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ABSTRACT

Genetic and cytological evidences suggest that
Bacillus subtilis RecN acts prior to and after end-
processing of DNA double-strand ends via homo-
logous recombination, appears to participate in the
assembly of a DNA repair centre and interacts
with incoming single-stranded (ss) DNA during
natural transformation. We have determined the
architecture of RecN-ssDNA complexes by atomic
force microscopy (AFM). ATP induces changes
in the architecture of the RecN-ssDNA complexes
and stimulates inter-complex assembly, thereby
increasing the local concentration of DNA ends.
The large CIl and CIll complexes formed are
insensitive to SsbA (counterpart of Escherichia coli
SSB or eukaryotic RPA protein) addition, but
RecA induces dislodging of RecN from the over-
hangs of duplex DNA molecules. Reciprocally, in
the presence of RecN, RecA does not form large
RecA-DNA networks. Based on these results, we
hypothesize that in the presence of ATP, RecN
tethers the 3'-ssDNA ends, and facilitates the
access of RecA to the high local concentration of
DNA ends. Then, the resulting RecA nucleoprotein
filaments, on different ssDNA segments, might
promote the simultaneous genome-wide homology
search.

INTRODUCTION

All cells have systems dedicated to correct DNA damage,
although if lesions are left unrepaired removal of single-
strand (ss) DNA gaps by homologous recombination
(HR) or removal of double-strand breaks (DSBs) via
HR or non-homologous end joining (NHEJ) are the

ultimate resource for the re-establishment of the replica-
tion fork (1-7).

Cytological experiments have documented the assembly
of large nucleoprotein complexes that contain DNA-
repair proteins in response to DNA damage (8—10). The
mammalian Mrell-Rad50-Nbsl (MRN) and budding
yeast Mrel1-Rad50-Xrs2 (MRX) complex [simplified as
MRN(X) complex] are the early DSB sensors during
mitotic recombination (5,8,10). It has been proposed that
MRN(X) complexes act at the branching point upstream
of both HR and NHEJ (11,12). The DNA ends are
transiently stabilized, and there is a window of opportu-
nity for NHEJ to occur. However, once the DNA ends are
resected, the cell is committed to HR and NHEJ is no
longer an option (6,7,11,12).

The overall structure of the structural maintenance
chromosome (SMC) protein Rad50 is evolutionary con-
served from bacteria to humans. Bioinformatic studies
suggest that bacterial SbcCs, SMC and RecN proteins
share a similar modular organization with eukaryotic
Rad50, a bipartite globular ATPase domain made up
from the N- and C-termini of the protein separated by an
extensive central region predicted to form a coiled-coil
(13,14; Figure 1). Furthermore, the structural conserva-
tion of RecF and Rad50 suggests a conserved mechanism
of action (15). However, a clear spatial and temporal
distinction between the localization of RecN, RecF, SMC
and SbcC proteins was reported (16-18).

In Bacillus subtilis two-ended DSBs are mainly repaired
via HR, but with very low efficiency also by NHEJ (4,18).
Genetic studies revealed that SbcC is epistatic with Ku
(a key component of NHEJ) (19), but they are non-
epistatic with RecN, suggesting that RecN and Ku/SbcC
define different avenues for DSB repair (18). RecN
promotes the assembly of large nucleoprotein complexes
that contain recombination proteins in response to DNA
damages. In B. subtilis cells, 15min after induction of a
site-specific DSB or randomly introduced DSBs a massive
reorganization of the nucleoid takes place, and RecN
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Figure 1. Secondary structure prediction and motifs of B. subtilis SMC-like proteins. The secondary structure B. subtilis SMC-like proteins
[SMC, RecN, SbcC (also termed YirY) and SbcC2 (YhaN)] and its comparison with E. coli SbcC (EcoSbcC) and human Rad50 (HsRad50) were
predicted using the COILS program (www.ch.embnet.org/software/COILS_form.html). The Walker A and B motifs and the CXXC and GGXXXGG
motifs necessary for dimerization of Rad50, SbcC, EcoSbcC and SMC proteins, respectively, are indicated. The putative dimerization (Leu rich)

motif of RecN is also indicated. Abbreviation: aa, aminoacids.

establishes a discrete DNA repair centre (RC) (17,20).
Recombination proteins localize differentially to a
RecN-induced RC: RecO, RecR and RecA are recruited
30-45min after induction of DSBs, RecF (60 min) and
RecU (120min) are recruited at a RecN-directed RC at
later stages, whereas others [e.g. AddAB (analogue of
Escherichia  coli RecBCD), RecG, RecS, DNA
polymerase I] do not form discernible cytological foci
(17,20,21). In the absence of end-processing functions
(addAB ArecJ strain) two to three (rather than one) RecN
foci are formed, whereas RecA assembly at the RC is not
observed (21). These observations suggest that RecN acts:
(1) upstream of end-processing enzymes, perhaps as an
carly detector of DSBs, and (ii) after end-processing
because the activity of the AddAB and/or Recl] exonu-
cleases are required for the formation of one discrete
RecN RC, and for RecA assembly at a RecN-directed RC
(17,20,21). Furthermore, RecF failed to form foci in the
absence of RecO, arguing that RecF, which shares
structural conservation with the head domain of Rad50
(15), might work after RecA loading onto ssDNA.

During natural genetic recombination, the DNA uptake
proteins localize to a cell pole (22), and RecN protein
oscillates between the poles of competent B. subtilis cells
(23). The internalized ssDNA stops the RecN oscillations,
and then threads of RecA are seen to emanate from
the pole (23). It is likely that RecN interacts in vivo with
incoming ssDNA molecules and thereby is localized at the
pole containing the natural competence machinery.

RecN also possesses biochemical activities associated
with the eukaryotic MRN(X) complex (6,7,12,24).
The globular N- and C-terminal regions of RecN should
interact to form the active ATPase (25). In vitro RecN
is a ssDNA-dependent ATPase and shows significant
ATP-independent DNA binding. However, in the pres-
ence of a nucleotide cofactor (ATP or ADP), RecN binds
specifically to 3’-OH termini forming large RecN—-ssDNA
networks that are not disrupted in the presence of an
excess of ssDNA molecules (25).

Here, we report the visualization of dynamic
complexes formed by RecN with ssDNA or duplex
molecules containing internal ssDNA regions. Atomic

force microscopy (AFM) has confirmed that RecN binds
to ssDNA regions and, in the presence of ATP, the
interactions between individual ssDNA—RecN complexes
favour inter-complex association and result in large
nucleoprotein complexes. The pre-formed ssDNA-
RecN-ATP-Mg>" aggregates are insensitive to the
addition of SsbA (counterpart of E. coli SSB or eukaryotic
RPA protein), arguing that RecN should bind ssDNA
prior or concomitantly with SsbA. Independent of the
order of addition, RecA promotes the disassembly of
the pre-formed ssDNA-RecN-ATP-Mg”>" complexes
and promotes DNA strand exchange without the forma-
tion of large RecA-DNA networks. We propose
that RecN-promoted RCs facilitate RecA-promoted
genome-wide homology search of the RecA pre-synaptic
filaments.

MATERIALS AND METHODS
Enzymes reagents and protein purifications

RecN, RecA and SsbA proteins were purified as described
(17,26, Carrasco et al., unpublished data). The molar
extinction coefficient for RecN, RecA and SsbA were
calculated to be 30600, 15200, 11400/M/cm at 280 nm as
previously described (26). Protein concentrations were
determined using the above molar extinction coeflicients.
RecN and RecA are expressed as moles of protein
monomers and SsbA as tetramers.

Alkali lysis purified pBluescript DNA was linearized by
EcoRI (NEB) digestion, and CsCl-purified pBluescript
DNA was linearized by EcoRV (NEB) digestion.
The 60-nt ssDNA molecule (ssDNAg,) used has been pre-
viously described (25). DNA concentrations were estab-
lished using molar extinction coefficients using 8780 and
6500/M/cm at 260nm for ssDNA and dsDNA, respec-
tively. Unless otherwise stated, DNA concentrations are
given as moles of nucleotides.

AFM Analysis

Aliquots of protein solutions, diluted in buffer A (10 mM
HEPES, pH 7.5, 2mM MgCl,), were spotted onto
a freshly cleaved mica substrate pre-treated with 10 mM



112  Nucleic Acids Research, 2008, Vol. 36, No. 1

spermidine. After 2min, at room temperature, the mica
was washed several times with MilliQ water and dried
under nitrogen. AFM observations were performed using
a Nanoscope I1la or IV microscope (Veeco) in air using
Tapping Mode. The cantilever (OMCL-AC160TS-W2,
Olympus) was 129 mm in length with a spring constant of
33-62N/m. The scanning frequency was 2-3Hz, and
images were captured with the height mode in a 512 x 512
pixel format. The obtained images were plane-fitted and
flattened by the computer program accompanying the
imaging module.

We have assumed that the RecN-active ATPase has a
globular domain. Based on the molecular mass of RecN
(576 residues long, 64.4kDa), we estimated the mass of
the ATPase head domain of RecN monomers to be
~40kDa taking into account the hydration component
(see subsequently), and expected a volume of ~75nm?
when measuring by AFM. The interactions of the putative
globular N- and C-terminal regions might extrude the
intervening coiled-coil region as a tail (Figure 1).
However, we did not observe such tails and the particle
sizes were larger than expected for just the globular
domains, suggesting that the central connecting region
also contributed to the total particle volume (data not
shown).

In the geometrical analyses of AFM images of DNA
and protein, the ‘tip effect” was removed by using the
apparent size of DNA as a reference as described
elsewhere (27,28). Briefly, the apparent dimensions of
the molecules obtained by AFM are dependent upon the
radius of the tip curvature and are apparently larger
than the real dimensions. The relationship among the
width of the globular molecule in the AFM image (W),
the radius of the tip curvature (R.) and the radius of
the molecule (R,,) is given by W=4(R.R,)">. When
two different molecules with R,,; and R., radii are
imaged with the same tip, the relationship between the
measured widths (W7 and W,) can be given by
W\, = Ws(Rmi/Rm2)"?. Since the diameter of a dsDNA
molecule is known (2nm), we used the established
parameter in our AFM image calculations as W,. We
could then calculate the radius of the particles (R,,,) from
the apparent width of the DNA (W>).

EMSA experiments

Reaction mixtures that contained [y-**P]-ssDNAg, (60 nM
in nt) and RecN (10nM) were assembled in buffer B
[5S0mM Tris—HCI (pH 7.5), 50 mM NaCl, 2mM MgCl,,
1 mM DTT, 2% PEG-6000] for 10 min at 37°C, then the
second protein [SsbA (100 nM), RecA (40 nM)] and 10 min
later ADP or ATP (I mM) was added and incubation
continued for 10 min at 37°C. In some studies, SsbA or
RecA was added to pre-formed ssDNA—RecN-ATP/
ADP-Mg?* complexes. The complexes formed were
separated by polyacrylamide gel electrophoresis and visu-
alized by phosphorimaging as previously described (25).

DNA substrates and binding reactions

EcoRI-cleaved pBluescript DNA (2986-bp) was partially
digested with A Exo (Invitrogen) to generate short

3’-ssDNA tails (linear duplex DNA with short ssDNA
tails). EcoRV-cleaved pBluescript was exposed to Nt.Alwl
endonuclease (NEB) to obtain blunt-ended DNA mole-
cules with internal single-strand nicks. Protein—-DNA
complexes for AFM visualization were assembled as
described for EMSA (25) and were deposited and
imaged as described earlier.

Linear duplex DNA with short ssDNA tails (150 nM)
and RecN (10nM) were pre-incubated for 10 min at 37°C
in buffer C [SO0mM Tris—=HCI (pH 7.5), 50mM NacCl,
10 mM magnesium acetate, 50 pg/ml bovine serum albu-
min (BSA), ImM DTT], then ATP or ATPyS (1 mM)
was added and incubation continued for 10 min at 37°C.
To pre-formed ssDNA-RecN-ATP-Mg”>" or ssDNA-
RecN-ATPyS-Mg”>" complexes, homologous circular
plasmid DNA (150nM) and RecA (40nM) protein were
added, and after incubation for 10min at 37°C the
complexes were spotted on freshly cut mica. Linear
duplex DNA with short ssDNA tails (150nM), RecA
(40nM) and 1 mM ATP were pre-incubated for 10 min at
37°C in buffer C and then homologous circular plasmid
DNA (150nM) was added, and after incubation for
10 min at 37°C the complexes were spotted on freshly
cut mica.

RESULTS

AFM visualization and quantification of RecN binding
to ssDNA

We were unable to detect formation of RecN-dsDNA
complexes in EMSA using dsDNA segments up to 60-bp
long (25). Alkali-lysed 2958bp plasmid DNA was
linearized with EcoRI to render molecules that were
~950nm in length as determined by AFM (Figure 2A).
RecN was occasionally seen bound at random sites along
the duplex DNA molecules. The linearized DNA was
subjected to limited A exonuclease (A Exo) digestion to
obtain dsDNA molecules with 3’-ssDNA extensions of
about 150—450nt single-stranded regions at both termini
(Figure 2B). RecN was able to bind these ssDNA
extensions (Figure 2C, left panel). To gain information
on the volume of RecN-DNA complexes, the diameter
(d=width) of the RecN particles bound to the DNA were
measured and plotted against the width of the DNA
molecule to which they were bound. Linear regression
adjustment of the data produced a line with an identical
slope if dimeric species (d=15.7nm calculated diameter)
were bound to the DNA (d=2nm)(27) (Figure 2C, right
panel).

RecN molecules were also occasionally seen bound
at random sites along the DNA molecules. It seemed
possible that RecN, therefore, also binds, albeit with low
efficiency to dsDNA or, more likely, the DNA molecules
purified by the alkali-lyses method contained internal
single-strand nicks that were enlarged by the A Exo
treatment. To address this, complexes formed with these
DNA preparations and a genuine ssDNA-specific binding
protein, SsbA, were also visualized by AFM. SsbA bound
primarily to the A Exo-generated 3’-ssDNA extensions
but also infrequently to random sites along the linear
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Figure 2. RecN binds short ssDNA tails in a duplex molecule. (A) Linear DNA (150nM in nt) was incubated for 10 min at 37°C and deposited on
freshly cut mica. (B) Linear DNA (150 nM) treated with A Exo under limiting conditions and then incubated for 10min at 37°C and deposited on
freshly cut mica. White arrowheads highlight the presence of ssDNA tails in the linear plasmids. (C) Linear DNA (150 nM) with short ssDNA tails
and RecN (10nM) were incubated for 10min at 37°C and deposited on freshly cut mica. Pictures show representative individual molecules.
The graph shows the multimerization state of DNA-bound RecN complex. The sizes of the RecN complex bound to the ends of the DNA substrate
were plotted against the width of bare DNA in the same image. The line shows the linear fitting of the data (y=4.97 + 0.35X; R=0.82). Scale

bar =100 nm.

DNA molecules (Supplementary Figure S1), arguing
for the presence of internal ssSDNA regions. Based on
the sizes of the internal SsbA complexes, the regions of
ssDNA are sufficient to accommodate a SsbA tetramer
(29; Supplementary Figure S1).

Localization of RecN binding by endonuclease nicking
of DNA

CsCl-purified plasmid DNA was linearized with EcoRV
to obtain blunt-ended linear dsDNA molecules. DNA
aliquots were exposed to Nt.Alwl, which introduced
asymmetric site-specific nicks, and then RecN was
added. AFM revealed RecN bound to <10% of control
dsDNA molecules that had not been subjected to Nt.Alwl
digestion, but to essentially all the Nt.Alwl digested DNA
molecules. The asymmetry in the Nt.Alwl generated
nicking sites, four on the plus strand and six on the
minus strand (Figure 3B, top and bottom line, respec-
tively), allowed us to landmark the relative position of the
DNA ends. Measurements from the ends of the DNA
molecules, confirmed that RecN molecules were posi-
tioned predominantly at the site where Nt.Alwl intro-
duced ssDNA nicks (Figure 3A). RecN also bound to
other sequences that have a propensity to form ssDNA
bubbles (namely dA—dT rich regions associated with DNA

unwinding elements linked to phage fl and plasmid
replication origins). Alternatively, RecN may also bind
to dA—dT rich regions on dsDNA, although RecN did not
seem to bind preferentially to the upstream dA-dT rich
regions of the lac promoter (Figure 3B), suggesting
that ssDNA rather than dA—dT rich region is the main
target of RecN in the absence of ATP. This is consistent
with the observations that RecN binds in vivo to take up
ssDNA during natural transformation (see Introduction
section), and RecN cannot bind duplex DNA lacking
dA—dT rich pockets.

ATP-dependent aggregation of RecN—ssDINNA complexes

It was shown in the previous section that in the absence of
a nucleotide co-factor RecN has no strong preference
for ssDNA ends over internal sites. Using EMSA, we
found that in the presence of ATP, RecN assembles to
form large networks with ssDNA molecule and requires
3-OH at the ends of the ssDNA molecules (25).
To investigate the interaction of RecN protein with
3’-ssDNA-tailed duplex DNA, 1mM ATP was added to
the pre-formed RecN-3'-ssDNA-tailed complex, the reac-
tion was incubated for 20min at 37°C, and observed
by AFM. Figure 4 shows different scenarios with different
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Figure 3. RecN binding to nicked DNA. Nt.Alwl-treated EcoRV-linear DNA (150 nM in nt) and RecN (10 nM) were incubated for 10 min at 37°C.
Reaction was fixed with 0.1 glutaraldehyde and deposited on freshly cut mica. (A) AFM images of Nt.Alwl-treated DNA-RecN complexes analysed.
(B) Geometrical analyses of Nt.Alwl-treated DNA—RecN complexes. The length from the end of the substrate to DNA-bound RecN was measured
and shown as a histogram in 250 bp bin. A schematic map of plasmid DNA with the target localization for Nt.Alwl endonuclease and relevant high
dA + dT regions (P, pUC,,;; and fl,,;) are shown at the same scale of the histogram.

number of DNA molecules that are associated with RecN when ATP was replaced by ADP-Mg®* or ATPyS-Mg> ",
complexes of different sizes. More than 20% (n=156 however rosette-like structures were not observed in
total molecules) of the deposited molecules were found the presence of AMP-PNP-Mg®>" (data not shown).
inside these structures that have a mean of five DNA This is consistent with previous results that AMP-PNP
molecules each (Figure 4). Similar results were observed fails to promote CII and CIII complex formation (25).
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Figure 4. AFM analysis of RecN bound to DNA in presence of ATP. Linear DNA (150 nM in nt) with short ssDNA tails and RecN (10nM) were
incubated for 10 min at 37°C, then ATP (I mM) was added and incubated for 20 min at 37°C. (A) 3D image of one ‘rosette-like structure’ stressing
the height of the protein ‘blob’. (B) Gallery of AFM images of the different species. Colour represents height from 0 to 5nm, dark to light. Scale

bar =100 nm.

These data suggest that AMP-PNP apparently does
not sufficiently promote the active form of RecN
required for inter-complex assembly (rosette-like
structures).

We can envisage a dynamic behaviour of RecN,
with a large number of small RecN aggregates at the
end of the DNA specimens (Figure 4B), and then a
small number of large RecN aggregates with different
DNA ends bound to it forming ‘rosette-like structures’
(Figure 4A).

RecA promotes disassembly of the ssDNA—RecN—
ATP-Mg** complexes

In previous studies it was shown that RecA protein
preferentially hydrolyses dATP than ATP, and supports
an efficient DNA strand exchange in presence of dATP
when compared to ATP (30,31, unpublished data).
Addition of a large excess of RecA (0.2uM), under
optimized conditions for RecA binding (presence
of dATP-Mg®"), promoted the disassembly of the pre-
formed ssDNA-RecN-dATP-Mg** (CII and CIII) com-
plexes (25). However, the RecN-ssDNA complexes formed
in the presence of dATP-Mg®* (CII and CIII complexes)
were not disrupted by the addition of a heterologous

ssDNA-binding protein (bacteriophage SPP1 single-
stranded binding protein) (25). To investigate the fate of
the rosette-like structures further, EMSA experiments,
under conditions optimized for RecN binding to ssDNA,
were undertaken in the presence or absence of SsbA, RecA
and/or | mM ATP or ADP. In the absence of a nucleotide,
RecN bound to ssDNA to form a complex designated CI
(Fi%ure 5A, lane 2), but with ATP-Mg>" or with ADP-
Mg” ", slower migrating RecN-ssDNA (CII and CIII)
complexes were formed (Figure 5A, lanes 3 and 4 versus 2;
25).

In the presence of limiting SsbA concentration
(0.15nM), one discrete SsbA—ssDNAg, complex was
observed (5Aii, lane 14). Addition of a large excess of
SsbA (100nM) to the pre-formed CI complex was
followed by the binding of SsbA to ssDNA (SsbA-
ssDNA complexes, Figure 5Ai, lanes 5). ADP or ATP
(denoted as NT) addition to the above reaction did
not enhance CII and CIII complexes formation
(Figure 5Ai, lanes 6 and 7). However, addition of SsbA
(100nM) to pre-formed ssDNA-RecN-ATP-Mg”"
or ssDNA-RecN-ADP-Mg> " complexes failed to disas-
semble the CII and CIII complexes (Figure 5Aii, lanes
6 and 7). Furthermore, the ssDNA-RecN-ATP-Mg?"
or ssDNA-RecN-ADP-Mg? " complexes or rosette-like
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structures were insensitive to even 1uM SsbA (data
not shown).

Addition of sub-saturating amounts of RecA (40nM)
did not disrupt CI complexes, but in the presence of
NT blocked the assembly of the slower migrating
RecN-ssDNA CII and CIII complexes (5Ai, lanes 8-10)
or did promote their disassembly (Figure 5Aii, lanes
8-10). Under these experimental conditions, RecA
protein forms meta-stable complexes with ssDNA because
complexes attributed only to ssDNA—RecA-ATP-Mg” "
were not observed (5Aii, lane 12). The absence of CII-
and CIII-type complexes cannot be attributed to RecA-
mediated hydrolysis of the ATP-Mg>" because RecA
promotes the disassembly of CII and CIII complexes even
in the presence of ADP.

AFM visualization of RecA interactions with
RecN-DNA complexes

In previous studies, it was shown that RecA-promoted
pairing of homologous circular dsDNA with linear duplex
with single-stranded extensions involved co-aggregation
into large nucleoprotein networks (32,33; Figure 5B).
To further characterize RecA interactions with ssDNA-—
RecN complexes, RecA-mediated DNA strand invasion
complexes were visualized by AFM. In the absence of
RecN, the linear duplex DNA with short ssDNA tails was
pre-incubated with ATP-Mg?", and then with aliquots
of homologous circular dsDNA plus sub-saturating
amounts of RecA. RecA (40nM) catalysed DNA strand
invasion was observed in ~2% of total DNA molecules
in a 10min incubation time after deproteinization,
but accumulation of joint molecules was not observed
(<0.5%) if RecA was omitted. RecN bound to the A Exo-
generated single-stranded extensions of dSDNA molecules
was pre-incubated with ATP-Mg>", and then homolo-
gous circular dsDNA plus sub-saturating amounts of
RecA (40nM) were added. RecA-mediated DNA strand
invasion was observed in ~40% of total DNA molecules
in a 10 min incubation time (Figure 5C).

The large rosette-like complexes seen with RecN-ATP-
Mg®* bound to the ssDNA tails of duplex molecules
(Figure 4) were not detected in the presence of RecA.
Although, RecA-DNA joint molecules were observed
(Figure 5C, compare with the aggregates obtained if
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no RecN was added Figure 5B). These observations
are consistent with RecA-promoting disassembly of the
large CII- and CllI-type RecN-ssDNA complexes, and
catalysing DNA strand invasion into a circular homol-
ogous dsDNA molecule in the presence of pre-formed
ssDNA-RecN-ATP-Mg>* complexes (Figure 5C). RecN
protein fails to promote joint molecule formation in the
absence of RecA protein (data not shown).

To identify which protein was bound to the joint
molecule (Figure 5C), we took advantage of the fact that
ATPyS-Mg”>" binding to RecA-ssDNA complexes pro-
motes nucleoprotein filament formation (reviewed by
34,35). Pre-formed ssDNA—RecN-ATP-Mg”* complexes
were incubated with ATPyS-Mg>" followed by addition
of homologous circular dsDNA plus RecA. In the
presence of ATPyS-Mg®", the large rosette-like com-
plexes seen with RecN bound to ssDNA tails of duplex
molecules were not detected, although long nucleoprotein
filaments of RecA protein were formed at the joint
molecule (Figure 5D), consistent with RecA being located
at the linear-circular DNA interaction.

DISCUSSION
Different modes of RecN binding to ssDNA

Our AFM studies demonstrate that in the absence of
ATP-Mg>" RecN binds to ssDNA. This binding results
in the formation of discrete ‘blobs’ on ssDNA. We did not
observe preferential binding to ssDNA as compared to
ssDNA within duplex DNA regions. However, in the
presence of ATP-Mg? ™ the 3-OH DNA ends were strictly
required for the formation of large ssDNA—RecN-ATP-
Mg®* (CII and CII) complexes (25, Figure S5A).
We observed that RecN forms also ‘blobs’ on nicked
sites on duplex DNA, although, by EMSA experiments it
was shown that in the absence of ATP-Mg”> " RecN forms
stable complexes with ssDNA segments larger than 15-nt
in length (25), thus we propose that RecN might interact
with shorter ssDNA regions (e.g. nicked DNA) in a meta-
stable manner.

In the presence of ATP-Mg?", the RecN-ssDNA
complexes assembled to form the large CII and CIII
complexes (Figure 4). It is likely that RecN bound to
ssDNA translocates towards the ssDNA ends and

Figure 5. RecA interaction with ssDNA—RecN-ATP-Mg?" networks. (A) [y->2P] ssDNAg, (60nM in nt) and RecN (10nM) were pre-incubated
for 10min at 37°C in buffer C. (Ai) SsbA (100nM, lanes 5-7) or RecA (40nM, lanes 8-10) protein was added to pre-formed RecN-ssDNA
complexes and incubated for 10 min at 37°C, then 1| mM ADP (lanes 6 and 9) or ImM ATP (lanes 7 and 10) or no nucleotide cofactor (lanes 5
and 8) was added, and incubated for 10 min at 37°C. (Aii) I mM ADP (lanes 3, 6 and 9) or l mM ATP (lanes 4, 7 and 10) or no nucleotide cofactor
(lanes 2, 5 and 8) was added to pre-formed RecN-ssDNA complexes, and then 100 nM SsbA (lanes 5-7) or 40nM RecA (lanes 8-10) was added and
incubated for 10min at 37°C. The protein(s)-ssDNA-NT-Mg?" complexes were fractionated and visualized. In the absence of RecN, [y-*P]
ssDNAg, (60nM in nt) was incubated with RecA (40 nM, lanes 11 and 12) or SsbA (0.15nM, lanes 13 and 14) in presence or absence of ATP. FD,
free DNA; CI, complex I; CII, complex II; CIII, complex III; NT, presence of ADP or ATP; +, denotes presence or absence of indicated factor. The
SsbA-ssDNA complex (SsbA) is indicated. (B) RecA-DNA aggregates in the absence of RecN. Linear DNA (150 nM) with short ssDNA tails and
40nM RecA were incubated for 10 min at 37°C, in the presence of | mM ATP at 37°C. Homologous circular plasmid DNA (150 nM) was added and
incubated for another 10 min at 37°C, and deposited on freshly cut mica. Scale bar =250 nm. (C) RecA-promoted DNA strand invasion in presence
of RecN and ATP. Linear DNA (150nM) with short ssDNA tails and 10nM RecN were pre-incubated for 10min at 37°C, then 1 mM ATP was
added and incubated for 10min at 37°C. Homologous circular plasmid DNA (150nM) and RecA protein (40nM) were added to the pre-formed
ssDNA-RecN-ATP-Mg> " complex, incubated for another 10min at 37°C, and deposited on freshly cut mica. Scale bar =500 nm (inset picture,
bar =100 nm). (D) RecA-promoted DNA strand invasion in presence of RecN and ATPyS. Linear DNA (150 nM) with short ssDNA tails and RecN
(10nM) were pre-incubated for 10min at 37°C, then 0.1 mM ATPyS was added and incubated for 10 min at 37°C. Homologous circular plasmid
DNA (150nM) and RecA protein (40 nM) were added to the pre-formed ssDNA-RecN-ATPyS-Mg?" complex, incubated for another 10min at
37°C and deposited on freshly cut mica. White arrowheads show nucleoprotein filaments of RecA and DNA. Scale bar =100 nm.



118 Nucleic Acids Research, 2008, Vol. 36, No. 1

the subunit interactions, by tethering ends, promote
aggregation of different ssDNA—RecN-ATP-Mg”" com-
plexes to form a rosette-like structure. This is consistent
with the observation that addition of a large excess
of unlabelled ssDNA (500-fold) and ATP-Mg>" to a
pre-formed ssDNA-RecN complex did not reduce the
formation of large nucleoprotein aggregates (25). The
RecN dynamic architecture and end-binding specificity
influenced by ATP-Mg>" (25, this work) resemble
the binding specificity of the HsRad50-Mrel1-ATP-
Mg®* or the HsRad50-Mrel1-Nbsl-ATP-Mg> " com-
plexes and also show some clear differences (25, this
work, 36-38). Indeed, the Rad50-Mrell complex, which
exhibits ATP-independent dsDNA binding and such
binding activity is stimulated by ATP, does not seem to
bind ssDNA (39-41).

The pre-formed ssDNA-RecN-ATP-Mg> complexes
are insensitive to the addition of SsbA, arguing that
RecN should bind ssDNA prior or concomitantly with
SsbA. Independent of the order of addition of sub-
stoichiometric concentrations of RecA, the pre-formed
ssDNA-RecN-ATP-Mg? (CII and CIII) complexes were
disassembled or not formed. However, RecA failed to
dislodge RecN from the CI complex. AFM showed
that when homologous circular DNA and sub-saturating
RecA concentration were incubated with pre-formed
ssDNA-RecN-ATP-Mg? (CII-CIII) complexes RecA-
promoted DNA strand invasion with more than 12-fold
higher efficiency when compared to the yield of joint
molecules in the absence of RecN. Under this condition,
RecA should be located at the joint site of the DNA
molecules, because RecA—ATPyS-Mg” " is located at this
site. We propose that RecA interacts with and promotes a
conformational change of RecN, because the pre-formed
ssDNA-RecN-ADP-Mg”* complex, which is resistant to
nearly saturating concentrations of chaotropic agents (25),
can be disassembled by sub-stoichiometric concentrations
of RecA.

The in vivo roles of RecN

Genetic and cytological evidence suggests that: (i) RecN
and Ku/SbcC define different avenues for DSB repair
(17,18,21); (i1) RecN, which plays an important role in the
repair of DSBs, acts prior to and after end-processing
(17,20); (iii)) RecN co-localizes with RecO, RecR
and RecA on the nucleoid in a majority of cells after
induction of DSBs (17,21) and (iv) in the wild type
background the SsbC foci mostly co-localized with the
DNA polymerase complex al late times (120min after
induction of a DSB) (18). It is likely that RecN, which
is ubiquitous in bacteria, provides a paradigm for the
overall effect of the eukaryotic MRN(X) complex in
recombination in vivo (42).

Do the in vivo foci of RecN and rosette-like structures
formed in vitro relate directly to these repair/recombina-
tion events? The formation of RecN foci should be
a multi-stepwise process, and in the bases of previous
and the results presented, we proposed the following
model (Figure 6). The details of this model are speculative

at this point, but it is appealing because it incorporates
the cytological, biochemical and structural infor-
mation available: in step 1, RecN (Figure 6A) or RecN-
ATP-Mg>" can bind to ssDNA forming CI at gaps or
CII-CIII complexes at ssDNA ends (25) as early as 15 min
after DSB induction (17). In step 2, the resection of the
5’-ends of duplex DNA by RecJ in concert with a RecQ-
like enzyme (RecQ and/or RecS) or the AddAB helicase—
nuclease complex enhances the formation of 1 or 2 discrete
RecN foci (Figure 6B). At this stage DNA end-processing,
directly or indirectly, might repress the NHEJ activity and
favour HR by error-free repair of DSBs (19). In the
absence of both AddAB and ReclJ functions many RecN
foci, and absence of RecA threads were observed (20,21).
In step 3, the ssDNA-RecN-ATP-Mg>" complex
protects the 3'-OH terminus of a DNA molecule (25),
and favours ssDNA-RecN-ATP-Mg>" inter-complex
association, thereby increases the local concentration of
ssDNA ends (Figure 6C). It is likely that RecN facilitates
this process by tethering the ssDNA ends that are
visualized by AFM as rosette-like structures (Figure 4),
by EMSA as CII- and CIII-type complexes (25;
Figure 5A) and as discrete RecN focus on the nucleoids
in a majority of cells (17). We predict a dynamic behaviour
of the ssDNA—RecN complexes that must be able to roam
the nucleoid space in search for a discrete ssDNA—RecN-—
ATP-Mg?" complex (RecN focus). In step 4, SsbA binds
to ssDNA extensions generated by DNA end-processing
(Figure 6C). The RecN rosette-like structures (CII- and
CllI-type complexes) formed in step 3 cannot be
disassembled by the addition of a large excess of the
SsbA protein (Figure SA), and SsbA (independent of the
other of addition) partially inhibits the RecA ATPase
activity (Carrasco et al., unpublished data). In step 5,
RecA-mediators displace SsbA from ssDNA and promote
RecA loading onto ssDNA. In the absence of SsbA, RecA
promotes the dislodging of the large RecN networks
resulting in a large concentration of ssDNA ends
(Figure 6D). Lastly, RecA polymerizes on the clustered
ssDNA molecules to make pre-synaptic nucleoprotein
filaments. The different RecA nucleoprotein filaments can
then make single or multiple search for homology on
the sister chromosome or sister strand, thus facilitating
the search for genome-wide homology. This is in agree-
ment with the observation that: (i) RecA forms foci,
that co-localize with RecN, and threads or filamental
structures upon DNA damage (20,43) and (ii)) RecN
augments RecA-mediated DNA strand invasion
(Figure 5C).

Both the eukaryotic MRN(X) complex and bacterial
RecN in concert with DNA end-processing functions
are able to detect DNA damage, play a structural role
by bridging and tethering DNA ends and may provide
the structural basis for the discrimination between the
different avenues of DNA repair (HR versus NHEJ)
(17,18,36,37,42,this work,44,45).

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.



ATP

RecA

Nucleic Acids Research, 2008, Vol. 36, No. 1 119

T / RecQ(RecS)Rec) or AddAB

<= RecN
<)  AddAB or RecQ(RecS)Rec)
SsbA
O RecA

Figure 6. Mode of action of RecN protein: a proposal. RecN binds ssDNA regions of broken DNA molecule (e.g. a single-strand nick in the lagging
strand template) (A). In the presence of ATP-Mg”>® and prior DNA end-processing, RecN binds to the 3’-end of ssDNA tailed duplex DNA,
because it binds with high efficiency to short ssDNA segments, whereas SsbA requires patches of ssDNA longer than 35-nt. The 5’ ends of the
broken DNA molecules are processed either by RecJ in concerts with a RecQ-like protein (namely RecQ or RecS) or the AddAB helicase/nuclease,
resulting in a duplex molecule with a 3’-terminated ssDNA tail (B). After end-processing, RecN by a protein—protein and protein—ssDNA interaction
forms 1 to 2 RecN foci in vivo and large nucleoprotein networks (rosette-like structures) in vitro, and SsbA binds and protects the ssDNA (C). RecN
and RecA interaction leads to disassembly of the rosette-like structures. In the absence of SsbA, RecN helps loading RecA onto naked ssDNA and
RecA polymerizes onto ssDNA to form the active RecA nucleoprotein filament formation (D). In vivo RecN directly or indirectly interacts
with RecO (and perhaps RecR), and the RecA-mediators might promote the disassembly of the SsbA protein and the loading of RecA onto ssDNA.

The role of the RecA-mediators remains to be unravelled.
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