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Abstract
We present a method to remove the effects of sensor-specific noise in multiple-channel recordings
such as magnetoencephalography (MEG) or electroencephalography (EEG). The method assumes
that every source of interest is picked up by more than one sensor, as is the case with systems with
spatially dense sensors. To reduce noise, each sensor signal is projected on the subspace spanned by
its neighbors and replaced by its projection. In this process, components specific to the sensor
(typically wide-band noise and/or ‘glitches’) are eliminated, while sources of interest are retained.
Evaluation with real and simulated MEG signals shows that the method removes sensor-specific
noise effectively, without removing or distorting signals of interest. It complements existing noise-
reduction methods that target environmental or physiological noise.
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I Introduction
Modern physiological recording techniques such as magnetoencephalography (MEG) or
electroencephalography (EEG) employ arrays of sensors that sample the electric or magnetic
fields produced by brain activity. The signal within each channel is typically a combination of
brain activity, environmental noise (power lines, machines, etc.), physiological noise (heart,
muscle activity, etc) and sensor noise (transducer or or electronic noise) (Vrba, 2000; Baillet
et al. 2001). Together, the noise components are often stronger than brain components and may
interfere with further analysis and interpretation. Methods to reduce the noise are crucial for
scientific and clinical applications. The present paper describes a denoising algorithm that
addresses sensor noise.

Recent systems employ relatively large numbers of sensors (up to several hundreds) to
maximize spatial resolution and increase processing options. Sensor transductors and
electronics are subject to various noise mechanisms that may affect the signal (Hämäläinen et
al. 1993; Lounasmaa and Seppä 2004), and a large number of sensors increases the likelihood
that a “glitch" (MEG) or momentary variation of skin contact (EEG) occurs during a recording
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(Junghöfer et al. 2000). Cost constraints may limit the technical options available to minimize
such noise, particularly as cost scales approximately linearly with the number of sensors.

The physics of magnetic and electric fields produced by intracranial sources is such that every
brain source is usually picked up by several sensors. Furthermore, the number of independent
brain sources (at least the number considered in any particular study) is usually much smaller
than the number of sensors, and this implies redundancy between channels. The algorithm takes
advantage of this property.

The method to be described addresses only sensor noise. It is complementary with methods
that address other noise sources such as environmental (e.g. Adachi et al. 2001; Ahmar and
Simon 2005; de Cheveigné and Simon 2007), and physiological (e.g. Croft and Barry 2000;
Sander et al. 2002) noise, and is compatible with source analysis and modeling procedures (e.g.
Baillet et al. 2001; Parra et al. 2005). Simulations show that distortion of brain activity is small,
and denoising should not affect the validity of forward models. Sensor noise suppression tends
to reduce the dimensionality of multichannel data (inflated by sensor-specific noise sources),
and thus it may be a useful preprocessing step for methods such as ICA (e.g. Barbati et al.
2004). We believe that the method is safe to use as a routine preprocessing step in MEG or
EEG signal analysis.

II Methods
Signal model

The sensor signals S(t) = [s1(t),⋯,sK(t)]┬ reflect a combination of brain activity and sensor
noise:

(1)

where B(t) represents brain activity in sensor space, and N(t) represents sensor noise. Other
sources of noise exist but are not considered here. Brain activity is supposed to reflect multiple
sources within the brain:

(2)

where X(t) = [x1(t),⋯,xJ(t)]┬ are brain sources and A = [akj] is the source-to-sensor mixing
matrix.

Assumptions
We make the following two assumptions: (1) Sensor noise is uncorrelated with brain activity
and uncorrelated between sensors. (2) Brain activity at any sensor can be reconstructed from
its neighbors: for every sensor k there exist coefficients αk′ such that

(3)

In other words, for each sensor k the brain component bk(t) belongs to the span of [bk′≠k]. For
every k, the rank of the complementary set [bk′,k′≠k] of sensor signals is the same as the rank
of the entire set.

Intuitively, we expect the second assumption to be met if each sensor picks up small number
of brain sources, each of which is also picked up by other sensors. The assumptiuon implies
that the K sensor signals are linearly dependent (Eq. 3), but linear dependence is not sufficient
for the property to be true. The property is of interest because data that obey it are invariant to
the operation that consists of replacing every channel by its regression on the subspace formed
by the other channels.
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Algorithm
The denoising algorithm is simple: replace each noisy channel by its regression on the subspace
formed by the other channels. In practice, for each channel k, the set of signals [sk′≠k] is
orthogonalized by applying PCA to obtain an orthogonal basis of the subspace spanned by the
other channels. The channel sk is projected on this basis and replaced by its projection. These
steps are repeated for all channels. For channel k:

(4)

where  represents the denoised sensor signal and [αkk′] minimize . The
algorithm can be formulated in matrix notation:

(5)

where A = [αkk′] is a matrix with zeros on its diagonal.

It is easy to guess why the algorithm might reduce sensor-specific noise. The formula that
defines the projection of channel k on the span of the other channels does not include the channel
itself, and therefore is not sensitive to sensor noise within that channel. It is sensitive to noise
components within the other channels, but arguably that sensitivity is weakened by the fact
that they add incoherently via Eq. 4. This intuition is confirmed by simulations, that show
further that denoising has little effect on brain activity as long it verifies assumption (2) (Eq.
3). Lack of effect on brain activity implies that forward models do not need to be adjusted,
distinguishing the algorithm from other forms of spatial filtering. We call this algorithm
“Sensor Noise Suppression" (SNS).

The SNS algorithm was implemented in Matlab. A few implementation details are worth
mentioning: (a) It is usually sufficient to project channel k on a subset of complementary
channels rather than the full set. This saves computation but has little effect on the outcome as
long as there more channels than independent brain sources that contribute to channel k.
Channels are selected on the basis of correlation with channel k. Physical proximity could be
substituted for correlation, but correlation seems to work well and does not require knowledge
of sensor layout. (b) The algorithm may be iterated several times: each step reduces the norm
which is lower bounded, guaranteeing convergence. In practice the first step removes most
noise and subsequent repetitions offer smaller improvement. (c) Exceptionally large signal
values should be discounted in the calculation of the projection parameters. This prevents the
sums-of-squares that determine these parameters from being dominated by those large values.
d) Large files may be treated in several passes to reduce memory requirements. Taking these
implementation details into account, data can be denoised in better than real time on a standard
PC. The channel subset count (in a) and outlier threshold (in c) introduce arbitrary parameters
in an otherwise parameter-less procedure, but their exact values, if reasonable, have little effect
on the outcome.

III Results
The method is evaluated with real MEG data to illustrate its practical effectiveness, and with
synthetic data to better understand its behavior.

A MEG data
Setup—MEG data were acquired from a 160-channel, whole-head MEG system with 157
axial gradiometers sensitive to brain sources and 3 magnetometers sensitive to distant
environmental sources (KIT, Kanazawa, Japan, Kado et al., 1999). Subject and system were
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placed within a magnetically shielded room. Data were filtered in hardware with a combination
of highpass (1 Hz), notch (60 Hz) and lowpass (200 Hz antialiasing) filters before acquisition
at a rate of 500 Hz. Environmental noise was suppressed using the TSPCA algorithm (de
Cheveigné and Simon 2007). Tests were also performed with data from other systems.

Effect of denoising—Figure 1 present data recorded in an MEG study with auditory stimuli
(Chait et al. 2005). Figure 1 (a) shows the time course of a channel that was affected by a
“glitch" of unknown origin, before (red) and after (blue) denoising. The glitch is suppressed.
Figure 1 (b) and (c) shows two other channels that appear to pick up brain activity in the alpha
and theta bands respectively. Denoising has little effect on this activity beyond a slight
reduction of high-frequency noise visible in (c).

Figure 1 (d) and (e) schematize the distribution of RMS magnetic field over the sensor array
before (d) and after (e) denoising. The glitch affected a frontal channel (left); after denoising
the glitch no longer emerges, and the spatial distribution is smoother. Figure 1 (f) shows the
power spectrum averaged over channels, before (red) and after (blue) denoising. The most
obvious spectral effect of denoising is to reduce the noise floor at high frequencies by about
10 dB, presumably because that frequency range was dominated by sensor noise.

The “PCA spectrum" (eigenvalue spectrum) is a measure of spatiotemporal complexity of the
data set. Figure 1 (g) (full lines) shows the distribution of power over principal components
before (red) and after (blue) denoising, normalized by division by the power of the first
principal component. After denoising the PCA spectrum drops much faster, presumably
because several dimensions were specific to individual channel sensor noise that denoising
suppressed. The dotted lines represent the proportion of power that would be lost by truncating
the series of principal components beyond a certain rank. For example, to limit power loss to
1% would require keeping about 120 components of the raw data, but only about 20
components after denoising.

The reader may be concerned that strong noise within a channel, for example a glitch, could
contaminate other channels via Eq. 4. By the same token that noise is removed from a channel
by replacing it by a weighted sum of its neighbors, surely that channel could contaminate those
neighbors when they are denoised? The answer lies in the “opportunistic" nature of the
algorithm: it always chooses the best-fitting combination of neighbors to reconstruct a channel.
A channel with a glitch is automatically discounted from the formulae that reconstruct other
channels.

Data from other systems—Figure 2 (a, b) shows data from a 440-channel MEG system
(Yodogawa, Japan). Prior to the test, environmental noise was suppressed by applying the
TSPCA algorithm (de Cheveigné and Simon 2007). One channel was subject to a glitch [Fig.
2 (a), red], that the algorithm successfully suppressed (blue). The PCA spectra [Fig. 2 (b)]
indicate that denoising greatly reduces the dimensionality of the data. The benefit of the
algorithm is not specific to the system described previously.

Figure 2 (c, d) shows data from an experimental 9-channel magnetocardiogram system for
small animals (KIT, Japan). Prior to the test, environmental noise was suppressed by applying
the TSPCA algorithm (de Cheveigné and Simon 2007). One channel was subject to a glitch
[Fig. 2 (c), red], that the algorithm successfully suppressed (blue). Note that the heartbeat signal
is not suppressed. Denoising again reduced the dimensionality of the data [Fig. 2 (d)]. This
example shows that the algorithm can also benefit systems with relatively few channels.

Figure 2 (e, f) shows data from the data set of the IEEE Machine Learning for Signal Processing
MEG denoising competition (MLSP 2006). Figure 2 (e) shows the waveform of one of the 274
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channels before (red) and after (blue) denoising, and Fig. 2 (f) shows the PCA spectrum before
(red) and after (blue) denoising. The dimensionality is again greatly reduced.

To summarize, the SNS method effectively removes sensor-specific noise from MEG data.
The power of such noise is usually not very large (typically 10 to 20% the level of brain activity
power on average), but glitches can require data to be discarded, and sensor noise inflates the
dimensionality of data. Suppressing sensor noise makes it easier for analysis techniques such
as PCA or ICA to determine the genuine dimensionality of brain activity (e.g. Kayser and
Tenke 2003; Delorme and Makeig 2004). The SNS method is “safe" in that it usually does not
distort brain activity. This claim is addressed in detail in the next sections.

B Simulated data
Is brain activity distorted?—An obvious concern is that denoising might affect brain
activity. Indeed we can imagine a potential failure scenario: a brain component picked up by
only one sensor would be treated as noise and suppressed. However the geometry of MEG
arrays is such that this is unlikely to occur: brain activity picked up by one sensor is almost
certainly picked up by its neighbors, although possibly with lower signal to noise ratio (SNR).
To gain a better grasp of this situation, “sensor noise" was simulated as an array of 157
independent Gaussian noise signals with equal amplitudes, one for each channel, while “brain
activity" was simulated as a an independent Gaussian signal in one channel with a large SNR
(100 dB). Such an isolated “brain" component is indeed removed by SNS despite its favorable
SNR. However, if the same component is added to one or more additional channels, the
outcome depends on the SNR within those channels. Comparing target power before and after
denoising, the proportion of error is plotted in Fig. 3. (a) for one (full line) or four (dotted line)
additional sensors as a function of SNR. Error is negligible for SNR>~ 20dB, whereas for
SNR<−20dB the target is essentially suppressed. MEG data tend to have favorable signal-to-
sensor-noise ratios (see above), and therefore SNS is unlikely to suppress a brain component.

Aside from the previous unlikely scenario, does denoising affect measured brain activity? The
question cannot be tested directly for lack of direct access to real brain activity, but several
arguments can be put forward. First, any activity that obeys assumption (2) is invariant to the
denoising operation, and it is easy see that that assumption would be verified for a small number
of brain sources that each loads several sensors. This assertion was further tested by simulation
in two ways. As a first test, a set of 10 independent Gaussian “brain source" signals were
projected into sensor space according to a 10 × 157 random “brain-to-sensor mixing matrix".
This is a crude (but controlled) model of brain activity observed in sensor space. SNS indeed
left this simulated “brain activity" perfectly invariant. As a second test, the SNS algorithm was
applied repeatedly to a set of MEG data. After a few iterations, additional applications of SNS
left the data unchanged. Brain activity that produced that same pattern in sensor space would
obviously not be distorted by application of SNS. While direct verification with real brain
activity is impossible, these indirect tests suggest that distortion of brain activity is minimal.

Equation 4 appears to define a spatial filter, and thus the claim that SNS does not distort the
spatial properties of the brain signal may seem odd. The explanation is that the algorithm
chooses for each channel k the coefficients [αkk′] that minimize the distance between the
original and denoised channel signals, thus minimizing any spatial filtering effect on brain
signals. Note that the “filter" is in any event not spatially invariant.

Is SNS always effective?—Again we must consider a potential failure scenario: noise
correlated across sensors. Reusing the previous simulation and swapping the roles of “brain"
and “noise" component, it appears that a noise component might indeed survive denoising if
it appears on one or more additional sensors (Fig. 3 (a)). Sensor noise processes (Hämäläinen
et al. 1993) are unlikely to be correlated across sensors, but it is conceivable that crosstalk
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could arise within the electronics. SNS cannot suppress noise that is correlated across sensor
channels (although it will not enhance it either). In particular, denoising is expected to be
seriously compromised by spatial smoothing or filtering techniques (such as Laplacian or
Signal Space Separation). These should be applied, if necessary, after application of SNS.

Aside from this scenario, what factors affect the effectiveness of denoising? To simulate
conditions ideal for denoising, a set of 157 orthogonal (spatially white) Gaussian noise signals
was used as “sensor noise". In the absence of any target, SNS reduces noise power to near the
floor of the floating point representation. Such orthogonal noise signals are representative of
independent noise sources in the limit of infinite duration and/or infinite bandwidth. Over
shorter durations, band-limited noise processes usually show residual (chance) correlation.
Replacing the orthogonal noise signals by independent Gaussian noise of 20 s duration (10000
samples at 500 Hz), noise power was reduced by a smaller factor of about 23 dB. Residual
correlation is likely to increase for shorter noise segments, low pass filtering (in particular as
required for sampling), or spatial filtering that introduces correlations among sensors. Ideally,
data should be acquired with the widest possible bandwidth. Filtering, if necessary, should be
performed after application of SNS.

In the presence of a target, the effectiveness of denoising may also be reduced by chance
correlations between target and noise components. To illustrate this point, we simulated
synthetic “brain activity" consisting of 10 random components, and projected it to sensor space
via a 10 × 157 random matrix. This was mixed with synthetic “sensor noise" consisting of 157
independent Gaussian noise signals at 0 dB SNR. Applying SNS, error power (defined of as
the power of the difference between original and cleaned target) dropped from almost 100%
before denoising to 12%. This level of residual noise is greater than in previous examples,
nevertheless even in this far from ideal situation (MEG data usually have better SNR) denoising
is beneficial.

The synthetic signals used in these examples are not typical of MEG signals, but they allow
an intuitive understanding of the properties and limitations of the algorithm. To summarize,
the SNS method is effective if (a) sensor noise is uncorrelated across channels, and (b) every
brain source of interest loads two or more channels with sufficient SNR, (c) spectral and spatial
filtering of sensors is minimal.

Dipole simulation—To further illustrate the algorithm we used data from a two-dipole
model with parameters derived from the M100 response to an auditory stimulus (GOF 82.5%).
Synthetic “brain activity" was obtained by taking the outer product between the model-
produced pattern of amplitudes across sensors, and a time series of 100 pulses of duration 50
ms (shaped as an inverted parabola) at 500 ms intervals. Sampling rate was 1 kHz. Gaussian
noise with equal amplitude over all sensors was added at SNRs from −45 to +25 dB, and the
data were then processed by SNS. Figure 4 (a) shows the topography of instantaneous activity
at the “M100" peak before (left) and after (right) denoising, for several values of SNR. Fig. 4
(b) plots goodness-of-fit as a function of SNR, before and after denoising. Dipole analysis was
performed using MEG160 software (Yokogawa Corporation/Eagle Technology Corporation,
Kanazawa Institute of Technology).

At very low SNR, denoising is ineffective whereas at high SNR it is not needed, but in between
there is a range of SNRs for which denoising significantly improves the fit of the denoised data
to the dipole model. Dipole localization errors (not shown) show a similar trend. The
topography of denoised data tends to that of noiseless data: there is no evidence that denoising
itself causes distortion.
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A final question of practical interest is whether SNS is compatible with algorithms that address
other sources of noise, such as our recent TSPCA algorithm that targets environmental noise.
With the previous dipole simulation we synthesized a 500 ms interval of data including one
“M100" response peak. To this we added a combination of sensor noise (independent gaussian
noise with equal amplitudes across sensors) and environmental noise (60 Hz sinusoid with
equal amplitudes and random phases) at an SNR of −18 dB. The first row of Fig 5 shows the
field distribution at the M100 peak without (left) and with (right) noise. The second row shows
the effect of applying either SNS (left) or TSPCA (right) alone, and the bottom row shows the
effect of applying both. It is clear that the two algorithms are compatible and complementary.
For these data, applying SNS followed by TSPCA (left) works less well than the opposite order,
possibly because some of the degrees of freedom of SNS are wasted on preserving
environmental noise components. Applying TSPCA followed by SNS (right) is very effective
(compare to top left).

C The special case of reference sensors
For MEG systems equipped with reference sensors, the sensor noise of the reference sensors
may determine the ultimate level of the noise floor. Reference sensors sample environmental
noise and allow it to be stripped from brain sensor channels (Ahmar and Simon 2005; Volegov
et al. 2004; Adachi et al. 2001). For example our TSPCA algorithm projects brain channels
onto the subspace spanned by time-shifted reference channels, and removes the projection to
obtain clean signals. Unfortunately, by the same process reference sensor noise may be injected
into brain channels. When both TSPCA and SNS are applied to clean the data, we conjecture
that such reference sensor noise components, rather than background brain activity or brain
sensor noise, determine the ultimate noise level.

A way to reduce the impact of reference sensor noise is to apply SNS to reference channels
prior to using them to remove environmental noise. This is feasable only if there are more
reference sensors than the dimension of environmental noise components (usually at least 3).
When it comes to system design using limited resources, it would seem prudent to use
redundant reference sensors (say, 6 for the three spatial components of environmental noise)
and put the best electronics in the reference sensors rather than the (much larger number of)
neural sensors. Though this might seem counterintuitive, reducing reference sensor noise may
be the most effective step to minimizing the sensor-produced noise of an MEG system.

IV Discussion
The value of recorded data in scientific or clinical applications depends critically on the level
of noise. Noise narrows the range of conclusions that can be drawn from experimental data,
and makes them less reliable. New applications such as brain-machine interfaces (by which a
handicapped person can control a machine) are still limited by noise and artifacts, and
significant progress in noise reduction techniques might lead to a breakthrough in those
applications. Every effort to reduce noise is worthwhile.

MEG noise may be divided into environmental noise (e.g. power lines), physiological noise
(e.g. fields produced by cardiac or muscular activity), and sensor noise. A wide range of
techniques may be found in the literature that address the first two kinds of noise. SNS targets
the third, and is complementary with methods that target the other two. In our experience,
except for large amplitude glitches, sensor noise is relatively mild in terms of overall power
(typically 100 times weaker than environmental noise, and 5 to 10 times weaker than brain
activity) but it becomes more of a problem as techniques to remove other noise sources
improve. Sensor noise suppression makes the job of other denoising methods easier by reducing
the part of noise that does not fit their noise models. Removing glitches such as in Fig. 1(a)
avoids having to discard the data epoch in which they occur. Removing the extra dimensionality
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induced by sensor-specific noise eases the task of methods such as PCA or ICA, that must
decide on the dimensionality of data based on the rate of decay of the PCA spectrum. Finally,
lowering the noise floor in the high frequency region may give better access to phenomena
such as very high frequency oscillations (e.g. Edwards et al., 2005; Leutohold et al. 2005;
Gonzales et al., 2006) that are usually obscured by noise (or by the low-pass filtering used to
minimize that noise).

An important feature of the SNS method is that it does not cause appreciable distortion or loss
of information, in contrast to other spatial or spectral filtering techniques. It also does not rely
on assumptions about the geometry of brain sources, in contrast to source-modeling techniques.
We see every reason to use it systematically as a preprocessing stage for MEG signal analysis.

The project-on-neighbors operation bears a superficial resemblance with the surface Laplacian
technique (e.g. Bradshaw and Wikswo, 2001), in which each channel is subtracted from a
linear combination of its neighbors (as opposed to replaced by). The surface Laplacian aims
at improving spatial resolution by forming a spatial filter that emphasizes high spatial
frequencies. The weakness of that method is precisely its sensitivity to the type of noise that
our method removes (Bradshaw and Wikswo, 2001). SNS is conceptually related to Local
Linear Embedding (Roweis and Saul 2000), to techniques that deal with missing data (e.g.
Kondrashov and Ghil, 2006), and to leave-one-out cross-validation techniques in statistics.

SNS may be applicable to a wider range of situations. We have found that it can be applied
usefully to EEG data, and it seems that it could be applied it to data from single or multi-unit
electrode arrays to facilitate the simultaneous recording of local field potentials (with
components shared among electrodes) and fine-grained neuronal activity (specific to individual
electrodes). The method might also be of use outside physiology, for example to process data
from arrays of geophysical sensors. SNS appears to have the intriguing property of reducing
the effective noise of sensor arrays below the level expected by their physics: if so, this property
is worth investigating more systematically. We have so far not found any trace of a method
similar to SNS in the literature, which is surprising given its simplicity and effectiveness.
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Fig. 1.
(a, b, c): Waveforms of individual channels of a 157-channel MEG recording, before (red) and
after (blue) denoising. In (a) the channel is subject to a “glitch" of unknown origin, that
denoising removes. In (b) denoising hardly affects the relatively high-amplitude waveform of
what seems to be alpha-band brain activity. In (c), denoising attenuates the high-frequency
noise riding on what seems to be theta-band brain activity. (d, e): RMS field distributions before
(d) and after (e) denoising. (f): Power spectrum averaged over all channels, before (red) and
after (blue) denoising. (g): PCA spectrum (relative power of principal components) before (red)
and after (blue) denoising. Dotted line: proportion of power lost by discarding components
beyond a given rank before (red) and after (blue) denoising.
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Fig. 2.
Effect of denoising data from various systems. (a): Time course of one channel of a 440-channel
MEG system before (red) and after (blue) denoising. (b): PCA spectra for the the same system.
(c): Time-course of one channel of an experimental 9-channel magnetocardiogram system for
small animals, before (red) and after (blue) denoising. (d): PCA spectra for the same system.
(e): Time course of one particular channel of the 272-channel data set of the IEEE Machine
Learning for Signal Processing 2006 MEG denoising competition (MLSP 2006), before (red)
and after (blue) denoising. (f): PCA spectra for the same data.
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Fig. 3.
(a): Percentage error for a target component that loads mainly one channel, as a function of the
SNR of the same component on one other channel (full line) or four other channels (dotted
line).
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Fig. 4.
(a): Topographies of synthetic “auditory M100" activity produced by a two-dipole model at
various values of SNR, before and after denoising. (b) Goodness-of-fit (GOF) as a function of
SNR. Full lines: GOF of average over 10 repeats. Dotted lines: average of GOFs of a single
repeat.
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Fig. 5.
Combining SNS and TSPCA (de Cheveigné and Simon 2007). Top left: field distribution at
the peak of a simulated M100 response based on a two-dipole model. Top right: same
superimposed on a mixture of simulated environmental noise and sensor noise (in equal
proportions) at SNR=−18 dB. Middle: result of applying SNS alone (left) or TSPCA alone
(right). Bottom: result of applying SNS followed by TSPCA (left) or TSPCA followed by SNS
(right).
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