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Abstract Theta burst stimulation (TBS) is a special repet-
itive transcranial magnetic stimulation (rTMS) paradigm,
where bursts of low-intensity stimuli are applied in the
theta frequency. The aim of this study was to investigate
the effect of neuronavigated TBS over primary somatosen-
sory cortex (SI) on laser-evoked potentials (LEPs) and
acute pain perception induced with Tm : YAG laser stimu-
lation. The amplitude changes of the N1, N2, and P2 com-
ponents of LEPs and related subjective pain rating scores of
12 healthy subjects were analyzed prior to and following
continuous TBS (cTBS), intermittent TBS (iTBS), interme-
diate TBS (imTBS), and sham stimulation. Our results
demonstrate that all active TBS paradigms significantly
diminished the amplitude of the N2 component, when the
hand contralateral to the site of TBS was laser-stimulated.
Sham stimulation condition had no significant effect. The
subjective pain perception also decreased during the exper-
imental sessions, but did not differ significantly from the
sham stimulation condition. The main finding of our study
is that TBS over SI diminished the amplitude of the N2
component evoked from the contralateral side without any
significant analgesic effects. Furthermore, imTBS produced
responses similar to those observed by other forms of TBS
induced excitability changes in the SI.
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Introduction

Functional neuroimaging studies have provided unequivo-
cal evidence of the participation of the primary somatosen-
sory cortex (SI), secondary somatosensory cortex (SII), and
insula in pain processing (Talbot et al. 1991; Casey et al.
1994; Apkarian et al. 1999; Gelnar et al. 1999). Evidence
suggests that the nociceptive input into these regions at
least partially underlies the perception of sensory features
of pain (Bushnell et al. 1999; Coghill et al. 1999; Peyron
etal. 1999; Chen etal. 2002; for a reviews see: Peyron
et al. 2000; Apkarian et al. 2005).

Electrophysiological studies have also confirmed the
participation of the SI in pain processing, contralateral to
the stimulated side. Tarkka and Treede (1993) first reported
pain induced-activity in the SI using electroencephalogram
(EEG) and applying brain electric source analysis (BESA).
In their model, the peak latency measured at the SI was
very similar to that of SII. In a combined magnetoencepha-
logramm (MEG) and laser-evoked potential (LEP) study
Ploner et al. (1999) reported SI activity also contralateral to
the side of stimulation and further to this proposed a paral-
lel pain processing in SI and SII. This parallel activation of
SI and SII was confirmed by other studies (Ploner et al.
2000, 2002) and other groups (Timmermann et al. 2001;
Kanda et al. 2000; Inui et al. 2003; Nakata et al. 2004).
However, some previous LEP dipole modelling studies
showed that a dipole source in SI area was necessary to
explain the scalp LEP topography, none of them reported a
clear correspondence between the SI activity and a definite
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LEP component (Tarkka and Treede 1993; Ploner et al.
2002; Kanda et al. 2003). Kanda et al. (2000) detected SI
activity following painful stimulation by recording intracra-
nial EEG, but recently, intracerebral depth recordings in an
epileptic patient have shown no reliable LEP response from
the area 3b of the SI after painful laser stimulation,
although a reliable N2—-P2 response could be recorded at Cz
(Valeriani etal. 2004). Inui etal. (2003) reported the
absence of activation from area 3b of the SI after noxious
electrical stimulation as well, however they found activity
in the area 1 of SI. Other studies found no pain-related acti-
vation of the SI at all (for a review see: Garcia-Larrea et al.
2003; Kakigi et al. 2005).

Recent studies showed, that several kinds of external
stimulation methods such as single-pulse transcranial mag-
netic stimulation (TMS) (Kujirai et al. 1993), 1 Hz repeti-
tive TMS (rTMS) (Enomoto et al. 2001), paired associative
stimulation (PAS) (Tsuji and Rothwell 2002; Wolters et al.
2005), transcranial direct current stimulation (tDCS)
(Matsunaga et al. 2004; Dieckhofer et al. 2006) or theta
burst stimulation (TBS) (Ishikawa et al. 2007) modulate the
amplitude of cortical components of median nerve somato-
sensory evoked potentials (SEPs). It was recently reported
that, cathodal tDCS over the SI (Dieckhofer et al. 2006)
significantly reduced the N20 amplitude of median nerve
SEPs. Furthermore, cathodal polarization over the SI
induced a prolonged decrease of tactile discrimination
(Rogalewski et al. 2004) and diminished acute pain percep-
tion and the amplitude of the N2 component of LEPs (Antal
et al. 2007).

Recently Huang et al. (2005) developed a special “theta
burst” paradigm to modulate human motor cortex (M1)
excitability using low intensity, repetitive bursts of mag-
netic stimuli. The authors distinguished three stimulation
patterns, which were proved to have different effects over
M1 activity, when it was monitored by the amplitude of
transcranial motor evoked potentials (MEPs). Continuous
TBS (cTBS) caused a significant reduction in MEP ampli-
tudes, which was probably due to the inhibition of specific
excitatory circuits (I1-wave inputs to corticospinal neu-
rons), as later confirmed by another study (Di Lazzaro et al.
2005). In contrast, intermittent TBS (iTBS) facilitated M1
activity and produced increase in MEP amplitudes. Interest-
ingly, intermediate TBS (imTBS) had no effect at all. In
addition, TBS has also been shown to have an effect on the
human premotor (Mochizuki et al. 2005) and visual cortex
(Franca et al. 2006).

Non-invasive cortical stimulation of M1 for the treat-
ment of certain kinds of chronic and experimentally
induced pain has recently attracted much interest. Both low
and high frequency rTMS was reported to reduce subjective
pain perception and has been used experimentally to reduce
chronic pain (for reviews see: Leo and Latif 2007; Fregni
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et al. 2007). However, although the involvement of SI in
pain perception and processing is reported by several imag-
ing studies (for reviews see: Peyron et al. 2000; Apkarian
et al. 2005), the magnetic stimulation of this cortical area in
order to modify pain perception is neglected. Therefore, the
aim of our study was to investigate the effects of cTBS,
iTBS, and imTBS, on the early (N1) and late (N2, P2) com-
ponents of LEPs and related subjective pain perception
when applied over the left SI. We hypothesized that the
three TBS types, which have short durations (maximum
190 s), would affect LEP components in a specific, para-
digm-dependent manner similarly to the effect over M1 as
revealed by Huang and et al. (2005).

Methods
Subjects

Nineteen healthy volunteers between 18 and 35 years were
informed about all aspects of the experiments and signed an
informed consent. Three subjects chose not to continue the
experiment after the first or second session and during off-
line EEG analysis four further subjects were dropped out
because of their hardly detectable LEP components. Hence,
twelve of the subjects (six male, six female; mean
age = 26.33 £ 3.17 years) were included in the final analy-
sis. We conformed with the Declaration of Helsinki and the
experimental protocol was approved by the Ethics Commit-
tee of the University of Gottingen. None of the subjects
suffered from chronic pain syndromes, nor took any medi-
cation regularly. None had a history of neurological or psy-
chiatric illness. All of them participated in all four sessions,
the three TBS and sham stimulations.

TBS stimulation

Theta burst stimulation was applied over the hand area of
the left SI using a standard, figure-of-eight-coil (MCF-B65
Butterfly Coil) and MagPro stimulator (Medtronic,
Denmark) with an outer half-coil radius of 75 mm, with a
posterior—anterior—posterior current flow in the coil. Stimulus
intensity was 80% of active motor threshold (AMT)
(Huang et al. 2005).

For AMT determination, the coil was placed tangentially
to the scalp, with the handle pointing backwards and later-
ally 45° from mid-line. MEPs of the right abductor digiti
minimi muscle (ADM) were recorded by Ag-AgCl-elec-
trodes in a belly tendon-montage before each stimulation.
The signals were amplified and filtered (1.59 Hz-1 kHz,
sampling rate of 5 kHz), digitalized with a micro 1401 AD
converter (Cambridge Electronic Design, Cambridge, UK),
recorded by a computer using SIGNAL software
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(Cambridge Electronic Design, Version 2.13). Complete
muscle relaxation was controlled though auditory and
visual feedback of EMG activity. AMT was defined as the
minimum intensity eliciting a MEP of a superior size when
compared to spontaneous moderate muscular activity in at
least three of six pulses.

The pattern of TBS consisted of bursts containing three
pulses at 50 Hz which were repeated at 200 ms intervals
(i.e., 5Hz) for up to 600 pulses for 40 s continuously
(cTBS), or triads repeated at 200 ms intervals for 2 s inter-
mittently with 8 s breaks for up to 600 pulses (iTBS). In the
case of imTBS the triads (three pulses at 50 Hz) were
repeated at 200 ms intervals for 5 s, in every 15 s up to 600
pulses (Huang et al. 2005). In separate experimental ses-
sions, sham stimulation was applied with the cTBS proto-
col using the same coil held over the same position but
tilted to a 90° angle (one-wing 90°) (Lisanby et al. 2001)
with only the margin of the coil in contact with the scalp.

Determination of the primary somatosensory cortex (SI)

Anatomical magnetic resonance imaging (MRI) (Siemens 3
T, T1 weighted) dataset was used to determinate the coil
localization for the stimulation of SI for all subjects using
the Brainsight neuronavigation system (Rogue Research
Inc., Montreal Quebec, Canada). The hand area was deter-
mined by previous fMRI studies (Bushnell etal. 1999;
Blankenburg et al. 2003) and was located and marked in the
MRI dataset as the target for TMS application (Fig. 1).

Fig.1 Three dimensional anatomical MRI of a single subject. Ana-
tomical magnetic resonance imaging (MRI) (Siemens 3 T, T1 weight-
ed) dataset was used to determinate the coil localization for the
stimulation of SI by all subjects using the Brainsight neuronavigation
system. The hand area was located and marked in the MRI dataset as
target for TMS application. The black point indicates the hot-spot of
the stimulation coil

Laser stimulation

A Tm: YAG laser system (WaveLight Laser Technologie
AG, Erlangen, Germany) was used to induce painful stimu-
lation. The thulium laser emits near-infrared radiation
(wavelength 2,000 nm, pulse duration 1 ms, laser beam
diameter 7 mm) with a penetration depth of 360 pum into the
human skin and allows a precise restriction of the emitted
heat energy to the termination area of primary nociceptive
afferents without affecting the subcutaneous tissue (Treede
etal. 2003). The distal handpiece of the laser was posi-
tioned 30 cm from the radial part of the dorsal surface of
the hand. The pain threshold was determined on both hands
at the beginning each session before baseline EEG record-
ing by applying laser stimuli from 200 mJ in 50 mJ steps.
During EEG recordings, each laser stimulus was delivered
with an intensity of 1.4-1.6 times the threshold intensity to
a slightly different spotin a5 x 5 cm square on the dorsum
of the hand in order to reduce receptor fatigue or sensitiza-
tion by skin overheating (Treede et al. 2003). Skin tempera-
ture of the stimulated area was checked prior to every
switch between hands, and corrected with a heating lamp if
it fell below 35°C.

Psychophysical evaluation

We used the verbal analogue score (VAS) to assess the sub-
jective intensity of pain. The subjects were instructed to
pay attention to the laser stimuli and to rate the perceived
pain verbally (1-warm, 1.1 smallest pain, and 1.9 most
intense pain) about 2-3 s after each laser-impulse. The val-
ues were individually averaged separately for both hands in
each session and conditions. The ears of the subjects were
plugged during the measurements to avoid auditory arti-
facts accompanying laser stimulation.

Electrophysiological recordings

The EEG was recorded using a 64-channel montage apply-
ing 64 ring electrodes (inner diameter: 6 mm, outer diame-
ter: 12 mm) (EasyCap; Falk and Minow GmbH, Miinich,
Germany). The electrodes were placed in accordance with
the extended international 10-20 system. The impedance
was kept <5 kQ. The Fz was used as reference, the ground
was placed 2 cm anterior to the tragus of the right ear. Data
were collected at a sampling rate of 1,000 Hz with the
BrainAmp system (Brain Products GmbH, Munich, Ger-
many) and were analyzed offline. The obtained data were
re-referenced to the connected mastoids (TP9-TP10). A
0.5 Hz low-cutoff as well as a 30 Hz high-cutoft filter was
used. In addition to automatic artifact detection (200 pV
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amplitude criterion) all epochs were visually inspected, and
those containing eye blinks or muscle movement artifacts
were excluded. Baseline correction was performed on the
basis of the 100 ms prestimulus interval. The amplitudes of
N1 (referring to Fz) and N2-P2 (referring to TP9-TP10)
components were measured.

Although we recorded data on 64 channels, we assessed
LEPs according to the scalp distribution on the analyzed
peaks. The N2 is a negative component (referring to TP9-
TP10) was peaking around 160-240 ms. The amplitude of
the early N1 negative peak which came before N2 on T7
and T8 channels (referring to Fz) was analyzed. The P2
positive component after N2 was peaking around 300-—
360 ms. The N2 component is largest over the lateral tem-
poral and fronto-central areas on electrodes Fz, Cz, CPz,
F1-F4, FC1-FC6, C1-C6, T7, T8, and CP1-CP6. In con-
trast, the P2 peak has its maximum amplitude over the ver-
tex on electrodes FCz, Cz, CPz, Pz, F1-F4, FC1-FC4, C1-
C4, CP1-CP4, and P1-P4. For the analysis of LEPs
according to regional distribution, we defined three dis-
tinct areas with pooling the data: central (with all the mid-
line electrodes such as Fz, FCz, Cz, CPz, and Pz), left (F3,
FC3, C3, CP3, P3, FC5, C5, CP5, and T7) and right (elec-
trodes according to the left side) instead of separate elec-
trodes.

Experimental design

The subjects were sitting in a reclining chair. In case of all
sessions first the EEG cap was placed on the head. After
pain threshold determination the baseline LEP measure-
ments were performed. Every run for the LEP recording
consisted of 40 epochs of laser stimulation on each hand.
The interstimulus interval of the stimulation ranged from 8
to 15 s (Raijj et al. 2003). Thus the LEP recording lasted for
8—10 min for the first hand and also for 810 min for the
second hand laser-stimulation. In all three TBS and sham
TBS conditions, the right hand was stimulated first in half
of the cases and the left hand was stimulated first in the
other half. This order was kept for the subjects for all con-
ditions. After baseline LEP recording the AMT was mea-
sured (~15-20 min) and the TBS were applied for 40—
190 s through the cap. After TBS the impedance of the
EEG electrodes were retested and corrected below 5 kQ if it
was necessary. The TBS was followed by a post-stimula-
tion LEP recording in ~5 min after TBS. Thus, the interval
between the two LEP recordings with regard to the same
hand was about 30-35 min including all subjects and con-
ditions.

The experimental sessions were separated from each
other by at least 5 days. The subjects were blinded as to the
type of magnetic stimulation. The order of the sessions was
randomized across subjects.
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Data analysis

The individually averaged VAS values and LEP amplitudes
were entered into a repeated-measures-ANOVA for both
hands and LEP components separately [four TBS CONDI-
TION (cTBS, iTBS, imTBS, and sham) x 2 TIME (before,
after TBS)]. We considered a psychophysical or an electro-
physiological change only if the CONDITION x TIME
interaction was significant. In case of the LEP components
we investigated if this effect was dependent on the defined
areas by calculating the CONDITION x TIME x
REGION interaction. Post hoc analysis was done using
Student’s ¢ tests (paired samples, two-tailed, level of sig-
nificance P < 0.05).

Results
Psychophysics

The intensity of the laser stimulation (1.4-1.6 x of the pain
threshold) was 19.88 mJ/mm? for ¢TBS, 20.53 mJ/mm? for
iTBS, 20.52 mJ/mm?* for imTBS, and 20.33 mJ/mm? for
sham stimulation. None of the subjects reported any side-
effect after the stimulation.

In case of the contralateral hand (right) stimulation,
repeated-measures-ANOVA revealed no main effect of
CONDITION [F(3,33) = 0.828, P =0.488] but the TIME
was significant [F(1,11)=27.270, P <0.001]. The
CONDITION x TIME interaction was also not significant
[F(3,33) = 0.080, P =0.97]. In case of the ipsilateral hand
(left) stimulation, there was no significant main effect of
CONDITION [F(3,33) = 1.329, P =0.282] but the TIME
was significant [F(1,11)=15.395, P <0.005]. The
CONDITION x TIME interaction was also not significant
[F(3,33) =0.716, P = 0.55] (Fig. 2).

Electrophysiology

The N1, N2, and P2 components could clearly be identified
in all subjects. The LEPs are presented in Figs. 3 and 4.

The NI component

We analyzed the amplitudes of the early N1 components on
channels T7 and T8 (referring to Fz). There was no signifi-
cant main effect of CONDITION [contralateral hand:
F(3,33) =2.216, P=0.105; ipsilateral hand: F(3,33)=
2.865, P =0.052]. The TIME was significant if the contra-
lateral hand was stimulated [F(1,11)=6.186, P =0.030]
but not for the ipsilateral hand [F(1,11)=3.305,
P =0.096]. The interaction of the CONDITION x TIME
resulted in no significant interaction neither after the
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Fig. 2 The effects of the TBS on subjective pain perception. The
VAS-values were standardized for each subject, for each condition by
calculating the after/before ratio. The independent variables were the
CONDITION and HAND in order to determine if there is any differ-
ence between stimulation of the two hands. There was no main effect
of the stimulation CONDITION and the HAND (left or right). The
interaction CONDITION x TIME was also not significant

contraleteral [F(3,33) =0.727, P =0.543] or ipsilateral
[F(3,33) = 1.694, P = 0.187] hand stimulation (Fig. 3).

The N2 component

The repeated-measures-ANOVA (ipsilateral hand) showed
no  significant main effect of CONDITION
[F(3,33) = 0.555, P = 0.65], but the effect of TIME was sig-
nificant [F(1,11)=11.769, P = 0.006]. The CONDITION
x TIME interaction resulted in no significance [F(3,33) =
0.149, P=0.93] (Fig.5a). In case of the (contralateral
hand) the main effect of CONDITION [F(3,33) = 0.250,
P =0.86] was not significant, but the TIME was significant
[F(1,11) =32.034, P <0.001]. The CONDITION x TIME
interaction was also significant [F(3,33) = 4.058,
P =0.015] (Fig. 5b). The interaction with electrode posi-
tion was not significant [F(6,66) = 1.068, P =0.39]. The
post hoc ¢ test showed that all active TBS stimulation sig-
nificantly decreased the amplitudes of the N2 component at
all defined regions for the contralateral hand stimulation.
Table 1 summarizes the results of ¢ tests.

The P2 component

The repeated-measures-ANOVA showed no significant
main effect of CONDITION [contralateral:
F(3,33)=1.571, P=0.22; ipsilateral: F(3,33)=1.054,
P =0.38], but the TIME was significant [contralateral:
F(1,11) = 17.038, P =0.002; ipsilateral: F(1,11)=15.362,
P =0.002]. The CONDITION x TIME interaction was

also not significant [contralateral: F(3,33) = 2.669,
P =0.064; ipsilateral: F(3,33) =0.418, P =0.74].

The means of the different LEP components from all 12
subjects are presented in Table 2.

Discussion

The main finding of our study is that all theta burst para-
digms over the SI were able to diminish the amplitude of
the N2 component of LEPs significantly when compared to
sham stimulation. Surprisingly, the imTBS condition, that
is suggested to be used as a placebo condition, when it
applied over the M1 (Huang et al. 2005), also caused a
strong amplitude decrease. The N1 and P2 components and
the subjective pain rating scores were not significantly
influenced by any type of TBS.

Recent studies using the theta burst paradigm have con-
centrated on the effects of continuous (cTBS) and intermit-
tent theta burst stimulation (iTBS) (Franca etal. 2006;
Andoh et al. 2007; Ishikawa et al. 2007; Koch et al. 2007;
Mochizuki etal. 2007). None of them investigated the
intermediate (imTBS) pattern since Huang and et al. pub-
lished that it has no effect over the M1 as revealed by MEPs
and could thus be used as a sham condition (Huang et al.
2005).

According to our knowledge, only five studies applied
TBS over non-motor cortical areas. First Franca et al.
(2006) used the theta burst pattern of rTMS over the visual
cortex. They found that cTBS increased phosphene thresh-
olds whilst iTBS was found to be ineffective. In another
study, both cTBS and iTBS over the left dorsal premotor
cortex decreased the transcallosal inhibition revealed by
pairs of transcranial magnetic stimuli (Koch et al. 2007). In
a recent study, Wernicke’s area was stimulated with iTBS
while the reaction time of auditory word detection was
measured (Andoh et al. 2007). In this work, iTBS facili-
tated the detection of foreign words when compared with
native words.

Concerning the SI, a shorter form of the iTBS (300
pulses) over the left SI resulted in a significant oxy-hemo-
globin decrease at the contralateral SI and M1, detected by
near infrared spectroscopy (Mochizuki etal. 2007). In
another study cTBS of the SI resulted in a temporary
decrease (13 min), whereas stimulation of the M1 caused a
long-lasting increase (up to 53 min) of the amplitudes of
cortical components of the median nerve SEPs (Ishikawa
etal. 2007). In summary, these results suggest that cTBS
has an inhibitory effect on non-motor areas; whereas the
effect of iTBS is more facilitatory, but clearer results have
still to emerge. Our results are the first demonstrating that
all three TBS paradigms, but not by sham stimulation over
the SI resulted in similar after-effects regarding the ampli-
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tude of the N2 component of LEPs evoked by the laser
stimulation of the contralateral hand.

The N2 component (peaking around 160-220 ms), is
generated bilaterally in the operculoinsular region and in
the anterior cingulate cortex (ACC) (Garcia-Larrea et al.
2003) and reflects sensory, discriminatory processes (Gar-
cia-Larrea et al. 1997; lannetti et al. 2005); whilst the P2
component (peaking around 300-360 ms) arose mostly
from the ACC and represents attentional, cognitive and
affective factors of pain perception and processing (Treede
2003). However, other studies did not find significantly
different brain sources for N2 and P2, revealing both para-
sylvian and ACC contributions for the N2-P2 components
(Raij et al. 2003; Ohara et al. 2004). Thus, LEP changes in
N2 or P2 component might result from changes in either
sensory-discriminative or cognitive aspects of pain. Studies
using subdural recordings (Kanda et al. 2000; Ohara et al.
2004) or MEG (Kanda et al. 2000) demonstrated that the
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LEP components can be recorded over the SI and SII simul-
taneously, and the N2 peak may indicate the arrival of input
originating from nociceptors.

With regard to the N1 component which is an early LEP
potential (peaking around 140-170 ms) and reflecting the
early sensory-discriminative processing of pain perception
(Tannetti et al. 2005), we did not find any significant change
in amplitude. According to scalp topography (maximum
near T3 and T4), the N1 is generated near to the SII in the
fronto-parietal operculum (Treede et al. 2003). The partici-
pation of operculoinsular cortex in coding the pain intensity
was recently suggested by using LEP measurements
(Tanetti et al. 2005). However, another study (Gracia-Larrea
et al. 1997) did not find any significant correlation between
the amplitude of the N1 component and subjective pain rat-
ing.

The fact that we found a decrement of both the N2 and
P2 amplitudes in the sham condition as well, should be
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Fig. 4 Grand averages of LEPs obtained by contralateral (right) hand
laser stimulation for three scalp regions (central, left and right) re-ref-
erenced to the connected mastoids (TP9-TP10), before and after the

discussed. This phenomenon is known as habituation and
has been described in previous LEP studies (Spiegel et al.
2000; Tamura et al. 2004a). Still, the effects of real TBS
conditions on N2 amplitudes were greater than that of the
sham condition and it was significant above the stimulated
left, the neighboring central and the contralateral area as
well when the right hand was laser stimulated. Attention
can also directly influence the N2-P2 components of LEPs
as well as subjective pain rating as it was suggested by pre-
vious experimental results (Gracia-Larrea etal. 1997;
Ohara et al. 2006). In our experiment the subjects were
asked to pay attention to each laser stimuli and since the
TBS and sham condition were applied in a randomized
order and the subjects were blinded as to the type of mag-
netic stimulation, the significant difference between sham
and the other three TBS on the N2 amplitude is more than
simply habituation or the effect of the different attentional
states.

The possible origin of the N2 component is mainly the
bilateral operculoinsular region and the ACC (Garcia-
Larrea et al. 2003). Therefore, when we inhibited the left SI,
the activity of the pain related cortical network decreased
due to the widespread cortical connections between SI and
other cortical areas. However, the involvement of the con-
tralateral SI and bilateral SII—parasylvian region in the N2
component generation was also reported (Kakigi et al.
2005; Kanda et al. 2000; Ohara et al. 2004). According to

three TBS conditions and sham stimulation. The solid line shows LEPs
before and the intermittent line after TBS interventions

this, it is also possible that the inhibition of the SI itself may
cause direct effects on LEP components. In this study we
found no significant difference between the stimulation
conditions with regard to subjective pain perception
(Fig. 2), however, the subjective pain rating decreased dur-
ing the experimental sessions after every type of TBS
including the sham condition. It is important to mention
that the placebo effect is high in almost every pain percep-
tion study, regardless of the paradigm used (Khedr et al.
2005; Lefaucheur et al. 2004). The explanation of this dis-
crepancy between the electrophysiological and psycho-
physical changes is rather speculative, because the
relationship between the anatomical origin of the N2-P2
components and their psychophysical correlates controver-
sially discussed in the literature. In a PET study different
cortical activations for pain threshold, intensity and
unpleasantness have been found (Tolle et al. 1999). One
possibility is that modulation the excitability of the left SI
by TBS activated some elements of the pain related net-
work that caused a decrease in the N2 amplitude. However,
this stimulation intensity or duration was not strong or
adequate enough to modify the subjective pain rating.

In our previous study (Antal et al. 2007), we found that
cathodal tDCS over the SI, similarly to the present findings,
significantly decreased the N2 component of LEPs. In con-
trast to the present findings the subjective pain perception
in healthy subjects was also diminished. TDCS is a method
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N2 Peaks amplitudes of the left hand laser stimulation
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N2 Peaks amplitudes of the right hand laser stimulation
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Fig. 5 The mean N2 amplitude changes during the four TBS condi-
tions at the ipsilateral (left) (Fig. 5a) and contralateral (right) (Fig. 5b)
hand laser-stimulation for the three calculated regions (central, left and
right). The stars mark significant differences between before-after TBS
conditions (post hoc f-tests, paired samples, two-tailed, P < 0.05)

that modifies the resting membrane potentials of cortical
neurons intracortically (Nitsche and Paulus 2000, 2001).
Cathodal stimulation decreases, whilst anodal stimulation
increases cortical excitability (Nitsche and Paulus 2000,
2001). However, in that study we have used a large elec-
trode size (5 x 7cm) in order to optimize stimulation’s
parameters (Nitsche and Paulus 2000) and therefore we
might have covered a large part of the SI. It is possible that
we have stimulated one part of the somatosensory associa-
tion cortex (BA 5/7) that is posterior to the SI. Activation of
human BAS5/7 has also been linked to pain perception
(Apkarian et al. 1999; Forss et al. 2005). BA 5/7 is anatom-
ically connected to other nociceptive brain areas such as the
ACC, insula, thalamus and primary motor cortices (Fried-
man et al. 1986). In order to increase the focality of the
transcranial stimulation in the present study we used a neu-
ronavigation system to determine the hand area over the SI.

Many of the previous pain-related studies stimulated the
M1. The effects of low and high frequency rTMS of M1 on
experimentally induced acute pain perception seem to
depend on the type of noxious stimulation. C-fiber medi-
ated acute pain as induced by intradermal capsaicin admin-
istration could be attenuated by 1 Hz rTMS over the M1
(Tamura et al. 2004b), whereas it increased Ad-fiber medi-
ated laser-induced pain in another study (Tamura et al.
2004a). Similarly, controversial effects were observed after
20 Hz rTMS (Johnson et al. 2006; Summers et al. 2004). In
contrast 10 Hz rTMS over MI increased electrically
induced AJ-fiber mediated pain threshold (Yoo et al. 2006),
but others found that 10 Hz rTMS has only an effect on the
unpleasantness of the pain without any effect on pain
threshold (Mylius et al. 2007). In case of chronic pain the
high frequency rTMS seems to more effective than the
application of low frequencies (Leo and Latif 2007).

The neuronal mechanism of the theta burst paradigm is
highly speculative. The results of the experiments with sin-
gle trains of TBS suggest that in the human M1 TBS pro-
duces a mixture of facilitatory and inhibitory effects on
synaptic transmission (Huang and Rothwell 2004). Huang

Table 1 Post hoc analysis of
the N2 component

Before versus

cTBS

iTBS imTBS sham

Before versus Before versus Before versus

after after after after
Central P-levels 0.0033 0.0002 0.0021 0.3942
t-values —3.730 —5.499 —4.005 —0.887
Shows the results of the Stu- Left P-levels 0.0054 0.0004 0.0031 0.5921
dent’s t-tests (paired samples, t-values —3.451 —5.041 —=3.775 —0.552
two-tailed) in case of the right Right P-levels 0.0394 0.0085 0.0039 0.8118
hand stimulation. The level of t-values ~2337 ~3.196 —3.645 0.244

the significance was P < 0.05
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Table 2 The mean amplitudes of the LEP components

Peak c¢TBS iTBS imTBS sham

Before After Before After Before After Before After

Left hand

N1 T7 —4424+275 —-460+3.13 —4.68+252 —-371+265 —-3334+322 -350+3.15 —498+270 —520+3.08
T8 —6.13 £2.17 —4.78 & 3.60 —6.73 £344 —-513+2.89 —499+427 —-464+£3.62 —6.56=+347 —6.33 £3.11

N2  Central —9.77+548 —-792+491 —1029+5.01 —888+398 —9.04+543 —7254+552 —10.02+443 —8.11+6.16
Left —7.13+£3.60 —6.05+344 —-744+349 —-6.69+291 —-6.81+3.69 —555+3.88 —7.13£3.55 —598+4.28
Right —6.70 £3.05 —459+325 —642+354 —541+256 —588+3.05 —-470+3.19 —6.11+£324 —482+385

P2 Central 1479 £8.02 11.74 £7.03 1486 £7.69 1243 £7.00 13.19 £ 7.74 11.26 £ 8.23 13.83 £ 6.75 12.03 £ 6.31
Left 8.40 + 3.89 7.18 £ 3.66 9.19 £ 4.74 7.74 £3.59 7.36 £4.80 6.63 £5.16 7.90 £ 3.64 6.84 + 3.67
Right 8.80 + 3.80 6.78 £3.03 8.68 £ 4.65 7.59 £ 3.68 791 £3.70 6.90 + 3.98 8.28 +£4.27 7.76 £ 4.17

Right hand

N1 T7 —8.18 £4.79 —5.98 +£3.39 —6.38 £4.67 —5.12+3.62 —-734+470 -588+£373 —-7.43+330 —638+3.21
T8 —4.924+443 -396+324 3254329 -—-298+235 —456+4.61 —-3.034+239 —437+353 —415+£262

N2 Central —10.11+3.83 —-744+£452 —11.05+4.87 —-6.69+423 —-999+506 —-640+427 -9.573.97 —8.94 £5.40
Left —-7.74 £2.70 —5.67 £2.77 —8.62+£3.65 —571+343 —-7.77+£380 -—-509+2.64 —6.79+3.29 —6.42 £3.78
Right —6.58 £337 —512+334 —-6.76+3.00 —480+326 —652+359 —-4244+272 5824274 —6.00=+3.99

P2 Central 1430 £ 6.56 11.62 £5.93 1452+ 7.14 10.90 £5.49 14.04 £7.79 10.74 £ 7.13 11.37 £ 6.38 10.75 £5.73
Left 8.47 + 3.87 6.95 +3.03 8.90 + 4.14 7.00 £ 291 8.65 +£4.79 6.64 + 3.37 6.21 £ 3.45 6.62 +3.22
Right 8.52 £3.83 6.73 £ 2.75 8.29 £4.17 6.41 £+ 3.32 8.75 £4.29 6.90 £ 3.76 6.84 £+ 4.44 6.67 £ 4.04

The mean amplitudes of the LEP components before and after stimulation in all four conditions. (mean = standard deviation)

and Rothwell proposed, that facilitation develops faster than
inhibition, thus in case of the inhibitory cTBS, several sec-
onds after an initial facilitation the inhibition overrides this
effect. ITBS uses only the early excitatory effect in the initial
2 s and after this the stimulation is interrupted for 8 s. Most
likely, the underlying mechanisms will involve many of the
basic elementary mechanisms described previously in the
LTP/LTD literature (Paulus 2005). Recently Huang et al.
(2007) have demonstrated that the after-effects produced by
both iTBS or ¢cTBS are NMDA-receptor dependent and
hence they are more likely to involve plasticity-like changes
at the synapse in the M1. More recently, it was found that
the excitatory effects of iTBS were reversed after NMDA
receptor activation by D-cycloserin (Teo et al. 2007). This is
in contrast with the findings of tDCS induced LTP where the
excitatory effects are prolonged by D-cycloserin (Nitsche
etal. 2004). However, it is important to note that these
observations were done on the M1. It is possible that the
different effectiveness observed between TBS protocols on
motor and sensory cortices could be due to differences in the
physiological and functional states of the stimulated cortex.
In summary, in our study we found a significant decrease
of the N2 component of the LEPs after cTBS, iTBS, and
imTBS when compared to sham stimulation over the SI. In
addition we found, that the subjective pain perception did
not show significant differences among the stimulation con-
ditions suggesting that this method is probably not the most

effective in decreasing subjective pain perception. Further
findings show that imTBS resulted in more impressive
modification of the LEPs, than were found in previous
TMS-studies over the M1 using MEP measures (Huang
et al. 2005), implying that it should not be used in further
studies as ‘sham’ condition, at least with regard to LEPs
and when it is applied over the SI. However these results
are not directly comparable with the effects of TBS on M1,
thus further studies are needed to clarify the effects of
imTBS on different cortical areas. Future studies should
also clarify the effectiveness of the different TBS paradigms
applied over the M1 and non-motor cortical areas, such as
the SII on acute pain perception and in chronic pain.
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