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Abstract

A sample of 35 independent molecular dynamics (MD) simulations of calmodulin (CaM) equilibrium
dynamics was prepared from different but equally plausible initial conditions (20 simulations of the
wild-type protein and 15 simulations of the D129N mutant). CaM’s radius of gyration and backbone
mean-square fluctuations were analyzed for the effect of the D129N mutation, and simulations were
compared with experiments. Statistical tests were employed for quantitative comparisons at the desired
error level. The computational model predicted statistically significant compaction of CaM relative to
the crystal structure, consistent with the results of small-angle X-ray scattering (SAXS) experiments.
This effect was not observed in several previously reported studies of (Ca2+)4-CaM, which relied on a
single MD run. In contrast to radius of gyration, backbone mean-square fluctuations showed a
distinctly non-normal and positively skewed distribution for nearly all residues. Furthermore, the
D129N mutation affected the backbone dynamics in a complex manner and reduced the mobility of
Glu123, Met124, Ile125, Arg126, and Glu127 located in the adjacent a-helix G. The implications of
these observations for the comparisons of MD simulations with experiments are discussed. The
proposed approach may be useful in studies of protein equilibrium dynamics where MD simulations
fall short of properly sampling the conformational space, and when the comparison with experiments is
affected by the reproducibility of the computational model.
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Protein conformational flexibility is ubiquitous and is neces-
sary for protein function (Debrunner and Frauenfelder
1982; Zàvodszky et al. 1998; Zaccai 2000). At physiological
temperatures, protein motions are extraordinarily complex,

with characteristic times spanning >10 orders of magni-
tude. Protein conformational dynamics are governed by the
laws of classical physics, and the description of forces
involved in protein dynamics through empirical force-fields
leads to molecular dynamics (MD) computer simulations
(McCammon and Harvey 1987; Brooks et al. 1988). MD
simulations are the principal theoretical method for studies
of protein dynamics, routinely used to provide insight into
microscopic dynamics of proteins and to complement
experiments (Karplus andMcCammon 2002).
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The utility of protein MD simulations rests on our
ability to compare the predictions of such simulations
with experiments. If the predictions regarding some
properties of interest are in agreement with the experi-
ments, we may hypothesize that other dynamic proper-
ties, in particular ones that may not be readily accessible
experimentally, are also correctly predicted by the com-
putational model. This may provide new insights into
the system of interest and may lead to novel hypotheses
and, ultimately, to the testing of the hypothesis with new
experiments. Central to driving this cycle of knowledge
is the ability to quantitatively compare MD simulations
with experiments. The comparison of MD simulations
carried out under different conditions is also very impor-
tant, in particular for the advancement of the simulation
methodology (i.e., comparison of simulations based on
different force-fields) or for comparative studies of simi-
lar systems (the effect of a point mutation for example).

When repeated from slightly different but equally
plausible initial conditions, MD simulations of protein
equilibrium dynamics predict different values for the
same dynamic property of interest (Elofsson and Nilsson
1993; Auffinger et al. 1995; Likić and Prendergast 2001).
These variations occur because MD simulations fall
short of properly sampling a protein’s conformational
space, an effect known as the “sampling problem”
(Straub et al. 1994; Auffinger et al. 1995; Caves et al.
1998; Hess 2002). In 1995, when 1-nsec MD simulations
of fully solvated proteins were hardly attainable, Clarage
and coworkers (1995) speculated that the sampling prob-
lem may be alleviated with a simulation time of 100
nsec. More recently, several 40-nsec MD simulations of
HPr and T4-lysozyme were analyzed for convergence in
sampling (Hess 2002). Not only did these simulations
fail to provide a complete picture of the protein’s con-
formational space, they also suggested that this goal will
remain unattainable in the foreseeable future (Hess
2002).

The central question concerning the reproducibility of
MD simulations can be restated as follows: How do we
know that some property observed in an MD simula-
tion, which may lend itself to some important biological
or physical interpretation, is not merely an “accident” of
the particular simulation? For example, in two 4-nsec
MD simulations, one of Ca2+-loaded and one of Ca2+-
free calmodulin (CaM), it was observed that the central
helix remained straight in the Ca2+-loaded simulation
but was bent in the Ca2+-free simulation (Komeiji et al.
2002). The investigators suggested that this indicated an
allosteric change in CaM conformation induced by
Ca2+ ions. In another, unrelated study, 15 independent
1-nsec MD simulations of Ca2+-loaded CaM were per-
formed (Likić et al. 2003). In these simulations, the
central helix remained straight in some MD runs but

was bent in others, suggesting that bending of the central
helix in any single simulation is a random event, occur-
ring with a certain probability given the simulation time.
While bending of the CaM central helix may well be
influenced by the bound Ca2+ ions, it seems unwar-
ranted to draw such a conclusion based on only two
observations, i.e., one Ca2+-free and one Ca2+-loaded
simulation.

The above example would suggest that predictions
derived from protein MD simulations behave as a sam-
ple drawn from a certain parent population. Thus, to
understand predictions of MD simulations in quantita-
tive terms, one needs to understand the central tendency
(such as the population mean) and the variability (such
as the population standard deviation) of the parent
population from which the predictions are “drawn.” It
follows that given some dynamic property of interest,
understanding of the parent distribution of the predic-
tion is of central importance for quantitative compari-
son of simulations with experiments. By using this ap-
proach, we analyzed 35 independent MD simulations
of fully solvated Ca2+-loaded wild-type CaM and its
D129N mutant.

CaM is a small protein of 148 amino acid residues
(Fig. 1) that acts as a principal modulator of intracel-
lular Ca2+ signaling pathways (Crivici and Ikura 1995;
Berridge et al. 1998). CaM shows an extreme conforma-
tional plasticity in target recognition, which is believed
to be associated with the conformational flexibility and
its “unusual” dynamic properties (Meador et al. 1993;
Weinstein and Mehler 1994; Crivici and Ikura 1995). We
demonstrate the application of the hypothesis testing to
the analysis of two different dynamic properties rou-
tinely calculated from protein MD simulations: radius
of gyration (Rg; a typical global property) and backbone

Figure 1. Schematic diagram of the CaM crystal structure (Babu et al.

1988) used as the initial structure in all MD simulations. Bound Ca2+

ions are shown as filled spheres, and four Ca2+ binding sites are

labeled I, II, III, and IV. The a-helix G, adjacent to the mutation site

D129N, which is the first residue in the Ca2+-binding loop, is labeled.

Molecular graphics created with Molscript (Kraulis 1991).
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mean-square (MS) fluctuations (a typical local property
of the polypeptide chain). In terms of the observed prob-
ability distributions, Rg and MS fluctuations provide
two extremes that we anticipate will be encountered in
the analysis of other dynamic properties. We show that
regardless of the nature of the MD property of interest,
statistical methods provide a powerful approach for
quantitative comparison of MD simulations with experi-
ments. The results are contrasted with previous MD
simulations of CaM, and the implications of the pro-
posed approach are discussed in the wider context of
protein MD simulations.

Results

Radius of gyration

Rg is defined as the square root of the moment of inertia
per unit mass: Rg= (I/M)1/2, whereM=Smi is the total
protein mass and I=Smiri

2 is the moment of inertia. In
these equations, the summation is over all atoms, and ri
is the distance of the ith atom from the protein’s center
of mass. Thus Rg is related to the global shape of the
protein molecule; i.e., Rg is a measure of the spatial
spread of the protein mass.

Small-angle X-ray scattering (SAXS) studies (Heidorn
and Trewhella 1988; Matsushima et al. 1989; Kataoka et
al. 1991a,b) suggested that in solution CaM adopts a
more compact conformation compared with the
extended dumbbell structure observed in several inde-
pendently solved crystal structures (Babu et al. 1988;
Taylor et al. 1991; Chattopadhyaya et al. 1992). In this
work we address the following three topics: (1) whether
our computational model predicts that the single muta-
tion D129N has an effect on the Rg; (2) whether the Rg

predicted by MD simulations is in agreement with the
extended dumbbell structure observed in the crystal state
(specifically, the structure that was used to provide initial
coordinates for MD simulations) (Babu et al. 1988); and
(3) whether the Rg predicted by MD simulations is in
agreement with the Rg determined by SAXS (Heidorn
and Trewhella 1988; Matsushima et al. 1989; Kataoka et
al. 1991a,b).

The Rg calculated from our MD simulations is shown
in Figure 2. A single value of Rg was obtained as an
average over a single MD simulation, and therefore, our
data set consisted of 35 data points spanning multiple
simulations: 20 obtained from wild type–CaM simula-
tion (wt simulation set), and 15 obtained from D129N–
CaM simulations (m1 simulation set). To assess which
statistical tests can be applied, we first addressed the
question of whether the data originated from a normal
parent distribution. Although some deviations from the
straight line in the quantile versus quantile plot were

observed for the wt data set (Fig. 3), a more formal
Shapiro-Wilk test for normality (Madansky 1988)
showed no significant evidence to reject the normal dis-
tribution assumption (wt data set, P-value=0.3; m1
data set, P-value>0.9).

Since no evidence against the hypothesis of normality
was found, we used the classical t-test to assess the
hypothesis that the samples wt and m1 originated from
the parent populations with equal means. The F-test for
the equality of variances (Lyman and Longnecker 2001)
provided no evidence against the hypothesis that the
variances of the two data sets are equal (P-value=0.6),
and the two-sample t-test provided no evidence against
the equal means hypothesis (P-value=0.6). This is also
the first statistical test that provides us with a physical
insight: the Rg as predicted from wild-type (wt) and
D129N CaM simulations (m1) statistically cannot be dis-
tinguished. In other words, our computational model
predicts that a single, conservative mutation within one
lobe of CaM does not have a pronounced effect on the
CaM’s Rg.

Because we cannot distinguish the data sets wt and m1
in terms of means, variances, and normality, we com-
bined them into a single data set (wt+m1) for the
purpose of comparison with the experimental data.
This in effect amounts to neglecting the effect of the
mutation D129N on the Rg. The combined data set
(wt+m1) thus contained 35 values calculated from
independent MD simulations.

The Rg calculated from the crystal structure of CaM
(Babu et al. 1988), which was used as the initial structure
in MD simulations, is 22.0 Å. To compare this to results

Figure 2. Boxplot of the radius of gyration calculated from the three

simulation sets: wt (wild-type CaM, 20 data points), m1 (CaM D129N

mutant, 15 data points), and wt+m1 (combined wild-type and CaM

D129N mutant simulations, a total of 35 data points). The horizontal

dash-dot line at 22.0 Å represents the radius of gyration calculated

from the crystal structure of CaM (Babu et al. 1988), which was used as

the initial structure in all MD simulations.
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of MD simulations, we tested the null hypothesis that
the parent population of the data set wt+m1 had the
mean of 22.0 Å; based on the t-test , we can reject this
hypothesis (P-value of 3 · 10-6). Thus our MD simula-
tions predict that in solution CaM adopts a more com-
pact conformation compared with the fully elongated
conformation observed in the crystal structure, which
was used to initialize these simulations.

A number of Rg values of Ca
2+-saturated CaM deter-

mined from SAXS measurements are shown in Table 1.
Assuming that the uncertainties given by the investiga-
tors represent experimental uncertainties in the mean of
the parent population, we can test these values against
the population parameters estimated from MD simul-
ations. The results show a considerable agreement
between the 1-nsec computational model and SAXS
experiments (Table 1).

Backbone MS fluctuations

MS fluctuations are routinely determined from tempera-
ture (Debye-Waller) factors in the context of protein X-
ray structure determination (Petsko and Ringe 1984),
and are often calculated from MD trajectories (Karplus
and McCammon 1983; Elofsson and Nilsson 1993; Cla-
rage et al. 1995). Twenty wild-type CaM simulations (wt
set) and 15 D129N-CaM simulations (m1 set) were pro-
cessed to result in 35 independent sample points for each
residue (backbone MS fluctuations were calculated for
each residue as the average over N, Ca, C¢ atoms).

The high degree of independence of the two CaM
domains is well established experimentally. The two
CaM lobes (Fig. 1) reorient nearly independently in
solution (Barbato et al. 1992), and N- and C-terminal
domain fragments retain their Ca2+-binding properties
and structural response to Ca2+ binding, as observed in
intact CaM (Evenäs et al. 1999, 2001). Since the muta-
tion D129N is located in the Ca2+ binding loop IV of
the C-terminal domain, we expect that the mutation
D129N has little or no effect on the internal dynamics
of the N-terminal lobe. To assess this hypothesis, we
compared the backbone MS fluctuations observed in
the simulation sets wt and m1.

Preliminary inspection of the distribution of calcu-
lated MS fluctuations showed that the sample distribu-
tions are distinctly non-normal. A typical histogram of
calculated MS fluctuations is shown in Figure 4, which
shows specifically MS fluctuations predicted for Ser17.
Similar sample distributions were observed for other

Figure 3. Normal probability plots (quantile vs. quantile plot) for the

three data sets: wt (wild-type CaM, 20 data points), m1 (CaM D129N

mutant, 15 data points), and wt+m1 (combined wild-type and CaM

D129N mutant simulations, a total of 35 data points). The straight line

is plotted through the upper and lower quartiles to help assess the

linearity of the relationship.

Table 1. t-Test comparison of MD simulation with CaM radius

of gyration determined in X-ray structural studies (crystal state)

and small-angle X-ray scattering studies (solution state)

Method Rg (Å)
Agreement with
MD simulations

X-ray structure

Babu et al. 1988a 22.0 No (P=3.4 · 10-6)

Small-angle X-ray

scattering studies

Heidorn and

Trewhella 1988

Moore 21.3 6 0.2 Yes (P=0.21)

Guinier 21.0 6 0.6 Yes (contains Smean)
b

Matsushima et al. 1989

Guinier 21.5 6 0.3 Yes (contains Smean)
b

Kataoka et al. 1991a

Moore 22.0 6 0.1 No (P=1.4 · 10-4)

Guinier 21.4 6 0.1 Yes (P=0.21)

“Moore” and “Guinier” refer to two alternative analyses of the small-
angle X-ray scattering data (see the corresponding references for
details).
a The crystal structure used to provide the initial CaM coordinates in
MD simulations reported here.
b The reported value contains the sample mean (Smean=21.59 Å).
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residues in both the N-terminal and the C-terminal
domain of CaM. We used the Wilcoxon rank sum test
(Lyman and Longnecker 2001) to compare the probabil-
ity distributions of the parent populations for a given
residue. In this case the null hypothesis was that the
parent populations that give rise to samples observed
in wt and m1 simulations are identical. No evidence
against this hypothesis was found for the N-terminal

domain of CaM when wt and m1 simulations were com-
pared. At the significance level of 0.02, only two residues
(Leu4 and Gly61) appeared to have different probability
distributions of the parent populations. This is a rather
weak evidence given that 70 residues were considered
(residues 5–74) and that both Leu4 and Gly61 deviations
occurred in isolation, involving only a single residue,
which is not expected if the dynamic properties of the
polypeptide chain were indeed affected. Thus, we con-
clude that the computational model predicted that the
dynamics of the N-terminal domain are not affected by
the mutation D129N, which is both close to the intuitive
picture and consistent with the experimental evidence.

The absence of detectable statistical differences between
the two sets wt andm1 for the N-terminal domain of CaM
justifies merging them into a single data set, which then
provides an increased sample size. The MS fluctuations
for the N-terminal domain of CaM predicted by MD
simulations and those derived from temperature (Debye-
Waller) factors reported in the crystal structure are shown
in Figure 5. A close qualitative agreement between pre-
dicted and measured MS fluctuations is apparent. How-
ever, the boxplot of MS fluctuations calculated from MD
simulations also shows that (1) the parent probability
distribution is positively skewed for nearly all residues,
and (2) the nature of the parent probability distribution
varies and depends on the residue position within the
polypeptide chain. Both points suggest a complex beha-
vior and imply that any sound quantitative comparison of
predicted and experimental MS fluctuations must take

Figure 4. The histogram of backbone mean-square fluctuations for

Ser17 calculated from combined wt+m1 simulations (a total of 35

data points). Ser17 is located in the N-terminal lobe of CaM, which is

not expected to be affected by the D129N mutation (located in the C-

terminal lobe). This was confirmed by theWilcoxon rank sum test, which

provided no evidence against the hypothesis that backbone mean-square

fluctuations for the N-terminal lobe residues predicted from the two sets

of simulations were drawn from the same parent probability distribution.

The situation was different for the C-terminal lobe (see Fig. 6).

Figure 5. Boxplot of calculated backbone mean-square fluctuations for the N-terminal lobe of CaM (residues 5–74) for the combined

wt+m1 MD simulation set. The mean-square fluctuations derived from temperature (Debye-Waller) factors reported in the crystal

structure used to initiate all MD simulations are shown in solid line (no correction for lattice disorder was applied). The backbone

mean-square fluctuations predicted from MD simulations show a close qualitative agreement with the experimental data. However,

the sample distributions of backbone mean-square fluctuations predicted fromMD simulations imply non-normal parent probability

distributions, highly dependent on the identity and the position of individual residues within the polypeptide chain.
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into account non-normal properties of the parent prob-
ability distribution in predicted MS fluctuations.

The MS fluctuations in the C-terminal domain
showed a significantly different picture. The Wilcoxon
rank sum test applied on the residues of the C-terminal
domain (residues 78–147) implied differences in the
probability distribution of the parent populations for
one isolated internal residue (Thr117) and two terminal
residues (Met145 and Thr146) at the significance level of
0.02. This situation is similar to the deviations of Leu4
and Gly61 observed in the N-terminal domain. In addi-
tion, five contiguous residues (Glu123, Met124, Ile125,
Arg126, and Glu127) were observed to have altered
parent probability distributions in the D129N mutant
compared with the wild-type CaM (Fig. 6). These resi-
dues are located in the C-terminal domain of a-helix G,
immediately adjacent to the mutation site (Asp129).
Figure 7 shows boxplots of MS fluctuations calculated
for residues Glu123, Met124, Ile125, Arg126, and
Glu127. It is apparent that the mutation D129N lowered
the backbone MS fluctuations of Glu123, Met124,
Ile125, Arg126, and Glu127, thus reducing the backbone
mobility in the adjacent a-helix G.

Discussion

A sample of 35 independent MD simulations of fully
solvated (Ca2+)4-CaM and its mutant D129N was

presented. We demonstrate that such a sample can be
analyzed by statistical hypothesis testing to support or
refute some preconceived hypothesis about the observed
variable(s) at the desired error level. MD simulations
implied a compaction of (Ca2+)4-CaM relative to the
crystal structure (Table 1), consistent with the results of
SAXS experiments (Heidorn and Trewhella 1988; Mat-
sushima et al. 1989; Kataoka et al. 1991a). This compac-
tion has not been observed in several previously reported
MD studies of (Ca2+)4-CaM, which employed a similar
computational model in terms of both methodology and
the force-field but relied on a singleMD simulation (Wrig-
gers et al. 1998; Yang et al. 2001; Komeiji et al. 2002).
However, when random variation is taken into account,
previously reported MD simulations of (Ca2+)4-CaM are
consistent with our results.

The analysis of the predicted Rg provided no evidence
against the hypothesis that the sample was generated by
a normal parent probability distribution. The situation
was quite different for MS fluctuations, which showed a

Figure 6. Wilcoxon rank sum test for the residues in the C-terminal

lobe comparing backbone mean-square fluctuations between the wild-

type (wt) and D129N mutant (m1) simulations. The mutation D129N

affected the mean-square fluctuations of five residues located in the C-

terminal half of a-helix G, which is immediately adjacent to the muta-

tion site Asp129. The residues whose dynamics were affected are not

symmetrically distributed around the mutation site; notably, the muta-

tion did not affect the 12 residues involved in the Ca2+ binding loop

between a-helices G and H, including Asn129, which is the first residue

in this loop (see Fig. 7). The positions of the four a-helices (E, F, G,

and H) located in the C-terminal lobe of CaM are shown, together with

their interhelical loops and bound Ca2+ ions (small circles).

Figure 7. Boxplot of calculated mean square fluctuations for residues

Glu123, Met124, Ile125, Arg126, and Glu127 for wild-type (wt) and

D129N mutant (m1) simulations. These residues failed the Wilcoxon

rank sum test under the null hypothesis that the samples wt and m1

were drawn from the same parent probability distribution (P-values

shown in Fig. 6). The observed sample distribution did not provide

such evidence for the backbone mean-square fluctuations at the site of

mutation, the residue Asp/Asn129 (P=0.5, the boxplot also shown).
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distinctly non-normal and positively skewed distribution
for nearly all residues (probably well approximated by
the gamma family with two parameters: scale, shape).
Therefore, to assess the effect of the D129N mutation on
the CaM dynamics, we used a nonparametric test to
compare calculated MS fluctuations in wild-type and
D129N-mutant simulations. The Wilcoxon rank sum
test was applied to N-terminal and C-terminal domain
residues, and for the sake of simplicity, each residue was
treated independently. On physical grounds, we expect
that dynamics of residues adjacent in the sequence or
residues proximal in the three-dimensional structure are
not independent. The simple Bonferroni P-value adjust-
ment could be applied; however, this would amount to a
scaling of P-values and therefore would not alter the
overall picture shown in Figure 6. We are currently
investigating more advanced corrections that would
take into account both sequence and spatial dependency
of residues in the polypeptide chain.

The mutation D129N, located in Ca2+ binding loop IV
of the C-terminal domain, affects a monodendate ligand
to the Ca2+ ion [in position 1(X) of the 12-residue EF-
hand Ca2+ binding loop]. Aspartate in this position is
invariant in all known EF-hands (Strynadka and James
1989). The mutation Asp!Asn in the analogous EF-
hand of troponin C disrupted Ca2+ binding and resulted
in a functionally inactive protein (Babu et al. 1992). In
our MD simulations, the mutation D129N exerted a
complex effect on the backbone MS fluctuations (Fig.
6). The observed MS fluctuations of Glu123, Met124,
Ile125, Arg126, and Glu127 were lower in the D129N
mutant, suggesting that the mutation stiffened the adja-
cent a-helix G (Fig. 7). The shape of the parent prob-
ability distribution could provide additional insights into
this effect. However, >15–20 sample points are required
to obtain an accurate shape of the parent probability
distribution, especially in a distinctly non-normal case as
observed here.

The traditional approach in MD simulations of protein
equilibrium dynamics is to perform a single (or a very
few), but as long as possible, MD simulation. There are
several important advantages inherent in the approach
presented here. First, the results are reproducible to the
extent that can be estimated a priori from the size of the
collected sample (i.e., the number of independent MD
runs), Second, the larger the number of independent
MD runs, the greater is the reproducibility of results
and also the power of subsequent statistical analysis
(i.e., the ability to discern increasingly smaller effects).
For example, a sufficiently large sample may be able to
discern the effect of the D129N mutation on the CaM Rg.

An inherent feature of the proposed approach is that
the total simulation time must be considered explicitly to
be a part of the computational model, together with the

employed force-field, water model, and the structure
used to initialize the simulations. At first glance this
may appear as a drawback because, in principle, proper-
ties arising from protein equilibrium dynamics should
not depend on time. However, because in MD simula-
tions a protein’s conformational space is not completely
sampled, the results actually do depend on the simula-
tions time. For example, in recently reported MD simu-
lations of bacterial outer membrane protein FhuA,
atomic MS fluctuations predicted from MD simulations
increased steadily when calculated for the simulation
times ranging from 0.5–8 nsec (Feraldo-Gómez et al.
2003). Therefore, in MD simulations of protein equi-
librium dynamics, the total simulation time should be
considered a part of the computational model unless, of
course, it can be demonstrated that the property of
interest does not depend on the simulation time.

MD simulations are stochastic in nature, and therefore,
very infrequent, so-called “rare events” may be observed in
any single MD run. In the context of multiple MD simula-
tions, the term “rare event” refers to any process observed
infrequently in only one MD run or a very few MD runs
within the collected sample. The probability of such a
process cannot be predicted reliably, no matter how large
the sample is. Furthermore, a rare event may result in
values that are outside of the likely range (i.e., outliers),
which in turn may skew the overall picture obtained from
the sample of MD runs. Therefore, it is highly desirable to
detect such events early in the analysis. In principle, this
could be done by finding outliers in data; however, finding
outliers in a sample drawn from an unknown probability
distribution is a nontrivial task. Our preliminary results
suggest that analogs of the z-score basedon outlier resistant
estimators such asmedian absolute deviation performwell.
This point merits further investigation; however, it is clear
that a sample of MD simulations provides a much better
opportunity to deal with rare events compared with the
situation when only one (or a few) MD runs are collected.

The drawback of the proposed approach is the
amount of work involved. In the sample of 35 indepen-
dent MD simulations, each simulation was indepen-
dently prepared, run, and analyzed upon completion.
Subsequently, results were pooled together to give the
global view of the sample. Thus the human work
involved exceeds many times the work required to run
and analyze one long MD simulation (e.g., a single 35-
nsec MD run). However, this is in part because the tools
for automation are lacking. Furthermore, running many
simulations initialized from different initial conditions is
well suited for distributed computing (Rhee et al. 2004).
The distributed computing approach has the potential
to provide a multitude of independent MD runs and
thousands of sample points for any property of inter-
est, thereby allowing one to deduce fine features of the
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parent probability distribution even in the case when the
departures from normality are significant. Therefore, far
more detailed comparisons of MD simulations, with
experiments employing the methods described here, will
be possible in the near future.

Materials and methods

A total of 35 MD simulations 1 nsec each were completed, 20
of the wild-type CaM (wt simulation set) and 15 of the D129N
mutant (m1 simulation set). For each MD simulation, a unique
initial configuration was prepared in such a way to provide a
slightly different, but equally plausible, representation of the
system under study (see below).
All MD simulations were carried out with the program

NAMD2 (versions 22 and 23b2) (Åquist et al. 1986) and the
CHARMM 22 force-field (MacKerell et al. 1998). Periodic
boundary conditions and the particle-mesh Ewald method for
the treatment of long-range electrostatic interactions were
employed (Schlick et al. 1999). An integration step of 1 fsec was
used to propagate equations of motion in the microcanonical
ensemble (NVE). Nonbonded van der Waals interactions were
smoothly truncated at 12.0 Å, with the switching function acti-
vated at 10.0 Å. Water molecules were represented with the
TIP3P water model, as described previously (Likić et al. 2003).
We used the parameters for the calcium ion obtained from the
study of another EF-hand protein, calbindin (Marchand and
Roux 1998). In all MD simulations, the X-ray structure of mam-
malian Ca2+-saturated CaM refined at 2.2 Å (Protein Data Bank
code 3CLN) was used as the initial structure (Babu et al. 1988).
Four Ca2+ ions and 69 ordered water oxygen sites observed in
the crystal structure were also included in the initial structure.
Five residues missing in the crystal structure (residues 1–4 and
residue 148) were reconstructed in an extended conformation. All
charged residues were taken in their standard states at pH 7,
which resulted in a total protein charge of -16 for wild-type
CaM, and -15 for the mutant D129N.
The simulated unit cell was a rectangular parallelepiped, with

dimensions 89· 67· 67 Å or 90· 78· 78 Å, depending on the
simulation set (see Table 2). In MD simulations wt-a and m1, 28
Na+ ions and 13 Cl- ions were added to neutralize the system
and to mimic the solution with an ionic strength of ,100 mM. In
simulations from the set wt-b, 40 Na+ ions and 24 Cl- ions were
added to the system to create similar ionic conditions.
To prepare initial configurations, two boxes of pure water

were created by randomly positioning the appropriate number
of water molecules within 89 · 67 · 67 Å and 90· 78 · 78 Å

rectangular parallelepipeds. After the initial minimization and
equilibration, the simulations of pure water were run for 1 nsec
(89· 67· 67 Å box) and 300 psec (90· 78· 78 Å box). The
coordinates were saved every 100 psec, resulting in 10
(89· 67· 67 Å box) and three (90· 78· 78 Å box) equilibrated
water configurations. These water configurations were com-
bined with the protein crystal structure to create initial config-
urations for protein MD simulations. For each protein
simulation, the water box was chosen randomly (89 · 67 · 67
Å box for wt-a and m1 simulations, and 89· 67· 67 Å box for
wt-b simulations). The CaM crystal structure, including Ca2+

ions and 69 crystal structure water molecules, was placed
within the box, centered and oriented with respect to the pro-
tein, and overlapping water molecules were deleted to create
the initial configuration for a protein simulation. The cutoff for
the selection of overlapping water molecules was chosen from
the range 2.3–2.5 Å. The purpose of this was to create a unique
initial solvent configuration for each protein simulation, and
care was taken that no two simulations used both the same
equilibrated water box and the water deletion cutoff.
The total number of atoms was ,40,000 in simulations wt-a

and m1 and ,55,000 in simulations from the set wt-b. Each
protein MD simulation was equilibrated for 390 psec prior to
running 1 nsec of production dynamics, except for a single
simulation from the m1 set, which was equilibrated for 300
psec. For each protein simulation, 1 nsec of equilibrium
dynamics was represented with a trajectory containing 1000
coordinate frames spaced at 1 psec.
The individual globular domains of CaM remained struc-

turally stable in all simulations, close to the crystal structure
conformation. For both domains (N-terminal and C-terminal),
the average RMS deviations versus the initial crystal structure
were typical for MD simulations of globular proteins, as shown
in Table 3. Throughout all MD runs, the four Ca2+ ions re-
mained in their EF-hand binding sites. The simulations were
completed at an average temperature of ,298 K (Table 3).
A detailed analysis of the solvation and dynamics of Ca2+-
binding sites in D129N-CaM simulations was presented pre-
viously (Likić et al. 2003).

Backbone MS fluctuations

Atomic MS fluctuations were calculated in a standard way, by
aligning Ca atoms to remove the overall translation and rota-
tion of the protein, with the first coordinate frame of dynamics

Table 2. An overview of MD simulations from the

sets wt-a, wt-b, and m1.

Simulation set
No. of 1 nsec
simulations Protein Box size (Å)

wt-a 15 wt-CaM 89· 67· 67

wt-b 5 wt-CaM 90· 78· 78

m1 15 D129N-CaM 89· 67· 67

In all simulations, the initial structure was the X-ray structure of
mammalian Ca2+-saturated CaM refined at 2.2 Å (Protein Data
Bank code 3CLN) (Babu et al. 1988).
wt-CaM is the wild-type CaM; D129N is the Asp129!Asn CaM
mutant.

Table 3. Minimum/maximum average RMS deviations and

average temperatures for the simulation sets wt-a, wt-b, and m1

Simulation
set

N-terminal
average RMSDa

(min/max, Å)

C-terminal
average RMSDb

(min/max, Å)

Average
temperature
(min/max, K)

wt-a 1.16/2.46 1.09/2.28 298.2/298.4

wt-b 1.38/2.00 1.19/1.39 298.0/298.2

m1 1.29/2.52 1.00/1.36 297.1/299.4

The average RMS deviation and temperature was evaluated as time
average for each MD simulation, and “min/max” refers to the mini-
mum/maximum time average observed within the simulation set.
a Backbone RMS deviations of the N-terminal domain (residues 5–74)
vs. the crystal structure that was used to initialize simulations.
b Backbone RMS deviations of the C-terminal domain (residues 78–
147) vs. the crystal structure that was used to initialize simulations.
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in each simulation used as a reference. The backbone MS fluc-
tuations were calculated from MD simulation by averaging
positional fluctuations for N, Ca, and C¢ atoms for each residue.
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