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ABSTRACT Protein folding occurs on a time scale rang-
ing from milliseconds to minutes for a majority of proteins.
Computer simulation of protein folding, from a random
configuration to the native structure, is nontrivial owing to the
large disparity between the simulation and folding time scales.
As an effort to overcome this limitation, simple models with
idealized protein subdomains, e.g., the diffusion–collision
model of Karplus and Weaver, have gained some popularity.
We present here new results for the folding of a four-helix
bundle within the framework of the diffusion–collision model.
Even with such simplifying assumptions, a direct application
of standard Brownian dynamics methods would consume
10,000 processor-years on current supercomputers. We cir-
cumvent this difficulty by invoking a special Brownian dy-
namics simulation. The method features the calculation of the
mean passage time of an event from the f lux overpopulation
method and the sampling of events that lead to productive
collisions even if their probability is extremely small (because
of large free-energy barriers that separate them from the
higher probability events). Using these developments, we
demonstrate that a coarse-grained model of the four-helix
bundle can be simulated in several days on current super-
computers. Furthermore, such simulations yield folding times
that are in the range of time scales observed in experiments.

Molecular and Brownian dynamics simulations (1, 2), as well
as lattice Monte Carlo simulations (3, 4), have been used to
investigate protein-folding pathways with some success. How-
ever, the time scales accessible by the dynamics simulation
techniques are in the microseconds range or less and thus fall
short of the experimentally observed protein-folding time
scales, which, for most proteins, lie somewhere between a few
milliseconds to minutes. The limit on accessible time scales in
these simulations originates from the small time steps required
for the accurate integrations of the relevant equations of
motion; a simulation with too long a characteristic time scale
simply takes too many time steps and consumes too much
computer resources. Developed specifically to handle simula-
tions of large-time-scale processes, the Weighted-Ensemble
Brownian (WEB) dynamics algorithm of Huber and Kim (5),
a biased Brownian dynamics scheme, can overcome the time
scale restriction in the traditional simulation techniques
through judicious splitting and combining of Brownian parti-
cles. In this paper, we show that the WEB dynamics idea can
be generalized to the simulation of a simple diffusion–collision
four-helix-bundle protein-folding model, allowing us to inves-
tigate its folding kinetics in a reasonable time frame.

We develop our four-helix-bundle protein-folding model
from the diffusion–collision approach of Karplus and Weaver

(6–8). The diffusion–collision protein-folding mechanism pos-
tulates the early-stage formation of fluctuating quasiparticles,
called microdomains, which may be incipient secondary struc-
tures (a-helices and b-sheets) or hydrophobic clusters. These
microdomains move diffusely, and their coalescence leads to
the formation of folded proteins. Consequently, the diffusion–
collision model reduces the complexity of the folding process
from a consideration of the individual amino acids to that of
the properties of few microdomains and their interactions.
Experimental evidence supporting this model comes from
folding experiments where elements of secondary structure
can be detected early in the folding process (9–11), as well as
other experiments that show the tendency of various polypep-
tide fragments to form stable secondary structures in solution
(8, 12, 13). The diffusion–collision model has been used to
estimate folding-rate constants in proteins where diffusion–
collision of microdomains is the rate-limiting step (14–18).

The four-helix bundle is a well defined motif in several
proteins (19, 20); de novo designs of four-helix-bundle proteins
have also been reported (21). Theoretical studies of folding
kinetics of a four-helix bundle protein have been carried out by
Yapa and Weaver (17, 18) in the context of the diffusion–
collision model and the chemical kinetics approximation. In
this approximation, the analytical rate constants for pairwise
coalescence of spherical microdomains or microdomain com-
plexes can be used to construct a system of first-order differ-
ential equations that can be solved analytically to determine
the folding time of the protein and the relative population of
various folding intermediates (7). To obtain analytical rate
constants for microdomain coalescence, one must make sev-
eral simplifying assumptions. Using the WEB dynamics algo-
rithm allows us to retain the diffusion–collision framework
while allowing more details of microdomain geometry and
interactions in our model and bypassing the chemical kinetics
approximation all together. Although some qualitative agree-
ment with experimental results can be obtained from our
model, we emphasize that our major objective is to demon-
strate the applicability of the WEB dynamics method to the
protein-folding problem. More definitive simulations of pro-
tein-folding kinetics may come in the future, perhaps by
reinvesting the savings from our algorithmic gains on more
accurate force calculations.

The remaining portions of this paper are organized as
follows. The next section describes the folding model in the
context of the diffusion–collision framework and the adapta-
tion of the WEB dynamics algorithm to the four-helix model.
The subsequent section on results and discussion explores the
relationship between the model parameters (e.g., helix length,
strength of the electrostatic charges) and the folding time. We
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conclude with some thoughts on future directions for ‘‘WEB-
based’’ protein-folding simulations.

MATERIALS AND METHODS

Diffusion–Collision Four-Helix-Bundle Protein Model.
Four rigid nonoverlapping sphero-cylinders connected to one
another by frictionless strings were used to model four helical
microdomains, which must diffuse, collide, and aggregate to
form the folded four-helix bundle (see Fig. 1). The connecting
frictionless strings serve only as constraints that preserve the
topological contiguity of the protein, and they exert no addi-
tional force on the microdomains. In addition, two coarse-
grained helix–helix interaction schemes are employed and
compared in this work to gauge the effects of simulation details
on our results. The interaction schemes are designed to mimic
the helix-orienting effects of helix dipoles (22). The first
interaction scheme puts pairs of opposite charges of 60.5e at
the cap centers of the four helical microdomains (Fig. 2a). The
other scheme employs point dipoles located at the centers of
microdomains (Fig. 2b). The magnitudes of these dipoles are
set to 0.3e per helix length (measured, in Å, from one cap
center to another); the reason for selecting this value will be
discussed in detail in the following section. Both helix–helix
interaction schemes are expected to help steer the microdo-
mains into the desired up–down–up–down helix arrangement
in the folded form.

In defining the folding criteria of our protein model, it is
noticed that in the folded configuration (Fig. 1a), the cap
centers of the sphero-cylindrical microdomains line up to
form two quadrilaterals (denoted by white sticks in Fig. 1b),
one at each end of the helix bundle. When the protein

unfolds (Fig. 1c), some of the edges of the quadrilaterals
defined by cap centers elongate (Fig. 1d). A protein satisfies
our folding criteria when the longest edge of the aforemen-
tioned quadrilaterals is shorter than 10 Å (1.25 times the helix
diameter). Because the microdomains are nonoverlapping,
this folding criterion is found to be very stringent.

Because rigid microdomains are used, the configuration of
a protein in our simulation is defined by the Cartesian coor-
dinates of helix centers, xi, and quaternion parameters, qi,
representing their orientations (23–25). Starting from ran-
domly generated configurations, the configurations of the four
helices are simulated by using the conventional equations of
motion:
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where Fi and Ti denote force and torque on helix i, Di
t and Di

r

denote the translational and rotational diffusion matrices of
helix i, dW denotes the Gaussian noise with variance of dt (26,
27), and the superscript BF denotes the evaluation in the
body-fixed frame of reference. Hydrodynamics interaction
(28) is neglected in all of our simulations. Because it has been
shown that the hydrodynamics interaction plays only a sec-
ondary role to electrostatic steering in the enzyme–substrate
association process (29), it is expected that the hydrodynamics
interaction also plays a minor role in the folding process as
well. In this work, the translational and rotational diffusion
constants of each isolated helix are calculated by using the
completed double-layer boundary element integral method
(30, 31) and are plotted in Fig. 3. The equations of motion
above are solved by using the algorithm of Ermak and Mc-
Cammon (32) with the quaternion parameters being renor-
malized at every time step.

At this point, we have not included the effects order–
disorder transition of the microdomains (8) and short-range
stabilizing interactions such as van der Waals and hydrophobic
interactions (33, 34). Because of the very simplistic nature of
our protein model, the principal emphasis of our investigation
lies in the applicability and efficiency of the simulation algo-
rithm, rather than the simulation results obtained thereof. In
light of previous experimental results (8–10, 35), the use of
preformed rigid secondary structure elements as microdo-
mains in our simulation, as well as our rudimentary helix–helix
interaction schemes, evidently is unrealistic. Nevertheless,

FIG. 1. Four-helix bundle protein model. (a) Folded protein. (b)
Schematic drawing of a. Helix major axes, connecting the center of
hemispherical caps, are in yellow (arrows point to N terminus). The
two quadrilaterals that are formed by the helix ends are outlined in
white. The length of the longest edge of the two quadrilaterals, d, is
used as the folding criterion, as well as the guideline for splitting and
combining WEB particles. The wire-framed rendition of the exclusion
volume of the first helix (red) is shown for comparison. In this case, d 5
10Å. (c) Unfolded protein. (d) A schematic drawing of c, showing
major axes and distances between helix ends (d 5 27.2 Å).

FIG. 2. Helix–helix interaction models. (a) Point-charge model. (b)
Point-dipole model.
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irrespective of these simplifications, it suffices that this model,
by the virtue of its characteristic folding time scale being
comparable to that of the protein-folding process, should be an
effective test for the WEB dynamics simulation algorithm.

WEB Dynamics Simulation. The underlying theoretical
principle for the present Brownian dynamics simulation is
identical to that described in Huber and Kim (5). For the most
general formulation of the Brownian dynamics simulation, we
consider diffusion in an N-dimensional configuration space,
with an arbitrary potential and (possibly varying) diffusion
matrix. Each configuration of the microdomain assembly
would be described by a set of coordinates in this configuration
space and thus be represented by a ‘‘particle’’ at that point in
space. The folding time or the mean passage time of this
particle in the configuration space is the average amount of
time it takes a particle to traverse the configuration space to
the region that corresponds to folded proteins.

Intuitively, one can obtain the mean passage time in ques-
tion from computer simulations by either simulating many
Brownian dynamic trajectories and averaging the results, or
using the flux overpopulation method (36). The latter refers to
a type of simulation where multiple Brownian dynamic tra-
jectories are simulated at once, with the trajectories being
immediately reinitialized once their destination is reached.
The two methods have been shown to be mathematically
equivalent, and the mean passage time for the second method
equals the ratio of the number of the trajectories in the
simulation and the number of the trajectories reaching their
destination per unit time at the steady state (37). The main
difficulty in determining the mean passage time using either
simulation method is that most interesting systems require
particles to cross one or more substantial free-energy barriers
before reaching their destination. As a result, the particles
spend most of their time wandering within local free-energy
wells and only rarely surmount the barriers. To obtain good
estimates of the mean passage times of such systems via
computer simulation would have consumed vast amounts of
computational resources. However, it was pointed out that the
flux overpopulation method can be modified to obtain mean-
ingful results in a more efficient manner; this is the essence of
the weighted-ensemble exposition in Huber and Kim (5).

There are two ways to imagine a large collection of particles
in a configuration space. The first way is to view them as actual

copies of the physical system in the real world. The second
viewpoint is to regard the collection of particles as an estimate
of the probability distribution of states taken by one system. In
other words, each particle represents a packet of probability.
If all particles are considered to carry the same amount of
probability, then these two viewpoints are equivalent. How-
ever, if each particle is allowed to carry a different amount of
probability, then adopting the second viewpoint introduces
additional f lexibility. For example, the probability distribution
at the top of a substantial free-energy barrier would be poorly
sampled by an ensemble of particles with equal weights,
because very few, if any, particles would be near the barrier
top. On the other hand, if the particles are endowed with
variable statistical weight, then many particles with small
statistical weights can be present at the barrier top allowing the
corresponding region in the configuration space to be ade-
quately sampled. The weighted ensemble scheme allows par-
ticles to be split and combined with one another so that some
particles can reach the barrier top without breaking any rules
of probability theory.

The implementation of the weighted-ensemble method first
requires selection of a measure that represents the ‘‘progress’’
of each configuration in the simulation toward its destination.
This measure, calculated from the current configuration, will
be used in deciding whether WEB particles are split, combined,
or left alone at each time step. This progress measure can be
identified with the reaction coordinate when the simulation
concerns the association of an enzyme and a substrate (5). For
the protein-folding problem, the progress indicator can be
identified with the ‘‘order parameter’’ in the spirit of the
energy landscape treatment of protein-folding kinetics (38,
39). In our simulations, we define the progress measure, d, as
the maximum length of the edges of the two quadrilaterals
formed by helix ends. It should be noted that the same measure
is used to determine the folding criteria, and when the progress
measure falls below 10 Å, the folding criterion is automatically
satisfied. Because the progress measure is used simply as a
guideline for the splitting and combining of particles, the
folding pathway needs not be known in advance, and any
reasonable progress measure, such as the free energy of each
protein configuration, could be substituted without any loss of
accuracy.

In WEB simulations, we first subdivide configuration space
into regions, or bins, in intervals along the d-coordinate.
Although the regions (bins) that correspond to small d are not
easily accessible in standard Brownian dynamics simulations
because of the free-energy barriers to folding, the WEB
algorithm is designed to sample configurations in these regions
of configuration space effectively by splitting a single particle
in these regions into many particles with smaller weights.
Moreover, after splitting, there is a good chance that at least
one of the newly split particles will progress further to bins with
even smaller d parameters. In addition, to prevent the number
of particles in the WEB simulations to grow exponentially, we
also need to combine Brownian particles in regions in config-
uration space that already contain enough Brownian particles
for effective sampling. Hence, in our implementation of WEB
dynamics, we split and combine particles to have the same
number of particles in each bin. At every iteration, the particles
are stepped forward one time step according to the standard
Brownian dynamics algorithm. During the time step, particles
might move from one bin to another. For bins with too many
particles, we pick the two lightest particles and combine them
using the combine algorithm as in Huber and Kim (5). The
weight of the conglomerate particle is the sum of the weights
of the constituents. The position of the conglomerate is the
position of one of the original particles; the probability of a
position being chosen is proportional to the weight of the
original particle at that position. The combine algorithm is
repeated until the number of particles in the bin has been

FIG. 3. Reduced translationyrotation diffusion constants of the
sphero-cylinder model of helix microdomain in the direction parallely
perpendicular to the helix major axis are reported. In this figure, the
diffusion constants are scaled by the corresponding translationy
rotation diffusion constants of a sphere of the same radius and plotted
against the ratio of the length of major axis of the sphero-cylinder L
and its radius a.
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reduced to the target quota. For bins with too few particles, we
pick the heaviest particle and split it into two particles of equal
weight. Both children are inserted into the position in config-
uration space that was occupied by the parent. The splitting
algorithm is repeated until the number of particles in the bin
has been increased to the target quota.§ After the particle
readjustments, the next time step is taken and the process is
repeated. The net result is that intervals with smaller values of
d (closer to the folded state) receive particles, albeit of minute
weight, and a greatly reduced computational effort is ex-
pended in ‘‘uninteresting’’ regions of configuration space.
Lastly, as in the flux overpopulation method, particles that
satisfy the folding criteria are immediately reinitialized in a
random configuration, and because the total weight of WEB
particles in our simulation is normalized to one, the folding
time of our folding model in WEB simulations equals the
inverse of the particle flux, which is the total weight of particles
satisfying the folding criteria per unit of time.

Simulation Details. To demonstrate the effectiveness of the
WEB dynamics algorithm, we chose to study the effects of
microdomain geometry on the folding time because these
effects cannot be thoroughly investigated with analytical meth-
ods such as the chemical kinetics approximation. The dimen-
sions of the helix microdomains used in this study are as
follows. The radius of each microdomain is 4 Å, and the length
of the connecting string, measured between cap centers, is 12
Å. To study the effects of microdomain geometry, the length
of the major axis is varied between 24, 32, and 40 Å. The
simulations are carried out at 298 K, where the viscosity of
solution (water) is 0.89 centipoise. In addition, because the
folding process takes place in aqueous solution, the dielectric
constant is set to that of water (« 5 78). The random initial
configuration is generated by first laying down the cap center
that corresponds to the N terminus of the first helix, and a
random unit vector is generated for the direction of the first
helix. Then the cap center that corresponds to N terminus of
the second helix is generated such that the connecting string
between the two helices is less than 12 Å, and a unit vector for
the direction of the second helix is generated such that none
of the helices generated so far overlap. The process is repeated
for the third and fourth helices. Time steps of 0.1 ps are used
in the integration of Eqs. 1 and 2. The WEB dynamics
algorithm is applied using 1,200 bins, 5 particles per bin, and
at least 1 3 107 Brownian steps. Because the error distribution
of particle flux is slightly skewed, the Bootstrap Monte Carlo
method (5, 40) is used to calculate confidence interval of the
data, assuming independent block size of 50,000 steps. The
reported ‘‘standard error’’ is taken to be the half-width of the
68.3% confidence interval.¶ The calculation stops when the
aforementioned half-width is within 10% of the average value.

RESULTS AND DISCUSSION

Given the crudeness of the model, it is quite encouraging to see
that the predicted folding times from the simulations, as
compiled in Table 1, fall in the range observed for typical
proteins. However, the 24 Å bundle folding-time scale is
approximately two orders of magnitude slower than the ex-
perimentally observed folding time scale of the similarly sized
four-helix-bundle bovine acyl-CoA-binding protein (ACBP)
(41). The discrepancy might arise from the crudeness of our

model or from the rather arbitrary definition of folding criteria
employed here.

It is also interesting to note the effect of model parameters
such as the helix length and the dipole strength. Shorter helices
have greater mobility (larger diffusion constants). Also, in the
present model helix length is coupled to the force model. For
example, the dipole model has a helix–helix interaction energy
that varies as the square of the length, whereas the dependence
of interaction energy on helix length is somewhat weaker in the
model with charges at the helix ends. Consequently, the folding
time is more sensitive to helix length in the dipole model. In
fact, with the helix dipole per length of 0.5e, the model yields
the incorrect result that the helix bundle folding time is
proportional to the helix length (data not shown). It is only
when the dipole strength per length is reduced to 0.3e that
reasonable results are obtained.

In general, our computational experiments with two differ-
ent models for the distribution of charges over the helix
microdomains show that the pattern of the charge distribution
has a major impact on the folding time. The key point here is
not the veracity of a particular model, but that such compu-
tational experiments could be performed at all. Most of the
simulations were conducted on just four processors of a Silicon
Graphics Power-Challenge array at the National Center for
Supercomputing Applications. Each entry in Table 1 con-
sumed about 3 weeks of CPU time. Although our CPU
consumption seems large, it is estimated that brute-force
Brownian dynamics using a comparable number of trajectories
would have required about 10,000 processor-years. Further-
more, if the error bars in Table 1 are relaxed to 50%, i.e.,
order-of-magnitude estimates of the folding time, each WEB-
based folding simulation can be completed in a matter of 2 or
3 days.

In future work, an expanded simulation capability permitted
by the WEB simulation method could be reinvested in more
detailed models. Although a simple microdomain-level model
and the simulation results given above are sufficient to illus-
trate the underlying concepts and algorithmic details, a more
realistic protein model must be employed in the simulations to
answer relevant kinetics questions, such as folding cooperat-
ivity and folding intermediates. In this regard, a more detailed
residue-level model of small proteins (18, 42–44) seems to be
a good candidate for future simulation studies. Based on our
computer usage for this work and the currently available CPU
cycles at supercomputer centers, it is believed that the WEB
simulations using residue-level models of small proteins,
50–80 residues in length, already can be carried out at the
present time.
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§The implementation of the combine–split algorithm in the present
work allocates the same quota of particles to each bin and in this
respect differs from the original algorithm described in Huber and
Kim (5). Having the same number of particles in each bin facilitates
data layout on modern parallel supercomputers.

¶For normally distributed data, the 68.3% confidence interval corre-
sponds exactly to 61 SD about the average value.

Table 1. Simulation results for folding time of a four-helix
bundle protein

Helix
length, Å

Point-charge
folding time, s

Point-dipole
folding time, s

24 1.27 6 0.12 0.665 6 0.052
32 5.91 6 0.56 1.50 6 0.12
40 27.1 6 2.0 1.74 6 0.16

The table lists folding time 61 SD for helices of different length
obtained from simulations using either the point-charge or point-
dipole interaction model.
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