system.

DB2 provides two forms of SQL for accessing
tables: static SQL and dynamic SQL. Static
SQL is used when a program containing SQL
is compiled: the SQL statements are parsed, a
plan of access is determined for each
statement (e.g., what indexes will be used),
and the SQL is replaced by appropriate
procedure calls. Dynamic SQL is invoked
when a program passes a SQL statement
(represented as a string) to DB2 at execution
time: the statement is parsed and a plan of
access is determined "on the fly". This method
incurs some overhead, since the DB2
catalogue (itself a DB2 database) must be
queried by the DBMS to determine the best
means of access.

SQL cannot be embedded directly in Medical
Logic Modules and compiled into static SQL
because they are executed by an interpreter
(in our implementation). A similar limitation
exists for the results review application which
was developed using IBM's PCS/ADS system.
We also do not currently possess the database
and network software that would enable
applications on other platforms to use static
SQL that is bound to DB2 tables on the
mainframe.

A satisfactory solution to these obstacles was
reached through development of Data Access
Modules (DAMs). These are mainframe
programs, written in the PL/I language that
can issue static SQL. On the mainframe, the
Event Monitor interpreter and the results
review application can call a DAM, pass

282

parameters to specify a database request, and
then receive data back through other
parameters.

Remote applications cannot call mainframe
DAMs directly, but instead make use of a
utility that resides on an intermediate UNIX
machine (an IBM RS 6000). This utility acts
as a "clinical data mediator", carrying out the
communication with the mainframe DAMs
through IBM's Advanced Program to Program
Communications (APPC) network protocol.

Since SQL could not be used as the standard
of access, a suitable interface had to be
defined. For mainframe applications, which
need to query the Repository, a generic "query
template” was developed as the interface
between these applications and each of the
DAMs [11]. When invoked, a DAM examines
the parameters of the query template and
chooses from a fixed set of static SQL
statements to carry out the query. Data
retrieved by the DAM is passed back through
the template.

Data exchange standards were considered
essential for applications residing on other
platforms, and Health Level 7 (HL7) was
chosen as the protocol. For mainframe
applications, the query template was
preferred over HL7 as it is somewhat simpler
for application developers and MLM authors
to understand.

The functions performed by data access
modules can be summarized as follows:

1. Request Handling: the data request
message submitted by the client process is
parsed, and the various parameters in the
message are checked for validity.

2. Data Conversion: data elements in the
request message are translated into a
standard coded form as defined by the MED.

3. Database Operations: the SQL statements
required to update or query the database are
executed.

4. Notification: the Event Monitor is notified
about the type of database action that just

occurred. MLMs may get triggered as a result
of a database update.

5. Response Generation: a response message
is generated indicating whether the request
has been carried out successfully or not, and
any data retrieved from the database is
returned as part of the response.

Adding new features to data access modules
can be time consuming. To enable developers
building applications on remote platforms to
query the Repository more directly, a DAM
was made available that supports dynamic
SQL. This DAM works in a similar manner to
those described above, except that the client
application passes a SQL statement embedded
in an HL7 message. The SQL statement is
executed dynamically by DB2, and the results
are returned to the client application in an
HL7 format.

Some extensions to the HL7 standard were
required by added "Z" segments to the HL7
message: a "ZQL" segment is passed along
with standard HL7 segments for a query. In
the response, a "ZMH" segment returns the
number of rows retrieved, the number of
database columns of which the data is
composed, and the names of the columns. The
data itself is returned in multiple "ZMO"
segments, which each item of data (a cell of a
relational table) occupying one segment.

RESULTS

Timing studies of the production system
showed that review of laboratory data using a
mainframe program takes 0.375 seconds per
transaction (total elapsed time), on average.
This is similar to the average elapsed time of
0.195 seconds previously obtained for queries
executed by MLMs [12]. Upload of laboratory
data requires 0.685 seconds per transaction
(elapsed time), on average.

Queries submitted by remote applications
were also compared. Pharmacy orders and
laboratory results for a specified patients were
retrieved, using the DAM that executes static
SQL, and the DAM that uses dynamic SQL.
The average elapsed times in seconds were as
follows:

283

Dynamic Static
Order 1.58 0.98
Result 0.97 0.81

These results suggest that dynamic SQL is
only slightly more expensive than static. It is
interesting to note that the lab query was
faster, despite involving a relational join.

DISCUSSION

HL7 is a useful standard of access for
applications residing on platforms remote
from the mainframe. The chief benefit of this
architecture is that client applications are
made independent of the implementation of
the Clinical Repository. As a result,
application programmers do not have to use
SQL, or understand the design of the
relational database.

Application developers also benefit from the
other services provided by DAMs. They can
use the data elements with which they are
familiar, since the DAM performs the
conversions. In addition, the DAM
automatically notifies the Event Monitor,
freeing applications from this responsibility.

Finally, the architecture enables the
implementation of the Repository to be
changed, (e.g., to an object-oriented DBMS),
with a minimal impact on applications.

HL7 has been found to be best suited for
interfaces to ancillaries that are well
understood, and that do not have changing
requirements, such as routine uploads and
downloads. The syntax is very cumbersome
for human users, e.g., developers of review
programs, and authors of MLMs.

The query templates developed for mainframe
applications, such as the Event Monitor, are
clinically oriented, and have a marginally
better syntax than HL7 for users. However,
this interface is not a standard, and requires
that a second set of DAMs be maintained in
addition to the HL7 DAMs.

The biggest drawback in both these
approaches is the software maintenance of the
DAMs that interpret the client request (HL7
messages or query template) and then execute
the appropriate SQL. This is consistent with
the earlier finding that data access is the most
costly aspect of developing Medical Logic
Modules, in terms of coding, maintenance, and
execution time [12].

A large part of this maintenance burden is
due to the inflexibility of static SQL. In DB2
SQL, a table cannot be expressed using a
variable, thus a separate SQL statement must
be coded for each table in the database, and
for each useful join (when information must
be combined from two tables). While the
number of tables is small, and the possible
joins very limited, the DAMs are still rather
complex.

Another limitation concerns the use of lists.
For example, the client may wish to retrieve
values for a given list of observations. Since
DB2 does not permit the use of an array as a
host variable, the list must be coded as a
collection of individual host variables:

:LISTLEN = 0 OR <column> IN (:VAR1,
:VAR2, ..., :-VARN)

The maximum list size (N) must be
determined ahead of time, and dummy values
must be placed in unused variables if less
than N items are requested. The test
(LISTLEN = 0) must be used to insure that
the condition is true when the list is empty.

While dynamic SQL is less efficient, it has the
advantage of great flexibility, A skilled user
can perform any desired database transaction.
This method requires that the user possess
complete knowledge of the design of the
relational tables in the Repository. While the
generic design has provided efficient access, it
has proven to be difficult for users to
understand.

An interesting consequence of the generic
design of the Repository is that certain
common queries are much simpler (and more
efficient) to express in a procedural manner
than using SQL alone. For example, the most
frequently used form of clinical query requests

284

the most recent N values of a given
observation (e.g., the last 3 serum sodium
levels). While it is possible to express this in
SQL, the query is extremely complex and
inefficient.

The use of procedural code permits a simple
(and efficient) solution: the transaction need
only retrieve N rows meeting the criteria
(perform just N fetches). This is easily
accomplished by embedding the SQL query
within procedural code containing a loop
executed N times:

EXEC SQL

DECLARE ¢ CURSOR FOR
SELECT ...

FROM ...

EXEC SQL OPEN c;

DOFORI=1TON;
FETCH c INTO :structure
[Add data from structure to

response]
END;

EXEC SQL close c;

The generic design also makes certain views
of clinical data very difficult to express in
SQL. For example, laboratory tests (e.g.,
levels of sodium, potassium, and chloride) are
not stored as individual columns of a table.
To construct a view of lab values with test
names as columns requires an SQL statement
with as many joins as there are tests.
However, the view can easily be constructed
by a DAM, using a procedural loop like the
one show above.

CONCLUSION

The database component of any Clinical
Information System will need to provide
access to clinical applications residing on the
same platform and on remote platforms as
hospital computing environments become
increasingly distributed. The approach taken
at Columbia has been to encapsulate
important types of queries in Data Access
Modules, which insulate clients from the

database structure, provide efficient access to
data, and construct views of data that are too
costly to define using SQL by itself.

These modules are effective for routine
uploads and downloads but are complex and
hard to modify to meet the needs of
application developers in a timely manner.

These findings indicate an important direction
for further study: data access modules
supporting dynamic SQL are appropriate
when a high level, flexible means of accessing
data is required (e.g., in developing Medical
Logic Modules). However, these DAMs must
support a view of the database which users
can easily understand, and provide those
temporal operations that are not easily
expressed in SQL (e.g., "the 3 most recent
values of ...").

Acknowledgements

Support for this project was provided by the
IBM Corporation.

References

[1] Pryor TA. The HELP medical record
system. MD Computing, 1988;5(5):22-33.
[2] Stead WW, Hammond WE. Computer-Based
Medical Records: The Centerpiece of MD

Computing, 1988;5(5):48-62.

[3] McDonald CJ, Blevins L, Tierney WM, Martin
DK. The Regenstrief Medical Record. MD
Computing, 1988;5(5):34-47.

[4] Whiting-O'Keefe QE, Whiting A, Henke J. The
STOR Clinical Information System MD
Computing, 1988;5(5):34-47.

[56] Cimino JJ, Hripcsak G, Johnson SB,
Clayton PD. Designing an introspective,
multi-purpose controlled medical
vocabulary. In: Kingsland LC, -editor.
Proceedings of the Thirteenth Annual
Symposium on Computer Applications in
Medical Care; 1989 November 5-8;
Washington. Washington: IEEE Computer
Society Press, 1989:513-518.

[6] George Hripcsak, James J. Cimino,
Stephen B. Johnson, Paul D. Clayton. The
Columbia-Presbyterian Medical Center
decision-support system as a model for
implementing the Arden Syntax. In:
Clayton PD, editor. Proceedings of the
Fifteenth Annual Symposium on Computer

285

Applications in Medical Care; 1991 Nov 17-
20; Washington, D.C. New York: IEEE
Computer Society Press, 1991: ?.

[7]1 Friedman C, Hripcsak G, Johnson SB,
Cimino JJ, Clayton PD. A generalized
relational scheme for an integrated clinical
patient database. In: Miller RA, editor.
Proceedings of the Fourteenth Annual
Symposium on Computer Applications in
Medical Care; 1990 November 4-7;
Washington. Washington: IEEE Computer
Society Press, 1990: 335-339.

[8] Huff SM, Berthelsen CL, Pryor TA, Dudley
AS. Evaluation of an SQL model of the
HELP patient database. In: Clayton PD,
editor. Proceedings of the Fifteenth Annual
Symposium on Computer Applications in
Medical Care; 1991 November 17-20;
Washington. New York: McGraw Hill,
1992:386-90.

[9] Johnson SB, Friedman C, Cimino JJ,
Hripcsak G, Clayton PD. Conceptual data
model for a central patient database. In:
Clayton PD, editor. Proceedings of the
Fifteenth Annual Symposium on Computer
Applications in Medical Care; 1991
November 17-20; Washington. New York:
McGraw Hill, 1992: 381-385.

[10] Johnson SB, Cimino JJ, Friedman C,
Hripcsak G, Clayton PD. Using metadata
to integrate medical knowledge in a clinical
information system. In: Miller RA, editor.
Proceedings of the Fourteenth Annual
Symposium on Computer Applications in
Medical Care; 1990 November 4-7;
Washington. Washington: IEEE Computer
Society Press, 1990: 340-344.

[11] Hripcsak G, Johnson SB, Sideli RV,
Clayton PD. Using Data Access Modules
for Legacy Databases. Accessing the
electronic medical record using HL7. In:
Rindfleisch TC, editor. Proceedings of the
1994 AMIA Spring Congress; 1994 May 4-
7; San Francisco. Washington, D.C.: AMIA,
1994.

[12] Hripcsak G, Johnson SB, Clayton PD.
Desperately Seeking Data: Knowledge
Base-Database Links. In: Safran C, ed.
Proceedings of the Seventeenth Annual
Symposium on Computer Applications in
Medical Care, 1993 Oct 3-Nov 3;
Washington (DC). New York: McGraw Hill,
1993:639-42.

