The Organization Engine: Virtual Data Integration

James S. Miller!, Carl Niedner?, and Jack London?

! Digital Equipment Corporation
2 Fox Chase Cancer Center

ABSTRACT!

The Organization Engine is an early ezample of Vir-
tual Data Integration — providing the appearance of
integration at the desktop without modifying ezisting
infrastructure. Starting with the Organization Engine,
etght programming days were needed to provide uni-
form desktop access to a CODASYL-compliant hospi-
tal information system and to a MUMPS-based radiol-
ogy information system (the technique is equally effec-
tive for relational and other data bases). The resulting
tool provides a seamless integration of these two sys-
tems, image storage, pre-recorded audio, and document
storage. In addition to providing uniform access, the
tool allows healthcare providers to organize the data to
suit their individual needs.

The ease of this integration lies in two simple tech-
niques: the transformation of data from all sources
into a single, homogeneous representation, and the use
of simple customization files to describe new object
types and formats. The approach is sufficiently general
to allow the integration of applications which present
ezternal interfaces of radically different forms. Two
such forms are discussed here: data map publication
and transactions.

THE CHALLENGE OF INTEGRATION

Most healthcare institutions today use a profusion of
disparate systems, each carefully designed for a sin-
gle, specific purpose. Unfortunately, the majority of
healthcare providers require uniform access to infor-
mation dispersed among these various systems. His-
torically, several approaches to solving this problem
have been tried: specific pair-wise solutions; central-
ized replication of departmental data; and interfacing
standards. None of these approaches allows the solu-
tion to be tailored for (and possibly by) the individual.
VIRTUAL DATA INTEGRATION is the apparent integra-
tion of information at the desktop, without modifica-

1This paper is a condensed version of CRL Technical Report
92/3, which can be obtained from:

D.E.C. Cambridge Research Lab

One Kendall Square, Building 700

Cambridge, MA 02139.

0195-4210/92/$5.00 ©1993 AMIA, Inc.

610

tion to the existing infrastructure of niche applications,
custom and standard interface protocols, and organi-
zational boundaries.

All of the current approaches to solving the integra-
tion problem alleviate some of the problem, but they
still suffer from several drawbacks:

1. None of them provides UNIFORM ACCESS to the
data. The user must still be aware of the origin of
the data, and must deal with data from different
sources in different ways.

2. None of them provides CUSTOMIZED ORGANIZA-
TION of the data. Each application program still
specifies the way in which its data is accessed and
viewed. It is not possible to intersperse data from
one source with data from another.

3. None of them provides USER EXTENSIBILITY to
accommodate user preferences or new data types.

4. They require extensive (and expensive) custom
programming and continual program mainte-
nance.

Any solution to the healthcare integration problem
must address a specific set of requirements. First and
foremost, it must solve these four problems. Second, it
must capitalize on existing infrastructure — very few
institutions can afford to discard their existing infor-
mation technology investment. Third, it must be evo-
lutionary and inexpensive. The Organization Engine
(OE) is a prototype designed to demonstrate that vir-
tual data integration satisfies all of these requirements.

The key to virtual data integration is providing each
user with a single view of all data — regardless of such
details as the data’s location, storage format, meta-
data model, and so on — without disturbing the im-
plementation of the various systems that manage the
data. The choice of this single view is at the root of a
successful virtual data integration effort. The OE ex-
plores one particular user view: all data is composed
of a set of fields; each field has a value and an icon;
the icons indicate a user-tailorable combination of the
type and contents of the field. For example, the OE
provides icons for “folders” of user-configured data, as
well as “folders containing medical reports as filed in
the hospital’s medical computing system.”

The current OE prototype is connected to two pre-
existing healthcare applications as well as a variety of
desktop utilities that deal with multimedia datatypes.
Extending the set of datatypes is straightforward (see
below). Most of this paper is devoted to the consid-
erably harder task of integrating existing healthcare
applications, which is demonstrated by examining the
techniques used to integrate the DECrad radiology in-
formation system and the Fox Chase Cancer Center’s
medical computing service (MCS).

DECrad: DECrad provides hospital radiology de-
partments with patient registration, exam tracking
and scheduling, diagnostic report and film library
management, accounting, and management reporting.
DECrad is implemented in Digital Standard MUMPS
(DSM), running on Digital’s VAX/VMS platform[2].

MCS: The Medical Computer System developed at
the Fox Chase Cancer Center (FCCC) provides stan-
dard hospital information system functionality, as well
as capabilities that are of specific value in the treat-
ment of cancer patients. The MCS provides the staff at
FCCC with the ability to register patients; perform pa-
tient admissions, discharges, and transfers; transcribe
radiology reports, histories, physicals, and discharge
summaries; schedule diagnostic procedures and outpa-
tient visits; and track the location of patient medical
record charts and radiology films. Interfaces were writ-
ten to commercial pharmacy and clinical laboratory
applications. Data on services provided to patients
are passed over a local area network to a commercial
hospital billing package. Oncology-specific features of
MCS include cancer staging, display of available treat-
ment, drug side-effect information, and pre- and post-
diagnostic workup guidelines. The MCS was built as a
central clearinghouse and repository for all clinical in-
formation. It is a typical example of the central repos-
itory approach.

THE ORGANIZATION ENGINE

The Organization Engine began as a research
project in Digital’s Cambridge Research Laboratory.
The goal was to provide a software base to explore the
issues that arise from dealing with vast quantities of
data, primarily located in “legacy repositories” — pre-
existing systems that merge raw data with structur-
ing information in individual, idiosyncratic ways. The
software is divided into three distinct pieces, two of
which were stable over a variety of information sources,
and the third carefully tailored to each specific repos-
itory. The two generic pieces were a user interface
and an integration toolkit which provides the connec-
tion between the user view of data and a transmis-
sion protocol. The repository-specific component im-
plements this transmission protocol for a particular

611

data repository. The design and implementation of
the repository-specific component is described under
“Server Interface Models.”

User Interface

The OE specifies a modularity boundary between the
user interface and the underlying integration system.
This modularity allows modification of the user inter-
face without affecting the integration system, and vice
versa. The initial user interface is a “trial balloon”
rather than integral to the design of the system.

The prototype’s user interface encourages users to
locate information by navigating rather than search-
ing. The goal is to make it natural to put infor-
mation in multiple places so that locating it later
will be easy. “Copying” an object actually means
copying a reference to the object, so it is very
fast. In fact, the implementation allows some sim-
ple queries to be constructed and executed through
this interface, but the user is unaware of these
queries. From the user’s perspective, the interface
looks very much like a set of “blotters,” each of which
is similar to the Macintosh*FINDER or MS/DOS
Windows'™DESKkToP. The blotter contains various
named icons corresponding to data objects, with the
shape of the icon reflecting the operations that can be
performed on the data and/or the origin of the data.

Using the mouse to double-click on an icon ACTI-
VATES the icon. The meaning of “activate” is quite
flexible. A simple text file is used to customize the
user interface; it maps the name of an icon to the op-
eration that should be performed when it is activated.
There is a standard operation that can be used to acti-
vate an icon to reveal another blotter (i.e. to make the
icon behave like a folder). Another pair of operations
allows an application (specified in the customization
file) to be run; it is passed either the name or the con-
tents of the icon as a command argument. This makes
it simple to add data types: an icon is designed and
the customization file is edited to map that icon to the
application that handles the data type.

The Integration Toolkit

At the core of the OE is a toolkit used to connect
the user interface with a wide variety of different data
sources. See Figure 1. The user interface communi-
cates with this toolkit through an API that allows the
user interface to ask for the field names within a record;
then for each of those it can ask for the contents and
type of the field. It also allows the creation of new
records, modification of fields, etc. The user interface
specifies a record either by providing a record identifier
received as the value of a field or a “magic” identifier
specified by a data source as a root from which other
records can be located.

User Interface Records, fields
Organization Engine UIDs
Tool Kit Cookies
DECrad | FCCC | Other | Stored data
MCS

Figure 1: Structure of the Organization Engine

The central toolkit is responsible for converting
these operations into a smaller set that communicate
back to the actual source of the data. There are only
six operations at this end: initiate a connection with a
data source, get a record (from the data source into the
OE), create a new record, replace the contents of an
entire record, replace the contents of a single field of a
record, and close the connection to the data source.
The toolkit communicates with the data source by
specifying an identifier for records which previously
came from that data source — just as the user inter-
face communicates with the toolkit itself.

There is one important feature to notice about these
interfaces: the side in possession of the data always
specifies the identifier for the data. Thus, the user in-
terface can only use identifiers that it received from
the OE toolkit, and the OE toolkit can only use iden-
tifiers it received from the data source. The OE does
not merely pass on these identifiers unchanged. In-
stead, it combines the identifier with a marker that
allows it to identify the data source that produced the
identifier. We refer to the identifiers passed between
the OE and the data source as COOKIES, and the iden-
tifier passed between the Organization Engine and the
user interface as OBJECT IDs. Thus, an object ID con-
sists of two parts: a data source identifier and a cookie
belonging to that data source. This technique resem-
bles dynamic data typing[1], tagged records, and some
object-oriented programming implementations[4].

The toolkit is intended as a body of code that must
be extended to be useful. For each new data source,
two things must be provided to integrate it into the
OE framework: a service identifier (to be used by the
OE to refer to data from the new source of informa-
tion), and a small body of code implementing the six
operations required by the OE. The next two sections
provide some guidance in designing and building this
code.

COMMUNICATIONS

The most important property of the communication
mechanism is that it must be invisible to the user.
There is probably no component of an overall system

612

less interesting to the typical healthcare professional
than the networks on which it is based. There is no set
of problems less interesting to that professional than
difficulties arising from interconnecting systems or net-
works. These mechanisms are very properly viewed as
the portion of the system that the programming staff
should hide.

The OE gives only a small amount of guidance here.
First, the protocol used to connect to data sources is
deliberately simple: six commands (open, get, create,
reply, modify, close). The protocol makes no commit-
ment to the location of the client/server split. The
names of fields in individual records can be coded on
either the client or server. The network transmission
protocol is not specified by the toolkit, so this choice,
too, can be made as part of the per-data-source inte-
gration code.

The current prototype has already adopted two dif-
ferent interconnection styles: one uses Remote Pro-
cedure Call to connect the toolkit to the data source,
and the other uses DECnet task-to-task. Each of these
mechanisms has advantages depending on the nature
of the network and the data source. RPC is preferred
when the network environment is multi-platform or
multi-protocol, or if large amounts of data must be
moved between the OE client and the data source
server. DECnet task-to-task works well between two
machines that both support DECnet and where the
data to be moved is always in small amounts of pre-
dictable format.

SERVER INTERFACE MODELS
The hardest part of integrating a new data source
using the OE toolkit is designing the overall struc-
ture of the server. This section describes two broad
classes of server API architectures, the TRANSACTION-
ORIENTED model and the DATA MAP PUBLICATION
(DMP) model, and provides a comparison of the two.

Figure 2: Transaction-Oriented Server

A transaction-oriented server allows information to
be retrieved through a specific set of inquiry and re-

ply transactions. Each inquiry message specifies the
key values needed to retrieve the data; the type of the
message determines the nature of the data retrieved.
These servers are implemented by a top-level driver
that determines the type of inquiry and dispatches
routines to gather and format the information into the
correct response. Such a server contains a separate
code path for each inquiry message. Figure 2 shows
the components of a transaction-oriented server.

API

Figure 3: Data Map Publication Server

A DMP server makes use of a “map” of its appli-
cation dataset which is distinct from the application
itself. The data map represents a publishable subset
of both the data elements in the application dataset
and the relationships between those elements. The
server uses this information to allow clients to browse
at will among the published information. The top-
level server code based on this model is more complex
than the corresponding code for a transaction-oriented
server. However, making the map explicit allows the
server to be independent of the number and nature of
data elements accessible through it. Figure 3 shows
the components of a DMP server.

A data map is a form of metadata and contains el-
ements in common with many different metadata rep-
resentations. It may, in some cases, be derivable from
existing metadata. A data map must support, at a
minimum, the explicit representation of several rela-
tionships among data elements:

e has-dependent indicates that one data name
(the object) is a DEPENDENT of another (the sub-
ject); i.e., the value of the object cannot be eval-
uated without knowing the value of the subject.
The value of the object of a has-dependent at-
tribute “becomes available for inspection” when
the subject dataname’s value is known.

o reference: for datanames with a single value,
the object of this attributes specifies a retrieval
method.

¢ next-value-method: for datanames with multi-
ple values, the object of this attribute specifies a
method for iterating through all of the values.

e pointer-to indicates this dataname is an “invisi-
ble link” between two other datanames. When the
subject of this attribute is encountered as a depen-
dent, its value should be assigned to the object
dataname, and the object’s dependents should be
evaluated instead of the subject’s.

It is convenient to represent the data map as a three
level hierarchical index in which subject data names
point to attributes, which point to object data names.
This representation scheme is an instance of the entity-
attribute-value data model[3]. In such a hierarchy, ei-
ther all attributes for a given subject, or all objects
for a specific attribute of a subject, can be retrieved
quickly. For example, when an OE user selects an
object, this scheme allows the DMP server to retrieve
quickly all data names to be evaluated for display. The
DMP server accomplishes this task by retrieving all
objects of the HAS-DEPENDENT attribute for the data
name corresponding to the selected object.

The choice between these two models is a trade-off:
neither is clearly superior to the other. The decision
must be made along three distinct dimensions, and
evaluated for each data source to be integrated:

e initial vs. continuing development cost. The
transaction model is easily built, and corresponds
directly and naturally to many existing appli-
cations. Extending this model “across the net-
work” to desktop computers is relatively easy, and
this was precisely the approach taken by the Fox
Chase Cancer Center in building their medical
computing system. The DMP model requires a
more complex initial system, since it requires code
to implement and interpret the data map. Over
time, however, the flexibility inherent in simply
changing a data structure (the map) as opposed
to writing new code (for new transactions) can be-
come a dominant factor in development costs. In
fact, the DECrad integration allows the data map
to be changed while the interface is in use, and
desktop users may see the effects of the change as
soon as their next interaction.

e control vs. flexibility. If two different transac-
tions consult the same underlying table, a trans-
action-oriented server can easily implement dis-
tinct access controls for the operations, while a
DMP server would be almost powerless to enforce
the distinction. On the other hand, the DMP
model allows clients to browse the data in any
order that they find useful.

613

e performance. A transaction-oriented server can
achieve better throughput than a comparable
DMP server, since the former dispatches retrieval
and formatting code depending on the input mes-
sage, while the latter must “interpret” the map.
The performance difference depends largely on
the complexity of the path that must be inter-
preted by the DMP server, and to a smaller degree
on the complexity of the map itself.

OBSERVATIONS AND MEASUREMENTS

Experience to date has been far better than ex-
pected for a first attempt at combining a research pro-
totype with pre-existing systems. The prototype inte-
gration project required a very small time expenditure:
eight programming days to integrate two systems. The
prototype is more than adequate for its intended pur-
pose as a demonstration system. Initial indications are
that the prototype may be useful in solving existing
healthcare integration problems. With the low cost of
integrating with other systems, the Organization En-
gine provides an interesting base for experimental user
interfaces as well.

Quantitative performance characterization confirms
that DMP servers can pay in performance for their su-
perior flexibility. In an informal benchmark, the DEC-
rad server retrieval logic, the only prototype compo-
nent easily thus characterized, exhibited a nearly lin-
ear relationship between number of entities retrieved
and elapsed CPU time. A MicroVAX II CPU (approx-
imately 0.8 MIPS) required an average of 0.26 MIPS-
seconds per retrieved entity (with a standard deviation
of 0.036 MIPS-seconds). It is important to note that
the quantitative results presented here were obtained
without the benefit of any system tuning, and should
not be used to predict operational characteristics of
live systems.

CONCLUSIONS

A data map publication (DMP) server, which allows
client applications to browse the public parts of a data
set, provides a flexible base for virtual data integra-
tion. Building a DMP server is initially more difficult
than building a transaction-oriented server, but the
evolutionary path is simpler. It is possible to imple-
ment a DMP server for any application dataset that
possesses the ability to:

e obtain a value from a dataset, given a singly-
valued dataname and a list of prerequisite
datanames and associated values

o iterate over the values for a multiply-valued
dataname, with prerequisite information

o store the published data map, including depen-
dency information, and invisible pointers.

614

Because a DMP server inherently requires the ability
to interpret data map paths at runtime, it can be less
efficient than a transaction-oriented server. It is not
yet clear how serious this performance difference is in
practice. Future work will both quantify this difference
and reduce its current level.

Underlying this work is the toolkit provided by the
Organization Engine. The structure of this toolkit has
proven quite robust and is the main reason our modest
labor investment in integration has been so effective.
The Organization Engine provides a strong modular-
ity boundary between the user interface and the un-
derlying integration toolkit, allowing the replacement
of the user interface without an overhaul of the entire
system. The integration toolkit at the heart of the Or-
ganization Engine provides little more than the glue
necessary to connect this user interface API with the
simpler API used to connect with a data source. The
user interface boundary deals with object identifiers,
and provides an abstraction of records with fields. At
the data source interface, the abstraction is one based
on “cookies” and six fundamental operations: get, cre-
ate, modify, replace, open connection, and close con-
nection.

The virtual data integration method represents an
effective, low-risk means for healthcare institutions to
improve dramatically the accessibility of critical in-
formation without jeopardizing existing technology in-
vestments. The system described in the preceding sec-
tions is a prototype, not a finished product. Several
issues remain to be addressed in future prototypes and
pilot implementations, including security, multiplat-
form clients, inter-institution integration, client mod-
ification of server data, and others. However, the Or-
ganization Engine prototype presented here is excit-
ing evidence that virtual data integration may help to
solve some of the most critical information problems
in healthcare today.

REFERENCES

[1] Harold Abelson and Gerald Jay Sussman, with
Julie Sussman. Structure and Interpretation of
Computer Programs. MIT Press, 1985.

[2] Robert F. Davis. Radiology information system
interfaces. In Symp. on Comp. Appl. in Radiology.
Symposia Foundation Press, 1990.

[3] Carl D. Niedner. The entity-attribute-value model
in radiology informatics. In Symp. on Comp. Appl.
in Radiology. Symposia Foundation Press, 1990.

[4] Andrew Shalit. Dylan: An object-orientied dynamic
language. Apple Computer, 1992.

