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ABSTRACT
VentSim is a quantitative model that predicts the
effects ofalternative ventilator settings on the car-
diopulmonary physiology of critically ill patients.
VentSim is an expanded version of the physiologic
model in VentPlan, an application that provides venti-
lator-setting recommendations for patients in the
intensive care unit.
VentSim includes a ventilator component, an airway
component, and a circulation component. The ventila-
tor component predicts the pressures and airfiows that
are generated by a volume-cycled, constant-flow ven-
tilator The airway component has anatomic and
physiologic deadspace compartments,. and two alveo-
lar compartments that participate in gas exchange
with two pulmonary blood-flow compartments in the
circulatory component. The circulatory component
also has a shunt compartment that allows afraction
ofbloodflow to bypass gas exchange in the lungs, and
a tissue compartment that consumes oxygen and gen-
erates carbon dioxide.
The VentSim model is a set of linkedfirst-order differ-
ence equations, with control variables that corre-
spond to the ventilator settings, dependent variables
that correspond to the physiologic state, and one
independent variable, time. Because the model has no
steady state solution, VentSim solves the equations by
numeric integration, which is computation intensive.
Simulation results demonstrate that VentSim predicts
the effects ofa variety ofphysiologic abnormalities
that cannot be represented in less complex models
such as the VentPlan model.
For a ventilator-management application, the time-
critical nature of ventilator-setting decisions limits
the use ofcomplex models. Advanced ventilator-man-
agement applications may include a mechanism to
select patient-specific models that balance the trade-
offofbenefit ofmodel detail and cost ofcomputation
delay.

MODELS FOR VENTILATOR MANAGEMENT
Numerous researchers have developed computer pro-
grams to assist the monitoring and treatment of pa-
tients in the intensive care unit (ICU) who receive
treatment with a mechanical ventilator. These pro-
grams implement various methods, including proto-

cols [13, 22], rule-based expert systems [7, 14, 18],
causal probabilistic models (belief networks) [3], and
mathematical models [19].
All programs that interpret patient data and make rec-
ommendations for the settings of a mechanical ventila-
tor must rely on some model of patient response to the
ventilator. Programs that incorporate mathematical
models or belief networks may allow the user to exam-
ine the models and determine if the assumptions and
simplifications these models make are valid for a spe-
cific patient. The user may also inspect the model pre-
dictions to verify that they match her expectations.
By contrast, protocols and rule-based expert systems
implement symbolic models of patient responses that
are opaque to the user. Users cannot inspect or test
such embedded physiologic models, and may not be
able to verify that the program's interpretation of a pa-
tient's physiology is valid.

VENTPLAN

VentPlan is a prototype ventilator management advisor
(VMA) that explores the ability of a patient-specific
mathematical model to guide the selection of optimal
ventilator settings for ICU patients. VentPlan imple-
ments a classical three-compartment physiologic mod-
el to predict the effect of changes in ventilator settings
[19].
VentPlan's mathematical model makes accurate pre-
dictions for postoperative patients whose abnormali-
ties are well represented by a three-compartment
model. For these patients, VentPlan's recommenda-
tions for changes to the ventilator settings were com-
pared with the actual changes that were implemented
by physicians. VentPlan's recommendations matched
the sign of the actual changes in settings and correlated
with their magnitude.
VentPlan's architecture allows it to take advantage of
uncertain model predictions by computing the
expected utility of the predicted effects of alternative
ventilator settings. For patients with physiologic ab-
normalities not representable by a three-compartment
physiologic model, VentPlan makes accurate predic-
tions for small changes in ventilator settings, but not
for large changes.
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A clinically useful VMA should incorporate a model
that is capable of representing the variety of physiolog-
ic abnormalities found in ICU patients.

VENTSIM

VentSim is a continuous time, continuous state simula-
tion model that consists of a set of linked first-order
differential equations that describe the circulation of
oxygen and carbon-dioxide through compartments of
the body.
VentSim expands the VentPlan model by including a
detailed simulation model of a mechanical ventilator,
and by increasing the number ofcirculation and airway
compartments. The structures of VentSim and Vent-
Plan are compared in Figure 1.

Ventilator component
VentSim's ventilator component simulates the con-
stant mandated volume modes of a volume-cycled,
constant-flow ventilator. The mechanical analog of the
simulator is a rigid bellows with adjustable movement
of a plunger during inspiration. In VentSim's default
configuration, the plunger moves at constant velocity
and compresses the desired tidal volume during the
first part of the inspiration cycle. The simulator leaves
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a short inspiratory hold time after the plunger stops;
during the inspiratory hold time, the bellows pressure
equilibrates with the patient's airways.
During expiration, the ventilator pressure decreases to
the value set for positive end-expiratory pressure, and
outflow of air from the patient is limited by a variable
outflow resistance (retard setting). Sample pressures
and airflows during one cycle of ventilation of a simu-
lated patient are shown in Figure 2.

Adjustable parameters of the ventilator component al-
low it to simulate most volume-cycled constant-flow
ventilators. These adjustments include a maximum
positive pressure, an inspiratory hold time, and an ex-
piratory retard.
Differential equation modeling makes it straightfor-
ward to adapt the VentSim ventilator component to
simulate any mechanical ventilator for which a com-
plete description is available.

Airway component

VentSim's airway component has four compartments:
a series anatomic deadspace, a parallel physiologic
deadspace, and two alveolar compartments (Figure 1).
Each compartment has an associated airway resistance

Figure 1. Comparison of VentPlan and VentSim model structures. Both models are sets of linked first-order differential
equations. Blood carries oxygen and carbon dioxide in a circuit, as shown by arrows. VentPlan does not simulate the ventilator,
but derives the total alveolar ventilation from the ventilator settings (the continuous alveolar ventilation assumption is indicated
by the shaded rectangle). The compartments of VentPlan that correspond to the classic three-compartment model are (1)
deadspace (pd), a compartment that receives ventilation but no blood flow, (2) a combined gas-exchange compartment with
alveolar (Al) and pulmonary blood flow (p1) components, and (3) a compartment that corresponds to shunt. VentSim simulates
a volume-controlled positive-pressure ventilator (indicated by a shaded hexagon) to compute airway pressures and airflows. The
distribution of ventilation among the three ventilation compartments (pd, Al and A2) depends on the resistance and compliance
of each compartment, and varies with the frequency of ventilation. The VentSim model includes the components of the three-
compartment model, plus a series anatomic deadspace (ad), and a second gas-exchange compartment (A2+p2). The presence of
two gas-exchange compartments in VentSim allows it to predict the effects of asymmetric distribution of ventilation and
perfusion.
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Figure 2. Sample ventilator simulation. The graph plots
ventilator pressure at the mouth (Paw)' the pressure in
one alveolar lung compartment (PA2) and the airflow
into one alveolar compartment ( VA2 ) during one cycle
of ventilation. Solid line, pressure; dotted line, airflow.

and a lung compliance. The airway component inter-
acts with the ventilator component to predict the pres-

sures, airflows, and volumes of ventilation at each
point in the ventilator cycle. VentSim computes the
tidal volumes for each airway compartment during the
simulation, and, when all tidal volumes are unchanged
during successive ventilator cycles, VentSim notes that
the simulator has reached a cyclic steady state.

If the two alveolar compartments are set to different re-

sistance and compliance values, then the distribution
of ventilation is asymmetric. If the product of resis-
tance and compliance (the RC time constants) of the
two compartments differ, then the distribution of ven-

tilation varies as a function of frequency of ventilation.

Figure 3 shows a simulation of the effect of frequency
on distribution of ventilation for a patient who has re-

gions of the lungs with asymmetric RC characteristics.
As the frequency of ventilation changes from 6 to 16
per minute, the ratio of ventilation in the two alveolar
compartments changes from 1 to 1.4. This effect may
explain the response of some patients to changes in
ventilation frequency [261.

Circulation component

The circulation component of VentSim has two perfu-
sion compartments (pl and p2) that correspond to the
two ventilation compartments (Al and A2), in addition
to shunt and tissue compartments (see Figure 1). The
presence of a second perfused compartment that par-

ticipates in gas exchange allows VentSim to represent
asymmetric ventilation/perfusion distributions
(VA/Q).

10 12
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Figure 3. Simulation of the effect of asymmetric
resistance-compliance (RC) on distribution of ventilation.
The continuous line shows the ratio of ventilation in two
alveolar compartments for a patient with asymmetric RC
values. The dashed line shows the constant, symmetric
ventilation of the.single. alveolar compartment of the
VentPlan model. VAI, VA2, ventilation of the Al and
A2 alveolar compartments shown in Figure 1; RR,
frequency of ventilation.

The ability to represent asymmetric VA/Q is essential
to describe accurately the effect of changes in inspired
oxygen on the oxygen saturation. For example, in a

simulation of a patient with severe asthma, the three-
compartment model underestimates the fall in oxygen
saturation as the fraction of inspired oxygen is reduced
from a high level to a lower level (Figure 3).
There is a ventilation/perfusion ratio for each of the
approximately 3 x 10 a veoli in the lungs. Taken to-
gether, the ventilation/perfusion ratios form a nearly
continuous distribution for VA/ Q. The VentSim model
provides a first order approximation to asymmetric
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Figure 4. Effect of circulation compartments. The dashed
line shows the VentSim model with parameters set to
simulate a patient with a ventilation/perfusion mismatch (a
moderate asymmetry in distribution of ventilation and
perfusion, VAI / Qp < VA2/ Qp2). The continuous lines
show the VentPlan model as the shunt fraction, f, varies.
Sampled data are shown as crosses on the dashed line. No
value of f8 allows VentPlan to fit the data. (Variable names
defined in legend to the Table.)
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Table: VentSim and VentPlan variables

Model Model parameters Prediction variables Control variables

VentPlan Vr 2, RQ, QT 'fs, Vds Pa°2' PaCO2, PHa VTset, RR, F102, PEEP
HCO2, Hb PVO2, PVCO2, PHV, VAl

VO2, RQ, QTrfs,fplI Vad |PaO2 PaCO2, PHa, Pv02 VTset, RR, 102 PEEP
VentSim Vp d,Rpd, RA1 RA2P CAI PV C02, PHv, Paw Vtdal Pmax, IEratio

CA2, Cpd,HC02, Hb VAI, VA2, QPI , QP2, QS |_I
Variables: V, volume; V, dV/dt; P, pressure; R, resistance; C, compliance; Q, blood flow;j fraction; VAI, alveolar compart-
ment ventilation; V02 , metabolic rate; RQ, respiratory quotient; Qp cardiac output; f, shunt fraction; HCO2, serum bicar-
bonate; Hb, hemoglobin concentration; Vtidal, delivered tidal volume; VT.,t, set tidal volume; RR, set rate of ventilation; Ff02,
set fraction of inspired oxygen; PEEP, set positive end-expiratory pressure; Pnm= set maximum positive pressure; IEratio, set
inspiratory/expiratory ratio. Subscripts: s, shunt; a, arterial; v, mixed venous; ds, total deadspace;, ad, anatomic deadspace;
pd, physiologic deadspace; aw, airway; Al and A2, ventilated alveolar compartments; p1 and p2, perfused pulmonary com-
partments.

VA/ Q by representing the distribution as

{VAI/QIQP VA2/QP2}
IMPLEMENTATION

The author implemented the differential equations that
describe VentSim as difference equations in a C pro-
gram, then constructed a graphical user interface to
study the behavior of the model. This interface allows
a user to inspect model parameters, adjust ventilator
settings, and observe the time-varying model predic-
tions.
The VentSim model has 143 variables. A selection of
the key model parameters, control variables, and pre-
diction variables are shown in the Table.

Solution methods
The model equations are stiff-an airway component
with very short time constants (due to low resistance
and compliance of the anatomic deadspace) interacts
with a circulation component that has much longer
time constants. As a result, numeric integration of the
full model is computation intensive. The initial imple-
mentation in C, on a desktop workstation (NeXT
68040/25Mhz), requires 53 seconds to simulate 20
minutes.
A second implementation reduced the computation de-
lay by solving only for the steady state solutions to the
model. The ventilator and airway components were
first solved by numeric integration until a cycling
steady state was achieved. Then, the circulation com-
ponent was solved by searching for the roots of the
equilibrium solutions [17], using values for the alveo-
lar ventilation derived from the ventilator simulation.
With this approach, VentSim now requires only 1.6
seconds to generate the steady-state solution to a
change in ventilator settings.

The VentSim model is implemented as an external C
routine that is separately compiled and linked to Math-
ematica, which provides symbolic and numeric manip-
ulation methods in addition to graphical presentation
tools [28].

DISCUSSION
Mathematical models are powerful tools for simulat-
ing the quantitative time-dependent behavior of com-
plex, dynamic systems, such as the human
cardiopulmonary system [5]. Quantitative models that
focus on limited areas ofphysiology assist the study of
individual physiologic concepts. For example, detailed
models of the human airway led to insights on the dis-
tribution of airway resistance in normal and diseased
lungs [26, 27], and to a better understanding of gas ex-
change in the respiratory system [24]. Detailed models
of cardiovascular physiology allowed analysis of the
effects of counterpulsation [1], of the effects of arterial
grafts on cardiovascular function [10], and of the ef-
fects of therapeutic interventions on coronary sinus
blood flow [20].
Models that include components from several areas of
physiology allow the study of regulatory mechanisms
and provide insight into the interactions among sys-
tems [2, 23]. An early and influential project in this
area was a study by Guyton and colleagues of the be-
havior of a comprehensive model of renal and cardio-
vascular physiology, which led to new understanding
of the mechanisms of blood pressure regulation [9].
Physiologic models also are useful to teach concepts to
students of medicine and physiology. HUMAN is a
comprehensive microcomputer-based model that al-
lows students to perform a wide variety of physiologic
experiments without performing animal or human ex-
perimentation [6]. Other examples of teaching models
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were developed in the areas of cardiovascular and res-
piratory physiology [12], anesthesia treatments [8, 16,
211, and ventilator management [4, 15].
An important problem in applying detailed simulation
models to patients is that it is difficult to assess all pa-
tient-specific model parameters. For example, Wagner
developed a 50-compartment model of lung ventila-
tion and perfusion, but this model requires an inconve-
nient and expensive multiple inert gas study to
determine patient-specific values for the model param-
eters [25]. The many parameters of Wagner's ventila-
tion/perfusion model are underdetermined in all cases.
In another study, Kaufman and colleagues demonstrat-
ed that, if only arterial blood gas data are available, the
maximum number of perfusion compartments that are
distinguishable is three [1 1].
An implementation of VentSim to assist in clinical
care of ICU patients would require a method to deter-
mine patient-specific values of model parameters.
This problem is addressed by the VentPlan architec-
ture, which combines a belief network with a mathe-
matical model. The belief network is a semi-
quantitative model of the effect of disease states on
the probability distributions of physiologic parame-
ters; it computes conditional distributions for the
parameters of the mathematical model. When the
quantitative observations for a patient do not deter-
mine the value of all physiologic parameters, the
model parameters are based on the prior distributions
that are computed by the belief network [19].

The VentSim model includes a set of physiologic
interactions that are sufficient to explain a variety of
patient abnormalities, but it is by no means complete.
For example, VentSim contains no representation of
the phenomenon of hypoxic pulmonary vasoconstric-
tion, and does not predict changes in cardiac output
that may occur with increases in mean airway pres-
sure. These, and other unmodeled physiologic effects,
make it essential that any computer-based ventilator-
advice system maintain a cautious estimate of the
degree of model-prediction uncertainty.
The time-critical nature of decision making in the
ICU limits the computation time that is available for
evaluating complex models. Future ventilator-man-
agement applications may assess the tradeoff of bene-
fit of model detail and cost of computation delay. This
assessment would allow an application to select a
model that is detailed enough to represent a patient's
physiologic abnormalities and make accurate predic-
tions, but not so complex that it delays treatment rec-
ommendations unnecessarily.
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