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ABSTRACT

Pseudoknots are abundant in RNA structures. Many computational analyses require pseudoknot-free structures, which means
that some of the base pairs in the knotted structure must be disregarded to obtain a nested structure. There is a surprising
diversity of methods to perform this pseudoknot removal task, but these methods are often poorly described and studies can
therefore be difficult to reproduce (in part, because different procedures may be intuitively obvious to different investigators).
Here we provide a variety of algorithms for pseudoknot removal, some of which can incorporate sequence or alignment
information in the removal process. We demonstrate that different methods lead to different results, which might affect
structure-based analyses. This work thus provides a starting point for discussion of the extent to which these different methods
recapture the underlying biological reality. We provide access to reference implementations through a web interface (at http://
www.ibi.vu.nl/programs/k2nwww), and the source code is available in the PyCogent project.
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INTRODUCTION

Pseudoknots, RNA structures in which the base pairs are
not fully nested, are biologically important but cannot be
handled by many computational procedures. Pseudoknots
began as a theoretical prediction (Studnicka et al. 1978;
Waterman 1978) but were found in viral RNAs a few years
later (Rietveld et al. 1982; Pleij et al. 1985). They are now
known to be critical for the structure and function of many
RNAs, and evolutionarily conserved pseudoknots are in-
volved in processes that include ribosomal frameshifting,
self-cleavage, and self-splicing (Pleij 1994; Hilbers et al.
1998; Staple and Butcher 2005; Redland 2006). The
pseudoknotted region can be substantial: for example, at
least 36% (8 out of 22) of the base pairs in the hepatitis
delta virus (HDV) ribozyme structure must be removed to
eliminate pseudoknots. In longer structures, pseudoknots
often make up a relatively small but critical part of the
molecule. For example, in the Escherichia coli 16S rRNA
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structure (Cannone et al. 2002), as few as 1.88% (9 out of
478) of the base pairs can be removed to produce a nested
structure, but these regions include two pseudoknots that
are universally conserved and essential for translation (Vila
et al. 1994; Poot et al. 1996).

Removing pseudoknots from structural models is a rele-
vant problem for a growing group of RNA researchers using
computational tools. Because of limitations in software or
algorithms, it is often necessary to work with nested struc-
tures. Pseudoknot elimination can be necessary, for exam-
ple, to use the growing repository of RNA crystal structures
(Ponty 2006; Tyagi and Mathews 2007), to compare dif-
ferent RNA structures (Andronescu et al. 2007), to classify
structures into structural components (Smit et al. 2006), to
create RNA covariance models (Eddy 2002), or to search
for RNA homologs (Chang et al. 2006). Pseudoknots also
increase the computational complexity of RNA structure
prediction (Rivas and Eddy 1999; Lyngse and Pedersen
2000) and visualization (Han and Byun 2003; Jossinet and
Westhof 2005).

To make a knotted structural model pseudoknot-free,
one or more base pairs must be “broken,” treating the cor-
responding part of the sequence as unpaired. The subtleties
of this process are often underestimated. Which criteria
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should be used to designate one group of base pairs as “the
helix” and another group as “the pseudoknot™? In the RNA
molecule there may be no physical distinction between
the conflicting helices that make up a pseudoknot at a
structural level. Consequently, the decision about which
helix to leave out can be arbitrary, undocumented, and
difficult to reproduce. Pseudoknots are often removed
manually or with unspecified computational methods (for
example, Xayaphoummine et al. 2003; Smit et al. 2006;
Andronescu et al. 2007; Metzler and Nebel 2008; Tyagi and
Mathews 2007). An algorithm to calculate a nested struc-
ture containing the maximum number of base pairs has
been described (Ponty 2006). In addition, related work has
been done on computing the number of locally optimal
secondary structures with respect to the Nussinov-Jacobson
energy model (Clote 2005, 2006). Some information
about pseudoknots is also available in the SSTRAND
database (http://www.rnasoft.ca/sstrand). Progress is also
being made in prediction and visualization of pseudoknot-
ted structures, including a recent method for choosing
pseudoknotted helices that minimize the sum of the
stacking energies of the individual stems (Huang and Ali
2007).

The existing methods for pseudoknot removal are limited
in their underlying assumptions: keeping the maximum
number of base pairs is just one possibility and is not
necessarily related to the RNA folding process. Other
properties of the RNA that have been used to designate
pseudoknots include the strength of a helix (either length
or free energy), the folding pathway (which helix forms
or melts first?), historical considerations (which helix was
discovered first?), or ease of visualization. The manual ap-
proach is not feasible for large-scale analyses, and the
computational approaches are often unspecified or not
available to the wider community. The static pseudoknot
information in a database is useful, but researchers need to
be able to apply methods to their own structures as they are
determined.

Current practices lead to duplicated efforts in automat-
ing the process of pseudoknot removal, inconsistent no-
menclature, and difficulties reproducing analyses that require
pseudoknot removal. Because the decision about how to
unknot an RNA structure can have significant effects on
structure-based downstream analyses, there is a need for
explicit descriptions and user-friendly implementations of
the possible algorithms.

We present a variety of algorithms for pseudoknot
removal. We explore the use of different criteria to define
pseudoknots: given a specific goal, each method points out
the most critical base pairs that have to be removed. We
demonstrate that different methods applied to the same
initial structure lead to different results, indicating that
pseudoknot removal affects structure-based analyses and
that researchers should document their methods to
improve reproducibility of their studies.

Our effort is in line with the goals of the RNA Ontology
Consortium (Leontis et al. 2006), which aims to construct
an ontology of RNA-related concepts to facilitate the
integration of data flows in bioinformatics analyses (Jossi-
net et al. 2007). We intend to begin building a common
vocabulary and set of reference software implementations
for the removal process, such that pseudoknots can be
removed in a consistent matter when the initial set of base
pairs and removal method are specified. To make our
software available to a wide audience, we provide not only
the source code under the PyCogent project (Knight et al.
2007) but also a web interface (see Supplemental Data) and
a standalone implementation offering command line con-
trol over the methods.

RESULTS

The main result of this study is the development and
implementation of several methods to make knotted RNA
structures pseudoknot-free. When pseudoknots are present
in a structural model, different criteria can be used to
remove them. Keeping the maximum number of base pairs
ensures the least amount of information is lost. From a
biological perspective, however, other criteria might come
into play, such as the length of a helix or the distance
between its upstream and downstream regions. We have
implemented several heuristics with different underlying
assumptions about what is important in the structure and a
formal optimization approach that calculates all optimal
solutions given some scoring function. All methods find
saturated structures (Clote 2006), in which no base pair can
be added without introducing a pseudoknot. This section
begins with a short technical introduction outlining neces-
sary concepts and definitions. We then describe the
methods and their performance.

RNA structure and pseudoknots

In this study, we use the term “RNA structure” for a col-
lection of base pairs, where one base can pair with at most
one other base. The single-interaction restriction is com-
mon in the context of RNA secondary structure. However,
we consciously avoid the term “secondary structure,”
because traditionally this has been used to describe a
pseudoknot-free structure (Waterman 1978). A base pair
is denoted as a pair of an upstream and downstream
position (i,j) (where i < j), and a structure is a list of these
pairs (as in Waterman 1978). A structure is pseudoknotted
if for any pair (i,j) there is a base pair (k) (i < k) such that
i < k < j <[ (for definitions, see, for example Studnicka
et al. 1978; Waterman 1978; Rivas and Eddy 1999; Lyngse
and Pedersen 2000; Redland 2006; Rastegari and Condon
2007). A saturated structure is a nested structure to which
no base pair (out of the base pairs in the knotted structure)
can be added without introducing a pseudoknot (Clote
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2006). We call an uninterrupted stretch of base pairs with
positions  [(m,n),(m+1,n-1),(m+2,n-2),...] a “paired
region” (also known as a “helical region” or “ladder”)
(Studnicka et al. 1978; Waterman 1978; Redland 2006).
A paired region may contain many base pairs or just a
single base pair. Each paired region has an upstream half
(closest to the 5" end of the RNA sequence) and a com-
plementary, antiparallel downstream half (closest to the
3’ end). Two regions are said to be conflicting if they are
involved in a knot. A pseudoknot-free structure corre-
sponds to a collection of paired regions that are organized
in a nested fashion. The “length” of a paired region is the
number of base pairs it contains. The “range” of a paired
region is the distance between the highest upstream
position and the lowest downstream position. For a region
that conflicts with one or more other regions we can define
the region’s “gain” as the length of the region minus the
cumulative length of all of its conflicting regions. The gain
of a region expresses how many base pairs are gained if that
region is chosen and thus all of its conflicts have to be
eliminated (a positive gain means it is favorable to keep the
region; a negative gain, to remove it). For example, if
region A (2 base pairs) conflict with region B (4 pairs), the
gain of region A is —2 and the gain of region B is +2.

Heuristic approaches

The heuristics are split into two groups: conflict elimina-
tion methods and incremental methods. The conflict elim-
ination methods start with all paired regions and remove
conflicting regions successively. In contrast, the incremen-
tal methods all start with an empty list of paired regions
and then add nonconflicting regions one at a time. The
order in which the regions are eliminated or added differs
in each method, and the nested structure that will be
reached differs accordingly.

EC (elimination, conflicts)

The EC method tries to reach a nested structure as fast as
possible. It removes paired regions from the whole set
beginning with the one with the most conflicts. If two
regions have an equal number of conflicts, the region’s gain
and starting position are used to determine which region
is processed first. This simple strategy might remove too
many regions, resulting in an unsaturated structure, so
nonconflicting regions are optionally added back (see the
supplemental materials for details).

EG (elimination, gain)

The EG heuristic eliminates conflicting paired regions on
the basis of their “gain” (see RNA Structure and Pseudo-
knots). The algorithm processes the regions from the one
with the smallest gain to the one with the largest gain,
which means that the most unfavorable regions are
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removed first. It uses the number of conflicts and the
starting position in case of equal gain. To prevent finding
unsaturated structures, this method adds back nonconflict-
ing regions (see the EC method).

10 (incremental, order)

The 10 method starts with an empty list and adds paired
regions that do not conflict with any region that has already
been added. It takes the most simplistic approach, which is
to add paired regions one by one, from the 5’ end to the 3’
end or the other way around. The order of the regions
is controlled by a parameter: the default order is from 5’
to 3'. This method is currently used by INFERNAL
(E. Nawrocki, pers. comm.).

IL (incremental, length)

The IL method operates under the idea that longer regions
are more important than shorter regions. Thus, it adds
nonconflicting paired regions one by one, starting with the
longest region and working toward the shortest region.
In case of equal lengths, the region starting closest to the
5" end is added first (preferred end is controlled by a
parameter).

IR (incremental, range)

The IR method prefers short-range interactions over long-
range interactions, thus in this scenario the structure is built-
up starting with the formation of the hairpin loops. Paired
regions are added to the list from short to long-range. If
ranges are equal, the region starting closest to the 5" end is
added first (preferred end is controlled by a parameter).

Optimization approach

The pseudoknot removal problem can also be solved by
formal optimization. A dynamic programming (DP) algo-
rithm (Bellman 1957) can efficiently calculate a solution
that is optimal under some scoring function. A modifica-
tion of the Nussinov—Jacobson algorithm (Nussinov and
Jacobson 1980), restricting it to the base pairs in the
pseudoknotted structure, has been used to find a nested
structure containing the maximum number of base pairs
(Xayaphoummine et al. 2003; Ponty 2006; Tyagi and
Mathews 2007).

Our optimization approach (OA) differs from the
known DP algorithm in two respects. First, it calculates
all optimal solutions rather than a single one. Second, it can
handle arbitrary scoring functions, incorporating sequence
or alignment information in addition to the structure. We
have implemented the traditional scoring function to maxi-
mize the number of base pairs in the nested structure and a
sequence-dependent function that maximizes the number
of hydrogen bonds in Watson—Crick base-paired regions,
where each GC base pair scores 3 points and each AU or
GU pair scores 2 points (Mathews et al. 1999). A detailed
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description of the optimization approach can be found in
the supplemental materials (see Supplemental Data).

A dynamic programming method is preferred to an
exhaustive approach despite the relatively low complexity
of many natural RNA structures in terms of pseudoknots.
Although most collections of canonical base pairs in
biological structures belong to a class called bisecondary
structures (Haslinger and Stadler 1999), in which the
topology of the pseudoknots is restricted, the number
and size of the knot components increases rapidly in more
exotic base pair collections. Even among sets of canonical
base pairs, the complexity varies widely. For example, there
are only 14 possibilities for the HDV ribozyme structure
(Protein Data Bank [PDB] ID: 1DRZ) (Ferré-D’Amaré
et al. 1998), but 3.8 X 10% possible nested structures for the
E. coli large-subunit (LSU) rRNA structure (PDB: 2AW4)
(Schuwirth et al. 2005).

Implementation and availability

All methods are implemented in Python. The source code
is available as part of the PyCogent library (Knight et al.
2007) distributed through SourceForge.net. In addition, we
provide a standalone implementation in combination with
a script that gives the user command-line control over the
methods, and we have set up a web interface that controls
this script through the web. Both the script and the
web interface are available as supplemental materials (see
Supplemental Data). The code can easily be adjusted to
incorporate the user’s preferences or extended to support
other pseudoknot removal strategies.

Method behavior

A legitimate question is which method should be used;
however, the answer likely depends on the situation. We are
explicitly not trying to advocate the use of a single method:
Different methods produce different results precisely
because they have different goals, for example, preserving
the longest helices or preserving the most base pairs.
Different methods may be more or less suited to different
applications. Rather, the description of these methods and
their behavior acts as a framework for users to make
informed decisions about the following issues: Which
methods are available? Is there a method that suits my
needs? Should I develop a new method and add it to the
collection? Should I combine several existing methods?
Several factors influence the pseudoknot removal pro-
cess. First, the chosen method is of major importance,
because different criteria could all produce different solu-
tions for the same knotted structure (Fig. 1). Second, the
selection of base pairs forming the initial structure can lead
to different conclusions under the same criterion. For
example, in the set of canonical base pairs from the RNaseP
structure (PDB ID: 2A64) (Kazantsev et al. 2005), the EC
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FIGURE 1. Different behavior of pseudoknot removal methods. All
algorithms can find different nested structures for a single knot-
ted structure. This figure shows two different representations of a set
of paired regions as found in a randomly generated artificial RNA
structure. (A) A graph representation of a collection of paired regions.
Each node is a paired region (the start point, end point, and length are
specified). Each edge indicates that the two paired regions it connects
are conflicting. (B) Start and end points of the paired regions along a
sequence. The number of base pairs in each region is specified at the
start point. The bottom part of the figure reports which regions are
removed (—) or kept (+) by each of the methods (symbols repeated at
the start and end points of the regions), and how many base pairs the
solution contained. The OA method optimized the number of base
pairs, and, in this case (but not generally), produced the same result as
the EG method.

and IR methods found a nested structure containing 82
base pairs (helix P2 broken), while the EG, IO, and IL
methods reached a solution of 81 base pairs (helix P4
broken). When adding the immediate helix extensions,
there were two optimal solutions containing 95 base pairs
each, indicating that P2 and P4 were of equal importance in
terms of the number of base pairs. The fact that multiple
optimal solutions for the same knotted structure might
exist is also illustrated in Figure 2. Finally, we show (in Fig.
2) that applying a different scoring function will change the
outcome of the optimization approach. Detailed informa-
tion about the performance of the methods on biological
and artificial structures can be found in Supplemental
Tables 1 and 2.

DISCUSSION

We have presented a collection of automated methods for
pseudoknot removal from RNA structures. This collection
will be useful to the RNA community for two reasons. First,
it allows pseudoknots to be removed in a consistent
manner across different studies, so that analyses can
be reproduced exactly. This consistency is especially impor-
tant for benchmarking of new software that predicts or
otherwise uses structural information. Second, it makes
explicit the implicit assumptions that underlie the different
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FIGURE 2. Different criteria for pseudoknot removal lead to differ-
ent results for a pseudoknot in the group I intron structure (PDB ID:
1ZZN) (Stahley and Strobel 2005). Helices P3 and P7 are involved in
a pseudoknot. There are two possible solutions to create a nested
structure: Keep P3 and break P7 or keep P7 and break P3. In terms of
the number of base pairs (BPS), both solutions are equivalent and
optimal (both have 6 BPS). In terms of hydrogen bonds (HB), keeping
P3 is optimal, because it has 16 hydrogen bonds where P7 has only 15.
The image of the structure is made with the S2S software (Jossinet and
Westhof 2005).

methods, facilitating discussion of the pros and cons of
the different methods for specific biological situations. In
their role as operational definitions of pseudoknots, the
presented methods can also spark a more informed dis-
cussion of which base pairs must be broken to form a
nested structure.

The results demonstrate that there are many ways to
remove pseudoknots and that, in general, these different
methods give different results. For many pseudoknotted
structures, all of the methods produce distinct solutions.
The optimization method provides a formally optimal
solution in terms of optimization of some score function,
but this solution is often not unique. Therefore, we
recommend that analyses are performed either by using
each optimal solution and averaging the results or by using
additional biologically informed criteria that are applied
in a well-described and consistent manner to choose an
optimal solution.

One important, but unresolved, question is how to decide
which method is best in a given situation. Both the helices
that contribute to a pseudoknot are usually standard A-
form RNA helices: because designation of one group of
base pairs as “the helix” and the other as “the pseudoknot”
has often been performed manually in different families
of sequences with no explicit justification—leading to the
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comment that “pseudoknots are pseudointeresting” (N.
Pace, pers. comm.), comparison with existing nomencla-
ture is likely to produce inconsistent results. This will be an
important area of investigation for automatic use of struc-
tural information in databases such as Rfam (Griffiths-
Jones et al. 2003) but can only be addressed with additional
data. In particular, which nested structure is the best may
depend on the goal: we can ask, for example, which of
the methods is most likely to preserve conserved inter-
actions, or which of the methods is most likely to produce
covariance models that maximize the number of additional
homologs found in the databases. However, these are em-
pirical questions that require empirical studies to resolve.

In conclusion, the availability of a variety of pseudoknot
resolution algorithms, along with reference implementa-
tions of these methods, fills an important and previously
unappreciated need in the field. Because the procedure for
pseudoknot removal often seems intuitively obvious, but
because intuition differs between different researchers, the
explicit rules and motivations for the different procedures
have often been hidden. By making this information ex-
plicit and by providing a common vocabulary for describ-
ing the different methods, we now have a starting point
for determining which of the various methods are optimal
in specific cases and provide a platform on which more
advanced methods can be constructed.

MATERIALS AND METHODS

Crystal structure data

The crystal structure data files were downloaded from the
Research Collaboratory for Structural Bioinformatics (RCSB)
Protein Data Bank (Berman et al. 2000). For each crystal structure,
the set of canonical base pairs was extracted by selecting all
Watson—Crick and standard G-U wobble pairs found by RNAview
(Yang et al. 2003). Occasional conflicts in this list, where RNAview
annotates two bases, x and y, as a standard base pair and also y
and z as another conflicting base pair, were removed manually by
visual inspection of the crystal structure in the program PyMOL
(http://pymol.sourceforge.net/). The helix-extension data set was
created by taking the canonical pairs and adding all additional
base—base interactions identified by RNAview (excluding stacked
bases and tertiary interactions) for which the direct neighbor was
already in the collection. This means each base pair (7,j) was added
if both i and j were still unpaired and if either (i + 1,j—1) or (i -1,
j + 1) were already in the set.

Artificial structure generation

We generated an artificial RNA structure by inserting the
requested number of paired regions in a sequence of a specified
length. The minimum number of base pairs in a region was two,
the maximum was 10. The algorithm randomly picked an
upstream and a downstream position (smaller than the sequence
length) and calculated what the possible region lengths were,
respecting the surroundings and a three-base distance between the
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upstream and downstream half of a region. If the chosen sequence
positions allowed for the insertion of a region, it randomly chose
an available length and added the base pairs to the list. If they did
not allow for a region, for example, because the positions were too
close to each other or to an already-inserted region, the algorithm
simply picked two new positions and checked the criteria again.
This process was repeated until the requested number of regions
was inserted.

SUPPLEMENTAL DATA

Supplemental material can be found at http://www.ibi.vu.nl/
programs/k2nwww.
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