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Abstract

Successfully modeling electrostatic interactions is one of the key factors required for the computational
design of proteins with desired physical, chemical, and biological properties. In this paper, we present
formulations of the finite difference Poisson-Boltzmann (FDPB) model that are pairwise decomposable by
side chain. These methods use reduced representations of the protein structure based on the backbone and
one or two side chains in order to approximate the dielectric environment in and around the protein. For the
desolvation of polar side chains, the two-body model has a 0.64 kcal/mol RMSD compared to FDPB
calculations performed using the full representation of the protein structure. Screened Coulombic interaction
energies between side chains are approximated with an RMSD of 0.13 kcal/mol. The methods presented
here are compatible with the computational demands of protein design calculations and produce energies
that are very similar to the results of traditional FDPB calculations.
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Electrostatic interactions are often critical determinants of
protein structure and function. In an earlier protein design
study, an overly simplistic electrostatic model was found to
incorporate destabilizing electrostatic interactions into the
designed proteins (Marshall et al. 2002). Energies calcu-
lated using the finite difference Poisson-Boltzmann (FDPB)
model (Gilson et al. 1987; Honig and Nicholls 1995; Roc-
chia et al. 2001), a more sophisticated model for describing
the electrostatic potential in proteins, correlated more
strongly with experimentally determined stability. How-
ever, FDPB calculations, as normally performed, are com-
putationally too costly for most protein design calculations.

Computational protein design algorithms (Gordon et al.
1999; Street and Mayo 1999; Kraemer-Pecore et al. 2001;

Mendes et al. 2002) have relied on simple, often empirical
methods to model electrostatic interactions between charged
and polar protein groups and the desolvation of polar and
charged side chains. For example, the ORBIT (Optimization
of Rotamers by Iterative Techniques) protein design force
field uses Coulomb’s law with a distance-dependent dielec-
tric and an explicit hydrogen-bond term to describe inter-
actions between polar and charged groups and either a pen-
alty for the burial of polar hydrogens or a penalty for the
burial of polar surface area (Dahiyat and Mayo 1996; Gor-
don et al. 1999). Havranek and Harbury have developed a
modified Tanford-Kirkwood model to describe electrostatic
interactions and applied it to the design of homodimeric and
heterodimeric coiled coils (Havranek and Harbury 1999,
2003). Baker and coworkers have used a volume-based sol-
vent exclusion model to describe the desolvation of polar
groups (Lazaridis and Karplus 1999), along with a distance-
dependent dielectric model, in the successful design of a
novel protein fold (Kuhlman et al. 2003). Recently,
Hellinga and coworkers have empirically derived a large
number of dielectric constants and interaction parameters to
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describe polar desolvation as well as charge–charge and
charge–polar interactions between protein groups (Wisz and
Hellinga 2003) and used these parameters to engineer cata-
lytic function into a catalytically inert scaffold (Dwyer et al.
2004). Finally, Pokala and Handel (2004) have proposed a
method for calculating Born radii in the context of protein
design calculations.

Here, we describe a method for modeling electrostatic
interactions in protein design calculations using a limited
number of FDPB calculations performed with simplified
surface representations. Typically, FDPB calculations re-
quire atomic coordinates for the protein backbone and all
side chains in order to define the spatial regions that corre-
spond to the low dielectric protein and high dielectric sol-
vent. In protein design calculations, each possible rotameric
sequence (a rotamer is a low energy amino acid side-chain
conformation) will have a unique structure and require an
independent FDPB calculation. Because the combinatorial
complexity of design calculations is often astronomically
large, it is not feasible to perform an independent calcula-
tion for each possible structure. Instead, we determine the
electrostatic energy for each side chain or pair of side chains
by performing FPDB calculations using simplified struc-
tures that include only the backbone and one or two side
chains. The total energy is then obtained by summing the
contribution of each side chain and side-chain pair.

Like the other electrostatic models that have been used
for design, the simplified surface approach possesses the
computational efficiency required for combinatorially com-
plex protein design calculations. The method is two-body
decomposable (meaning that each energy term depends on
the identity and conformation of at most two amino acid
side chains) and therefore compatible with deterministic
search algorithms such as Dead End Elimination (DEE)
(Desmet et al. 1992; Goldstein 1994; Gordon et al. 2003)
that are often used for sequence selection. The two-body
FDPB method described in this paper allows for calculation
of both desolvation energies and electrostatic interactions
between polar protein groups using a minimal number of
free parameters. It explicitly captures the impact of se-
quence changes on the structure of the protein surface,
which defines the boundary between the low dielectric pro-
tein and the high dielectric solvent. Finally, it efficiently
produces energies that correlate well with standard FDPB
methods, providing the accuracy demanded by protein de-
sign problems.

Strategies for incorporating FDPB methods
into protein design calculations

In this study, we have used the FDPB solver from the com-
puter program DelPhi (Rocchia et al. 2001) to calculate
electrostatic energies for 24 proteins selected from a group

of 500 high resolution protein X-ray structures compiled by
Richardson and coworkers (Lovell et al. 2003). The results
of these “exact” FDPB calculations were compared to the
results of a tractable number of FDPB calculations per-
formed using simplified surface representations that require
knowledge of the identity and conformation of no more than
two amino acid side chains at a time in order to assess the
accuracy of the simplified surface approximation.

Polar protein groups can form favorable electrostatic in-
teractions with the solvent; we refer to the resulting energies
as electrostatic solvation energies. The difference between
the electrostatic solvation energy of a polar group in the
folded state versus the unfolded state is the desolvation
energy. In design calculations, the backbone conformation
is typically held fixed. As shown in Figure 1A, the desol-
vation energy of the protein backbone can therefore be de-
fined as the difference between the electrostatic solvation
energy of the backbone in the presence of all of the protein’s
side chains versus the electrostatic solvation energy of the
isolated backbone (a reference state that remains constant in
the design calculation). As shown in Figure 2A, the desol-
vation energy of a side chain is defined as the difference
between the electrostatic solvation energy of the side chain
in the context of the folded protein versus the electrostatic
solvation energy of the side chain and local backbone alone,
where the local backbone is defined by the atoms CA(i − 1),
C(i − 1), O(i − 1), N(i), H(i), CA(i), C(i), O(i), N(i + 1),
H(i + 1), and CA(i + 1).

Electrostatic interactions between polar protein groups
and the solvent also act to screen Coulombic interactions
within a protein. The screening energy is generally opposite
in sign and weaker in magnitude than the Coulombic energy
for a given interaction. The procedures used to calculate
side-chain/backbone and side-chain/side-chain screening
energies are shown in Figures 2A and 3A, respectively. In
all cases, the screening energies and Coulombic energies are
added to yield “screened Coulombic energies,” and the
screened Coulombic energies predicted by the different
electrostatic models are then compared. As solvation ener-
gies are strongly anticorrelated with Coulombic energies,
comparison of screened Coulombic energies but not screen-
ing energies alone is appropriate for the validation of ap-
proximate electrostatic models (Scarsi and Caflisch 1999).

For compatibility with the ORBIT protein design proce-
dure, we have calculated backbone desolvation energies,
side-chain desolvation energies, side-chain/backbone inter-
action energies, and side-chain/side-chain interaction ener-
gies separately. The total electrostatic energy of each rota-
meric state of a protein is then the sum of the backbone
desolvation energy (�Gbb

desolv), the desolvation energy of
each side chain i (�Gi

desolv), the screened Coulombic
interaction between each side chain i and the backbone
(�Gi/bb

screenedCoul), and the screened Coulombic interaction be-
tween each pair of side chains i and j (�Gi/j

screenedCoul):
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When calculating the “exact” FDPB energies, each of the
above terms is calculated using all of the protein atoms to
define the low dielectric protein region versus the high di-
electric solvent region.

One-body FDPB decomposition

Several physical properties of proteins can be calculated
using information derived from the protein surface. While
protein surfaces cannot be perfectly represented using pair-
wise decomposable methods, earlier protein design studies
have demonstrated that pairwise or sequence-independent
approximations can yield satisfactory results for hydropho-
bic solvation and binary patterning, respectively (Street and
Mayo 1998; Marshall and Mayo 2001). Similarly, it may be
possible to obtain accurate estimates of the FDPB energies
obtained using all the atomic coordinates to define the sur-
face from FDPB energies obtained using simplified models
for the protein surface that require knowledge of only one or
two side-chain conformations at a time.

Since the protein backbone is fixed during design calcu-
lations, an approximate one-body (i.e., one side-chain rota-
mer) surface can be obtained using the atoms from the pro-
tein backbone and the side chain of interest only. It is nec-
essary to include the side chain of interest when defining the
protein surface to ensure that all protein charges are located
in the low dielectric protein region rather than the high
dielectric solvent region. The one-body backbone desolva-
tion energy, which is an approximation of the desolvation of
the backbone by each side chain, is calculated as the dif-
ference in solvation energy between the one-body folded
state (which includes only the side chain of interest and the
backbone) and the isolated backbone, as shown in Figure
1B. The total backbone desolvation energy for each protein
is approximated as the sum of the one-body backbone de-
solvation energies of each of its side chains. As is shown in
Figure 2B, one-body side-chain desolvation energies are
calculated as the difference in solvation energy between
the one-body folded state (which includes only the side
chain of interest and the backbone) and the unfolded
state (which includes side chain i and the local backbone).
The one-body side-chain/backbone screened Coulombic en-
ergy of each side chain is calculated using the model in
Figure 2C.

To test the accuracy of the one-body decomposition, we
calculated the backbone desolvation energies, side-chain
desolvation energies, and side-chain/backbone screened
Coulombic energies for the set of 24 proteins. Backbone
desolvation energies can be calculated reasonably well by
summing the desolvation induced by the presence of each
side chain, as shown in Figure 4A. Using the one-body
decomposition, the backbone desolvation energy resulting
from each side chain can be considered as a component of
the side-chain/backbone energy of the side chain in design
calculations. The extent to which backbone desolvation en-
ergy depends on protein sequence and side-chain conforma-
tions is not yet fully understood. Avbelj, Baldwin, and co-
workers, however, have reported the importance of back-
bone desolvation in determining amino acid secondary

Figure 1. Free energy cycles used to calculate exact (A) vs. one-body (B)
backbone desolvation energies (as shown in Equations 2 and 8, respec-
tively). In each method, the electrostatic potential generated by the back-
bone is calculated. The key distinctions between the two methods are as
follows: The exact calculation uses the protein backbone and all of the side
chains in the protein to define the dielectric boundary, while in the one-
body method, the dielectric boundary is defined by the backbone and a
single side chain only. The total one-body desolvation is calculated by
summing the desolvation by each side chain. The parameters used in each
FDPB calculation are indicated as follows: the protein backbone, shown in
red, was assigned partial atomic charges from the PARSE charge set; the
side chains, shown in gray, were assigned partial atomic charges of 0; the
areas drawn in white were assigned a dielectric constant of 4 (protein
interior); and the blue areas were assigned a dielectric constant of 80
(water) and a salt concentration of 50 mM.

Pairwise decomposable Poisson-Boltzmann methods
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structure propensities (Avbelj and Moult 1995; Avbelj and
Fele 1998; Avbelj et al. 2000).

The one-body approximation grossly underestimates the
majority of the side-chain desolvation and side-chain/back-
bone screened Coulombic energies, as shown in Figure 4, B
and C, respectively. The one-body model neglects the con-
tribution of the other side chains to the dielectric environ-
ment of the side chain of interest, resulting in an excessively

solvated folded state. Deviations between the one-body and
exact FDPB results are especially pronounced for large mag-
nitude desolvation and screened Coulombic energies, which
tend to occur in environments with a low effective dielectric.

Two-body FDPB decomposition

More accurate energies can be obtained using two-body
methods (i.e., methods including two side-chain rotamers),

Figure 2. (Legend on next page)
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in which the total side-chain desolvation or side-chain/back-
bone screened Coulombic energy for each side chain i is
defined as the sum of its one-body energy and the two-body
perturbation energies for each other side chain j. As shown
in Figure 2, B and C, the perturbation energy of each other
side chain is defined as the difference between the two-body
energy, which is calculated using the backbone and two side
chains to define the dielectric boundary, and the one-body
energy calculated previously.

Incorporating the effects of other side chains using the
two-body perturbation method allows accurate calculation
of electrostatic energies, as shown in Table 1 and Figure 5,
A and B. Five outlier points, representing five different
amino acid types from four structures, were observed to
have large errors in their two-body side-chain desolvation
energies, as shown in Figure 5A. These outliers likely arise
from grid placement artifacts, a source of error in FDPB
calculations that has been described previously (Gilson et al.
1987). Accurate two-body desolvation energies can be ob-
tained for these five points by slightly altering the position
of the molecule relative to the grid (data not shown).

The two-body approximation systematically underesti-
mates the magnitude of the side-chain desolvation energy.
The systematic error in the two-body desolvation energy
was minimized by linearly scaling the two-body perturba-
tion energy. The set of 24 structures was divided into two
sets of 12 structures, and a scaling parameter, �, was de-
rived by a linear least-squares fit for each set (with the five
outlier points removed). The robustness of the scaling pa-
rameter was tested by cross-validation, as shown in Table 2,
and sensitivity analysis, as shown in Figure 6A. The error in
the two-body side-chain desolvation is reasonably insensi-
tive to � around the optimal � value, and both sets have
similar dependence on �, suggesting that this scaling pa-
rameter should be used in routine calculations.

In the one-body FDPB method, we calculated side-chain
and backbone desolvation energies and side-chain/backbone
screening energies, but not side-chain/side-chain screening

energies. Simply multiplying the one-body potential gener-
ated by side chain i by the partial atomic charges of side
chain j is not very accurate (data not shown), especially for
charged atoms located at or beyond the dielectric boundary
defined by side chain i and the protein backbone. Side-
chain/side-chain screened Coulombic energies were calcu-
lated using a two-body decomposable method that uses only
the backbone and two side chains of interest to define the
dielectric boundary, as shown in Figure 3B. Although the
two-body model systematically overscreens the Coulombic
interactions, the accuracy obtained using a two-body FDPB
decomposition is quite good, as shown in Table 1 and Fig-
ure 5C. The two-body approximation is probably less accu-
rate for certain large interaction energies owing to increased
sensitivity to the shape of the dielectric boundary in regions
of large electrostatic potential.

Analysis of the side-chain desolvation and side-chain/
backbone screened Coulombic energies indicates that, in
most cases, the perturbation caused by a second side chain
is negligible. The small fraction of two-body perturbations
that contribute significantly to the desolvation or side-chain/
backbone energies involve pairs of residues that are close in
space. Furthermore, side-chain/side-chain interaction ener-
gies for residues that are not close in space are typically
small in magnitude and may be approximated using a sim-
pler electrostatic model. We performed additional calcula-
tions in which two-body perturbations were calculated only
for pairs that separated by <6 Å or 4 Å. As shown in Table
1, we observe a slight decrease in accuracy as the distance
cutoff is decreased from infinity to 6 Å to 4 Å. This arises
from an increased underestimation of the side-chain desol-
vation energies and side-chain/backbone screened Coulom-
bic energies, as well as increased inaccuracy in defining the
dielectric environment, as fewer pairs are included.

When calculating screened Coulombic energies, the in-
teraction of side-chain pairs separated by more than a dis-
tance cutoff of 6 Å or 4 Å was approximated by a distance-
dependent Coulombic model, and the two-body FDPB

Figure 2. Free energy cycles used to calculate exact side-chain desolvation energies (as shown in Equation 3) and side-chain/backbone
screened Coulombic energies (A) (as shown in Equations 4 and 5) vs. one-body and two-body side-chain desolvation energies (B) (as
shown in Equations 9 and 12, respectively) and side-chain/backbone screened Coulombic energies (C) (as shown in Equations 10 and
11, and 13 and 14, respectively). In each method, the electrostatic potential generated by side chain i is calculated. This potential is
multiplied by the charges of side chain i to calculate the solvation energy of i and is multiplied by the charges in the backbone to
determine the side-chain/backbone screening energy. The key distinctions between the exact, one-body, and two-body methods are as
follows: The exact calculation uses the protein backbone and all of the side chains in the protein to define the dielectric boundary, and
a single calculation is used to determine the folded-state solvation energy. In the one-body method, the dielectric boundary is defined
by the backbone and a single side chain only. The one-body desolvation energy consists of the desolvation of side chain i by the
backbone. In the two-body method, a one-body calculation is first performed as shown in parts B and C, and then the perturbation in
the side-chain desolvation energy and the side-chain/backbone screened Coulombic energy that results from adding a second side chain,
j, to the low dielectric protein region is determined. The perturbation due to each other side chain is added to the one-body energy to
produce the two-body energy. The parameters used in each FDPB calculation are indicated as follows: side chain i, shown in red, was
assigned partial atomic charges from the PARSE charge set; the rest of the protein, when shown in gray, was assigned partial atomic
charges of 0; the protein backbone, when shown in green, was assigned partial atomic charges of 0 in the FDPB calculation, but its
PARSE partial atomic charges were used to obtain screening energies; the areas drawn in white were assigned a dielectric constant of
4 (protein interior); and the blue areas were assigned a dielectric constant of 80 (water) and a salt concentration of 50 mM.
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model was applied only to pairs that are close in space. The
two sets of protein structures used for the � parameteriza-
tion were used to derive the optimal distance-dependent
dielectric values for pairs separated by distances greater
than the cutoff. The dielectrics derived for each set are
similar, and the errors in the two-body approximation with
the cutoffs are comparable to the error in the full two-body
calculation including all pairs, as shown in Table 3. The
sensitivity of the error and correlation with the exact FDPB
energies to the dielectric value is shown in Figure 6, B
and C.

Considering only a limited subset of pairs significantly
reduces the total calculation time, which is crucial since the
number of pairs in a design calculation is often large. For
instance, the reported surface design calculation for en-
grailed homeodomain considers 15,000,000 rotamer pairs
(Marshall et al. 2002). The FDPB calculation for this num-
ber of pairs would require ∼3 wk of CPU time on a cluster
of 128 IBM PowerPC 970 processors running at 1.6 GHz.
The time required to complete the two-body calculation can
be reduced to <1 d of CPU time by applying a distance
cutoff of 4.0 Å.

Figure 3. Free energy cycles used to calculate exact (A) vs. two-body (B) side-chain/side-chain screened Coulombic energies (as
shown in Equations 6 and 7, and 15 and 16, respectively). In each method, the electrostatic potential generated by side chain i is
multiplied by the charges in side chain j to determine the screening energy between side chain i and side chain j. The key distinctions
between the exact and two-body methods are as follows: The exact calculation uses the protein backbone and all of the side chains in
the protein to define the dielectric boundary, while the two-body calculation uses the protein backbone and only two side chains to
define the dielectric boundary. The parameters used in each FDPB calculation are indicated as follows: side chain i, shown in red, was
assigned partial atomic charges from the PARSE charge set; the rest of the protein, when shown in gray, was assigned partial atomic
charges of 0; side chain j, when shown in green, was assigned partial atomic charges of 0 in the FDPB calculation, but its PARSE partial
atomic charges were used to obtain screening energies; the areas drawn in white were assigned a dielectric constant of 4 (protein
interior); and the blue areas were assigned a dielectric constant of 80 (water) and a salt concentration of 50 mM.
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It has been shown that, for a series of designed homeodo-
main variants, there is a correlation between experimental
stability and exact FDPB electrostatic energies plus ORBIT
van der Waals energies (Marshall et al. 2002). In order to
assess the predictive power of the two-body method pre-
sented here, we have compared the two-body FDPB ener-
gies to these experimental results. For each variant, the sum
of all two-body side-chain/backbone and side-chain/side-
chain screened Coulombic energies and the sum of all two-
body side-chain desolvation energies were added to the
ORBIT van der Waals energies. As shown in Figure 7, the
two-body FDPB energies are able to predict, with accuracy

close to that of the exact FDPB calculations, trends in ex-
perimental stabilities of six of the seven variants tested,
including the wild-type protein and NC3-Ncap, the most
stable variant.

Additional considerations

Thus far, we have developed and tested new electrostatic
models for protein design calculations by maximizing the
agreement between the approximate desolvation and
screened Coulombic energies with the exact FDPB ener-
gies. While even “exact” FDPB energies are an approxima-
tion of the true electrostatic energy of the system, it is
probable that, in the context of design calculations, the ac-
curacy of the structural model will be a greater source of
error than the limitations of the underlying FDPB model. To
maximize computational efficiency, most protein design
methods use a fixed backbone, discrete side-chain rotamers,
and a very simple model of the unfolded state. As a result,
certain errors in electrostatic energies can be observed in
design calculations. For example, the energetic benefit of
surface salt bridges is overestimated if the entropic cost of
locking flexible side chains into a single conformation is not
considered. Similarly, the folded-state stability conferred by
interactions that are populated in the unfolded state, such as
i, i ± 2 side-chain/backbone interactions, is overestimated if
the unfolded state is modeled as the side chain and local
backbone only.

Based on a single study of electrostatics in designed pro-
teins (Marshall et al. 2002), either exact or two-body FDPB
energies (with large magnitude side-chain/side-chain inter-
actions truncated) are sufficiently accurate to provide a rea-
sonable correlation with experimentally determined stabil-
ity, as shown in Figure 7. Additional experimental studies
will be required to assess the performance of the two-body
decomposable model in the design of proteins with specific

Table 1. Accuracy of the electrostatic models

RMSD
(kcal/mol) R

A. Backbone desolvation energy
Exact FDPB — —
One-body 3.96 0.997

B. Side-chain desolvation energy
Exact FDPB — —
One-body 1.93 0.718
Two-body,a all pairs 0.64 0.962
Two-body,a pairs <6 Å 0.67 0.968
Two-body,a pairs <4 Å 0.82 0.952

C. Side-chain/backbone screened Coulombic energy
Exact FDPB — —
One-body 0.90 0.957
Two-body, all pairs 0.36 0.987
Two-body, pairs <6 Å 0.41 0.984
Two-body, pairs <4 Å 0.51 0.979

D. Side-chain/side-chain screened Coulombic energy
Exact FDPB — —
Two-body, all pairs 0.13 0.948

a Statistics were obtained using all data points, including outliers, and
without application of �, the scaling parameter for two-body side-chain
desolvation.

Figure 4. Accuracy of the one-body method determined by comparing exact FDPB backbone desolvation energies vs. one-body backbone desolvation
energies (A), exact FDPB side-chain desolvation energies vs. one-body side-chain desolvation energies (B), and exact FDPB side-chain/backbone screened
Coulombic energies vs. one-body side-chain/backbone screened Coulombic energies (C).
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catalytic or binding properties. In cases where accurate
modeling of electrostatics is especially critical, more so-
phisticated structural models, such as the flexible rotamer
model (Mendes et al. 1999) and explicit modeling of alter-
nate backbone conformations (Kuhlman et al. 2003), may
prove useful.

Conclusions

Accurate electrostatic models, including the FDPB model,
require knowledge of the full tertiary structure of the pro-
tein. As a result, these models cannot be applied directly to
protein design calculations, which often consider >1050 pos-
sible protein structures. While it is not possible to explicitly
calculate electrostatic energies in each structural environ-
ment, it is also not prudent to neglect changes in the shape
of a protein’s surface that result from modifying the protein
sequence.

We have found that it is possible to obtain accurate elec-
trostatic energies using simplified surface models that de-
pend on the identity and conformation of the protein back-
bone and only one or two side chains at a time. The success
of the two-body FDPB method suggests that it is critical to
define the surface accurately in the immediate vicinity of
the partial charges that are “generating” and “feeling” the
electrostatic potential in each calculation. The results also
suggest that it is important to account for desolvation and
screening due to other nearby side chains, but that the ef-
fects of each other side chain are fairly independent and
can be captured pairwise. Finally, we have found that the
effects of sequence-dependent variation in the dielectric
boundary can be neglected if the perturbations are reason-
ably far removed from the partial charges that are “gener-
ating” or “feeling” the electrostatic potential in a given
calculation.

Efficient and accurate electrostatic models are also criti-
cal for protein folding and docking calculations. The sim-
plified surface methods discussed here could be used to
explore different side-chain orientations given a fixed-back-
bone conformation. Similarly, derivatives of a small mol-
ecule scaffold, such as those generated by combinatorial
chemistry methods, could be modeled. However, folding
and docking calculations typically sample a large number of
backbone conformations or relative molecular orientations.
Since each backbone conformation would require an inde-
pendent set of one- or two-body FDPB calculations, the
computational demands of folding and docking calculations
would be far greater than those for design.

The stability of designed proteins has already been dem-
onstrated to be sensitive to the quality of the electrostatic
model used in the design calculations. It is likely that elec-
trostatic interactions are at least as important in determining
the functional properties of proteins, including binding and

Table 2. Cross-validation of �, the scaling parameter for
two-body side-chain desolvation

RMSD
(kcal/mol) R

Structure set 1
� � 1 0.56 0.967
� � 1.26a 0.43 0.972
� � 1.30b 0.43 0.973

Structure set 2
� � 1 0.68 0.971
� � 1.26a 0.50 0.974
� � 1.30b 0.50 0.974

a The optimal value of � determined using structure set 1.
b The optimal value of � determined using structure set 2.

Figure 5. Accuracy of the two-body method determined by comparing exact FDPB side-chain desolvation energies vs. two-body side-chain desolvation
energies with outlier points represented by open circles (A), exact FDPB side-chain/backbone screened Coulombic energies vs. two-body side-chain/
backbone screened Coulombic energies (B), and exact FDPB side-chain/side-chain screened Coulombic energies vs. two-body side-chain/side-chain
screened Coulombic energies (C).
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catalysis. As a result, the development and testing of accu-
rate electrostatic models are likely to significantly aid in the
design of proteins with desired physical, chemical, and bio-
logical properties.

Materials and methods

Test set of proteins

All calculations were performed using proteins selected from a
group of 500 high resolution protein X-ray structures, including
computationally optimized hydrogen atom locations, compiled by

Richardson and coworkers (Lovell et al. 2003) (http://kinemage.
biochem.duke.edu/databases/top500.php). Structural coordinates
were derived from PDB entries 1IGD, 1MSI, 1KP6, 1OPD, 1FNA,
1MOL, 2ACY, 1ERV, 1DHN, 1WHI, 3CHY, 1ELK, 2RN2,
1HKA, 3LZM, 1AMM, 1XNB, 153L, 1BK7, 2PTH, 1THV, 1BS9,
1AGJ, and 2BAA, corresponding to the �1 domain of Streptococ-
cal protein G, type III antifreeze protein, the � subunit of killer
toxin KP6, the S46A mutant of Escherichia coli phosphotransfer-
ase, fibronectin cell-adhesion module type III, monellin, bovine
acyl-phosphatase, the C73S mutant of human thioredoxin, 7,8-
dihydroneopterin aldolase, the L14 ribosomal protein, CheY, the
VHS domain of TOM1, ribonuclease H, pyrophosphokinase, T4
lysozyme, �-B-crystallin, xylanase, goose lysozyme, ribonuclease
MC1, peptidyl-tRNA hydrolase, thaumatin, acetylxylan esterase,
epidermolytic toxin A from Streptococcus aureus, and endochiti-
nase, respectively. Only the “A” chain was used for monellin, the
VHS domain of TOM1, and epidermolytic toxin A.

Exact FDPB calculations

Finite difference solutions to the linearized Poisson-Boltzmann
equation were obtained using the FDPB solver from the computer
program DelPhi (Rocchia et al. 2001) with a grid spacing of 2.0
grids/Å−1, an interior dielectric of 4.0, an exterior dielectric of
80.0, a salt concentration of 0.050 M, and a probe radius of 1.4 Å.
The grid size was selected for each protein so that its backbone
atoms fill 70% of the grid. The coordinates of each protein were
mapped onto the grid in exactly the same way in all of the calcu-
lations to minimize errors due to changing grid placement. The
PARSE parameter set charges and atomic radii (Sitkoff et al. 1994)
were used in all FDPB calculations. Proline residues and cysteine
residues in disulfide bonds were considered part of the backbone in
all calculations. All Arg and Lys residues were modeled with a +1
net charge and all Asp and Glu residues were modeled with a −1
charge. All FDPB energies were converted to units of kilocalories
per mol using the relation kT � 0.593 kcal/mol at 25°C.

In the FDPB model, electrostatic solvation energies are obtained
by multiplying the appropriate atomic charges, q, by the reaction
field potential, �, at the location of each charge. In the following
equations, the reaction field potential, �, is labeled with a super-
script that indicates which atoms were used to define the dielectric
boundary and with a subscript that indicates which atoms were
assigned nonzero partial atomic charges when calculating the re-

Table 3. Cross-validation of distance-dependent dielectrics for
limited pair two-body side-chain/side-chain screened
Coulombic interactions

RMSDa

(kcal/mol) Ra

Structure set 1
All pairs 0.10 0.968
Pairs >6 Å, � � 5.11rb 0.10 0.960
Pairs >6 Å, � � 4.75rc 0.10 0.957
Pairs >4 Å, � � 5.90rd 0.10 0.955
Pairs >4 Å, � � 5.21re 0.10 0.947

Structure set 2
All pairs 0.16 0.934
Pairs >6 Å, � � 5.11rb 0.16 0.926
Pairs >6 Å, � � 4.75rc 0.16 0.923
Pairs >4 Å, � � 5.90rd 0.16 0.924
Pairs >4 Å, � � 5.21re 0.16 0.917

a RMSD and R values are for all pairs in each structure set.
b The optimal distance-dependent dielectric for pairs separated by > 6 Å in
structure set 1.
c The optimal distance-dependent dielectric for pairs separated by > 6 Å in
structure set 2.
d The optimal distance-dependent dielectric for pairs separated by > 4 Å in
structure set 1.
e The optimal distance-dependent dielectric for pairs separated by > 4 Å in
structure set 2.

Figure 6. Sensitivity of error in two-body energies due to changes in �, the scaling parameter for two-body side-chain desolvation energies (A);
the distance-dependent dielectric for pairs separated by >6.0 Å (B); and the distance-dependent dielectric for pairs separated by >4.0 Å (C). In all cases,
filled symbols refer to protein structure set 1, open symbols refer to protein structure set 2, circles indicate RMSD, and triangles indicate the correlation
coefficient R.
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action field potential. The entire protein is referred to as “all,” the
protein backbone is referred to as “bb,” individual protein side
chains are referred to as “i” or “j,” and a side chain with its local
backbone is referred to as “ib.” A factor of 1⁄2 appears in the
desolvation energy equations to account for the work of solvent
polarization in response to the charges on side chain i.

The exact desolvation energy of the backbone (“bb”), shown in
Figure 1A, is defined as the difference between the electrostatic
solvation energy of the backbone in the presence of all the protein
side chains and the electrostatic solvation energy of the backbone
alone:

�Gdesolv.
bb =

1

2�t

qt��bb
all − �bb

bb� (2)

where each t is a backbone atom, qt is the partial atomic charge of
backbone atom t, �bb

all is the reaction field potential at t generated
by the set of partial atomic charges on the backbone when all of the
protein atoms are used to define the dielectric boundary, and �bb

bb

is the reaction field potential at t generated by the set partial atomic
charges on the backbone when the backbone atoms only are used
to define the dielectric boundary.

The exact desolvation energy of a side chain i, shown in Figure
2A, is defined as the difference between the electrostatic solvation
energy of the side chain in the folded state versus the unfolded
state:

�Gdesolv.
i =

1

2�u

qu��i
all − �i

ib� (3)

where each u is an atom in side chain i, qu is the partial atomic
charge of side-chain atom u, �i

all is the reaction field potential at u
generated by the set of partial atomic charges on side chain i when
all of the protein atoms are used to define the dielectric boundary,
and �i

ib is the reaction field potential at u generated by the set of
partial atomic charges on side chain i when the atoms on side chain
i and its local backbone are used to define the dielectric boundary.
The molecular surface for the side-chain unfolded-state model was

generated using the side chain and local backbone and was mapped
to the grid exactly as in the folded-state calculations. The local
backbone was defined to include the following atoms: CA(i − 1),
C(i − 1), O(i − 1), N(i), H(i), CA(i), C(i), O(i), N(i + 1), H(i + 1),
and CA(i + 1).

Exact folded-state side-chain/backbone screening energies, shown
in Figure 2A, were obtained using the following equation:

�Gscreening
i�bb = �

t

qt�i
all (4)

where i is the side chain of interest, each t is an atom in the
backbone, qt is the partial atomic charge of atom t, and �i

all is the
reaction field potential at t generated by the set of partial atomic
charges on side chain i when all of the protein atoms are used to
define the dielectric boundary. The screening energies were then
added to the Coulombic energies to obtain screened Coulombic
energies:

�GscreenedCoulombic
i�bb = �Gscreening

i�bb + �GCoulombic
i�bb (5)

where the Coulombic energy is calculated using Coulomb’s law
with a dielectric constant equal to the dielectric of the protein
interior.

Exact side-chain/side-chain interactions, shown in Figure 3A,
were obtained using a similar method:

�Gscreening
i�j = �

v

qv�i
all (6)

where i and j are the side chains of interest, each v is an atom in
side chain j, qv is the partial atomic charge of atom v, and �i

all is
the reaction field potential at v generated by the set of partial
atomic charges on side chain i when all of the protein atoms are
used to define the dielectric boundary. The screening energies
were then added to the Coulombic energies to obtain screened
Coulombic energies:

�GscreenedCoulombic
i�j = �Gscreening

i�j + �GCoulombic
i�j (7)

Side-chain/backbone and side-chain/side-chain interaction ener-
gies are assumed to be zero in the unfolded state.

One-body FDPB calculations

One-body FDPB energies were calculated for backbone desolva-
tion energies, side-chain desolvation energies, and side-chain/
backbone screened Coulombic energies. For each side chain in the
test set, two FDPB calculations are carried out: one with nonzero
partial atomic charges assigned to the side chain and one with
nonzero partial atomic charges assigned to the backbone. Folded-
state solvation energies for the protein backbone were calculated
as in the exact FDPB calculations, except that side chains other
than the side chain of interest were not included:

�Gdesolv.
bb,1−body =

1

2�t

qt��bb
i,bb − �bb

bb� (8)

where each t is a backbone atom, qt is the partial atomic charge of
backbone atom t, �bb

i,bb is the reaction field potential at t generated
by the set of partial atomic charges on the backbone when side
chain i and the backbone atoms only are used to define the dielec-
tric boundary, and �bb

bb is the reaction field potential at t generated

Figure 7. Energy predicted using the sum of the FDPB side-chain desol-
vation energy, FDPB side-chain/backbone screened Coulombic energy,
FDPB side-chain/side-chain screened Coulombic energy, and ORBIT van
der Waals energy vs. the experimentally determined stability of each ho-
meodomain variant. The energies obtained using the two-body FDPB ap-
proximation are shown as filled circles, and the energies obtained using the
exact FDPB model are shown as open circles.
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by the set of partial atomic charges on the backbone when the
backbone atoms only are used to define the dielectric boundary, as
shown in Figure 1B. The total backbone desolvation energy for
each protein is approximated by the sum of the one-body backbone
desolvation energies, given by Equation 8, for each of its side
chains.

Side-chain desolvation energies were calculated as in the exact
FDPB calculations, except only the side chain of interest and the
backbone were used to construct the folded-state dielectric bound-
ary:

�Gdesolv.
i,1−body =

1

2�u

qu��i
i,bb − �i

ib� (9)

where i is the side chain of interest, each u is an atom in side chain
i, qu is the partial atomic charge of atom u, �i

i,bb is the reaction
field potential at u generated by the set of partial atomic charges on
side chain i when side chain i and the backbone atoms only are
used to define the dielectric boundary, and �i

ib is the reaction field
potential at u generated by the set of partial atomic charges on side
chain i when the atoms in side chain i and its local backbone are
used to define the dielectric boundary, as shown in Figure 2B.

Similarly, side-chain/backbone screened Coulombic energies
were calculated as in the exact FDPB calculations, except only the
side chain of interest and the backbone were used to construct the
dielectric boundary:

�Gscreening
i�bb,1−body = �

t

qt�i
i,bb (10)

where i is the side chain of interest, each t is a backbone atom, qt

is the partial atomic charge of atom t, and �i
i,bb is the reaction field

potential at t generated by the set of partial atomic charges on side
chain i when side chain i and the backbone atoms only are used to
define the dielectric boundary, as shown in Figure 2C. The screen-
ing energies were then added to the Coulombic energies to obtain
screened Coulombic energies

�GscreenedCoulombic
i�bb,1−body = �Gscreening

i�bb,1−body + �GCoulombic
i�bb (11)

where the Coulombic energy is calculated using Coulomb’s law
with a dielectric constant equal to the dielectric of the protein
interior.

Two-body FDPB calculations

Two-body FDPB side-chain desolvation energies, side-chain/
backbone screened Coulombic energies, and side-chain/side-chain
screened Coulombic energies were calculated as follows. First, the
one-body energies were calculated as described above. Next, two-
body perturbation energies were calculated using the atoms in the
backbone, bb, the side chain of interest, i, and one “perturbing”
side chain, j, to define the dielectric boundary. Two-body pertur-
bation energies were calculated using each residue other than the
side chain of interest as the perturbing residue. Total energies were
calculated by adding the one-body energy to the sum of the two-
body perturbation energies. For each pair of side chains, two
FDPB calculations are carried out, one with nonzero partial atomic
charges assigned to each side chain.

Two-body side-chain desolvation energies were calculated as
the sum of a one-body energy and two-body perturbation energies:

�Gdesolv.
i,2−body = �Gdesolv.

i,1−body + �
j�i
�1

2�u

qu��i
i, j,bb − �i

ib� − �Gdesolv.
i,1−body�

(12)

where i is the side chain of interest, each u is an atom in side chain
i, qu is the partial atomic charge of u, and �i

i,j,bb is the reaction field
potential at u generated by the set of partial atomic charges on side
chain i when the backbone and side chains i and j are used to
define the dielectric boundary, as shown in Figure 2B.

In order to improve the accuracy of the two-body side-chain
desolvation energy, a scaling parameter, �, was multiplied by the
term in Equation 12 that sums over side chains j. This parameter
was fit using two distinct sets of structures. Structure set 1 con-
tained 1IGD, 1KP6, 1FNA, 2ACY, 1DHN, 3CHY, 2RN2, 3LZM,
1XNB, 1BK7, 1THV, and 1AGJ. Structure set 2 contained 1MSI,
1OPD, 1MOL, 1ERV, 1WHI, 1ELK, 1HKA, 1AMM, 153L,
2PTH, 1BS9, and 2BAA. Optimum values of � were determined
for each set by linear least-squares fit, and a sensitivity analysis
was performed by testing values of � between 1.0 and 2.0 at
intervals of 0.05.

Two-body side-chain/backbone screened Coulombic energies
were calculated as the sum of a one-body energy and two-body
perturbation energies:

�Gscreening
i�bb,2−body = �Gscreening

i�bb,1−body + �
j�i

��
t

qt�i
i, j,bb − �Gscreening

i�bb,1−body�
(13)

where i is the side chain of interest, each t is a backbone atom, qt

is the partial atomic charge of t, and �i
i,j,bb is the reaction field

potential at t generated by the set of partial atomic charges on side
chain i when the backbone and side chains i and j are used to
define the dielectric boundary, as shown in Figure 2C. The screen-
ing energies were then added to the Coulombic energies to obtain
screened Coulombic energies:

�GscreenedCoulombic
i�bb,2−body = �Gscreening

i�bb,2−body + �GCoulombic
i�bb (14)

where the Coulombic energy is calculated using Coulomb’s law
with a dielectric constant equal to the dielectric of the protein
interior.

Two-body side-chain/side-chain calculations were calculated
using the same method that was used to calculate the exact side-
chain/side-chain screening energies, except that the dielectric
boundary is defined using only the backbone and the two side
chains of interest:

�Gscreening
i�j,2−body = �

v

qv�i
i, j,bb (15)

where i and j are the two side chains of interest, each v is an atom
in side chain j, qv is the partial atomic charge of atom v, and �i

i,j,bb

is the reaction field potential at v generated by the set of partial
atomic charges on side chain i when the backbone and side chains
i and j are used to define the dielectric boundary, as shown in
Figure 3B. The screening energies were then added to the Cou-
lombic energies to obtain screened Coulombic energies:

�GscreenedCoulombic
i�j,2−body = �Gscreening

i�j,2−body + �GCoulombic
i�j (16)

where the Coulombic energy is calculated using Coulomb’s law
with a dielectric constant equal to the dielectric of the protein
interior.
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For the two-body side-chain desolvation and side-chain/back-
bone screened Coulombic energy calculations using only pairs that
are close in space, the distance between side chains i and j was
defined as the minimum distance between any atom with nonzero
partial atomic charge on side chain i and any atom on side chain j.
For two-body side-chain/side-chain screened Coulombic energy
calculations using only pairs that are close in space, the distance
between side chains i and j was defined as the minimum distance
between any atom with nonzero partial atomic charge on side
chain i and any atom with nonzero partial atomic charge on side
chain j. In side-chain/side-chain calculations, Coulomb’s law was
used to calculate the energy of pairs that were farther apart than the
cutoff distance. For cutoff distances of both 6.0 Å and 4.0 Å,
optimal distance-dependent dielectric values were derived by lin-
ear least squares to maximize agreement with the exact FDPB
side-chain/side-chain screened Coulombic energies. These dielec-
tric values were tested by cross-validation, and the sensitivity of
the error in the two-body approximation with a cutoff was tested
by varying the dielectric values.

Two-body energies were calculated for a series of homeodo-
main variants reported by Marshall et al. (2002). For each variant,
FDPB two-body side-chain desolvation energies, two-body side-
chain/backbone screened Coulombic energies, and two-body side-
chain/side-chain screened Coulombic energies were added to the
total ORBIT van der Waals energy. A threshold of ±0.90 kcal/mol
was applied to the side-chain/backbone and side-chain/side-chain
screened Coulombic energies. FDPB calculations were run using
parameters described previously (Marshall et al. 2002).

Electronic supplemental material

Supplemental Figure 1 outlines how the methods described here
can be implemented in a protein design calculation, including
pseudocode for the one- and two-body FDPB calculations.
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