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Curcumin, a commonly available spice and alternative medicine, has been 
tested in the laboratory and the clinic for activity against a wide range of dis-
eases. It is thought to possess antiinflammatory and antioxidant activities 
and may also function to inhibit histone acetyl transferases, which activate 
gene expression via chromatin remodeling. Two reports in this issue of the 
JCI, by Morimoto et al. and Li et al., suggest that curcumin may inhibit car-
diac hypertrophy in rodent models and provide beneficial effects after myo-
cardial infarction or in the setting of hypertension (see the related articles 
beginning on pages 868 and 879, respectively). These results will spur further 
mechanistic inquiry into the role of chromatin remodeling in the regulation 
of cardiac homeostasis.

Epigenetics is a term used to describe fea-
tures of DNA packaging and assembly 
that modify cellular process and are sta-
bly maintained when cells divide, but do 
not involve changes in DNA sequence. 
DNA is maintained within the nucleus 
in an ordered and dynamic structure in 
association with other proteins, includ-
ing histones. The complex of DNA and 
associated proteins is known as chroma-
tin, and an exciting area of active research 
involves the epigenetic regulation of chro-

matin structure by enzymes that modify 
histones. Among these enzymes are those 
that add or remove acetyl groups on lysine 
tails of histones. Enzymes that remove ace-
tyl groups are called histone deacetylases 
(HDACs), and those reactions are reversed 
by histone acetyl transferases (HATs), 
which include p300 and CREB-binding 
protein (CBP). In general, HDACs act as 
transcriptional repressors, since removal 
of acetyl groups allows the chromatin to 
pack more tightly, and access of transcrip-
tion factors to promoters is restricted. 
Conversely, HATs tend to function as acti-
vators of gene expression.

HDACs have recently been implicated as 
important regulators of cardiac homeosta-
sis (1). There are at least 11 mammalian 
HDACs that compose the so-called class 

1 and class 2 families, in addition to more 
distantly related families (2). Inactivation of 
some of the class 2 HDACs in mice results 
in cardiac hypertrophy and subsequent 
heart failure (1, 3, 4). On the other hand, 
inactivation of a class 1 HDAC, HDAC2, 
results in resistance to cardiac hypertro-
phy (5), which suggests that class 1 and 
class 2 HDACs may play opposing roles (6). 
Interestingly, chemical HDAC inhibitors, 
which block both classes, tend to block 
hypertrophic responses (6–8). In this issue 
of the JCI, 2 papers examine the effects of 
curcumin on the heart and conclude that 
this commonly available spice blocks HAT 
activity and prevents cardiac hypertrophy 
and failure in rodent models (9, 10).

Curcumin and cardiac hypertrophy
Curcumin is a polyphenol responsible for 
the yellow color of the curry spice turmeric. 
It has relatively poor bioavailability when 
taken orally, but also low toxicity (11). It 
has been touted to possess a myriad of ben-
eficial activities, and clinical trials have been 
conducted in patients with cancer, rheu-
matoid arthritis, cystic fibrosis, inflamma-
tory bowel disease, psoriasis, pancreatitis, 
and other disorders (11–13). Limited data 
suggest that it possesses antitumor, anti-
oxidant, and antiinflammatory activities. 

Nonstandard abbreviations used: HAT, histone acetyl 
transferase; HDAC, histone deacetylase; MEF, myocyte 
enhancer factor.
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At the molecular level, it has been shown to 
interfere with the activities of NF-κB, cyto-
chrome P450, and HIV reverse transcriptase 
as well as β amyloid accumulation, produc-
tion of inflammatory cytokines, and the 
activity of p300 (14–16). Nevertheless, few 
placebo-controlled double-blinded stud-
ies have provided convincing evidence for 
clinical utility (11).

In their study in this issue, Li et al. (9) 
now show that rodents treated with oral 
curcumin are markedly resistant to cardiac 
hypertrophy produced by banding of the 
aorta, which mimics the type of cardiac 
enlargement seen in patients with high 
blood pressure. Even when treatment was 
begun 2 weeks after the induction of pres-
sure overload, curcumin was beneficial, and 
the transition to heart failure was reduced. 
Treatment correlated with a reduction in 
histone acetylation and p300-HAT activity. 
Because p300 has already been implicated 
in the regulation of cardiac myocyte growth 
(17–20), the ability of curcumin to block 
p300-HAT activity in this animal model of 
hypertrophy suggests a possible mechanism 
of action. Interestingly, cardiac inflamma-
tion and fibrosis were also reduced, per-
haps because of inhibition of NF-κB activ-
ity. Although p300 is generally thought 
to function by modifying chromatin and 

histone acetylation, it can also function by 
directly acetylating other proteins. In the 
heart, p300 can acetylate GATA4 (20, 21),  
a transcription factor strongly associated 
with hypertrophic gene expression. Cur-
cumin blocked acetylation of GATA4, thus 
presumably affecting transcriptional activi-
ty. Interestingly, myocyte enhancer factor 2C  
(MEF2C), which interacts with — and is 
inhibited by — class 2 HDACs, can also be 
acetylated (22), although MEF2C acety-
lation was not studied by these authors. 
Hence, despite significant correlative data, 
it remains unclear exactly how curcumin 
functions to modulate the response of the 
heart to the stress of increased pressure. 
More work will be required to determine 
whether changes in chromatin structure and 
histone acetylation are important or wheth-
er direct regulation of GATA4 or NF-κB,  
or of other pathways, is responsible.

In a related study in this issue, Morimoto 
et al. (10) examined different rodent models 
of heart failure and came to nearly identi-
cal conclusions. They studied the effects of 
oral curcumin on the progression of cardiac 
hypertrophy and subsequent decompensat-
ed heart failure in salt-sensitive hyperten-
sive Dahl rats. They began treatment at 11 
weeks of age, when systolic function is still 
preserved (i.e., before a notable transition 

to heart failure). After 7 weeks of treatment, 
they documented significant and benefi-
cial preservation of systolic function in the 
active treatment group. They also showed 
that the acetylation of GATA4 that normal-
ly accompanies hypertension was reduced 
by curcumin. The effects of curcumin were 
also studied when the compound was given 
to rats 1 week after myocardial infarction. 
After 6 weeks of treatment, systolic func-
tion was improved in the treated animals, 
and hypertrophy of the noninfarcted myo-
cardium (which is thought to contribute to 
adverse remodeling) was reduced.

Translating animal studies to clinical 
practice calls for caution
The studies by Li et al. (9) and Morimoto 
et al. (10) suggest that curcumin may have 
beneficial effects on the heart in the setting 
of pressure overload or after myocardial 
infarction. However, translation of these 
data to humans is not clear cut, and extrap-
olation should be attempted with caution. 
Despite numerous interventions that prove 
efficacious in rodent models after myocar-
dial infarction, for example, few have prov-
en successful in clinical trials (23). Likewise, 
prior claims of the beneficial effects of cur-
cumin in other settings, largely advanced 
on the basis of in vitro and animal stud-
ies, have proven disappointing (11, 12).  
The mechanism of action of curcumin in 
the heart remains unclear. While the cor-
relations regarding p300 activity, GATA4 
acetylation, and inflammatory pathways 
are intriguing, additional studies will be 
necessary to determine which, if any, of 
these explanations satisfy tests of necessity 
and sufficiency in vitro and in vivo. These 
results may provide more specific therapeu-
tic targets and may provide relevant bioas-
says with which to monitor clinical trials.

If inhibition of p300-HAT activity proves 
to be the critical mechanism by which 
curcumin modulates cardiac responses to 
stress, still more questions will need to be 
addressed. How can an inhibitor of HDAC 
activity (such as trichostatin A; refs. 6–8) 
and an inhibitor of HAT activity (like cur-
cumin) both block hypertrophic respon-
siveness, when HDAC and HAT pathways 
oppose one another? Are the same gene 
expression changes being affected by 
apparently opposing chemical inhibitors? 
Is one class of inhibitor blocking a pro-
hypertrophic pathway, while the other is 
activating a distinct antihypertrophic or 
protective pathway (Figure 1)? Given the 
low incidence of reported side effects in 

Figure 1
Curcumin can block cardiac hypertrophy in isolated cells and animal models, but the mecha-
nism of action is unclear. This model depicts possible actions (indicated by question marks) of 
curcumin, including direct inhibition of p300-HAT activity and inhibition of p300 acetylation of 
GATA4, MEF2C, or NF-κB. p300 functions with GATA4 and MEF2C to activate hypertrophic 
pathways and may function with NF-κB to drive pathways important in cardiac fibrosis. Class 
2 HDACs interfere with the action of MEF2C and oppose cardiac hypertrophy, while class 
1 HDACs have been postulated to inhibit antihypertrophic or protective pathways. Curcumin 
could potentially inhibit the ability of p300 or other factors to activate class 1 HDACs. In this 
issue of the JCI, Li et al. (9) and Morimoto et al. (10) demonstrate that curcumin can block 
cardiac hypertrophy in rodent models. Correlative data suggests that possible mechanisms of 
action may include inhibition of p300-HAT activity and/or inhibition of GATA4 acetylation with 
subsequent alterations in GATA4 activity and recruitment of p300.
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animal models and in human trials with 
HDAC and HAT inhibitors (2, 11, 24), 
one wonders whether we truly understand 
the nature and extent of gene expression 
controlled by these “global” regulators. 
Do redundant and feedback mechanisms 
limit the global effects of these inhibi-
tors? The answers to these questions may 
provide new therapeutic targets for heart 
failure and may also refine our under-
standing of the mechanisms by which 
chromatin remodeling complexes func-
tion inside the cell.
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