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Abstract

The increasing use of enzymes in industrial processes and the importance of understanding protein
folding and stability have led to several attempts to predict and quantify the effect of every possible
amino acid exchange (mutation) on the thermostability of proteins. In this article we describe a
knowledge-based discrimination function that acts as a fast and reliable guide in protein engineering
and optimization. The function used consists of two parts, a pairwise energy function based on a
distance- and direction-dependent atomic description of the amino acid environment, and a torsion
angle energy function. In a first step a training set of 11 proteins including 646 mutant proteins with
experimentally determined thermostability was used to optimize the knowledge-based energy func-
tions. The resulting potential function was then tested using a test mutant database consisting of 918
various point mutations introduced in 27 proteins. The best correlation coefficient obtained for the
experimental data and the predicted thermostability for the training set is r=0.81 (561 data points). A
total of 76% of the mutations could be predicted correctly as being either stabilizing or destabilizing.
The results for the test set are r=0.74 (747 data points) and 72%, respectively. The global correlation
over the combined data (1308 mutants) obtained is 0.78.
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For the prediction of thermostability for proteins (Dill
1990, 1999; Finkelstein 1997; Sippl 1999), a detailed
understanding of the forces that are involved in protein
folding is essential. Therefore a large number of experi-
mental and theoretical investigations were carried out in
recent years to identify factors contributing to the ther-

mal stability of proteins (Matthews 1993; Kannan and
Vishveshwara 2000; Kumar et al. 2000; Liu et al. 2000;
Bruins et al. 2001). Since the knowledge about these
factors is still very limited, the protein engineering pro-
cess to design efficient enzymes for industrial pro-
cesses—such as detergent manufacturing, food and
starch production, and textile processing—is still mainly
based on human experience (Bruins et al. 2001). Pres-
ently no general method for an automatic and a fast
prediction of the effects of possible mutations on the
protein stability is available.

The different theoretical approaches to describe and
quantify mutational effects on protein stability can be
divided in three categories (Lazaridis and Karplus 2000)
that differ in the complexity of the description of the
physical forces involved in protein folding. The first
approach utilizes physical effective energy functions
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(PEEF), including molecular dynamics simulations with
force fields. Because of the high amount of computa-
tional time required for a stability prediction with
PEEF, it can only be used on small sets of protein
mutants. In order to reduce computational time, implicit
terms for the solvation energies and side-chain entropies
can be introduced, but the results obtained so far are not
suitable for large-scale calculations (Wang et al. 1996,
1998; Moult 1997; Duan and Kollman 1998; Duan et al.
1998; Kollman et al. 2000).

The other two approaches are based on knowledge-
based potentials (Sippl 1990, 1993, 1995; Miyazawa and
Jernigan 1994; DeBolt and Skolnick 1996; Melo and
Feytmans 1997; Koppensteiner and Sippl 1998; Gohlke
et al. 2000; Xu et al. 2000; Lu and Skolnick 2001) and can
be divided into the statistical energy functions (SEEF)
and empirical effective energy functions (EEEF). They
are based on pseudo-energies derived either from distri-
butions of structural elements in protein structures or
empirical data obtained from experimental results on
proteins. The advantage of the SEEF potentials is that
they describe complex interactions as entropic effects or
many-body interactions which are difficult to separate
and quantify (Lazaridis and Karplus 2000). SEEFs
usually make use of an empirical approximation for the
denaturated state.

The EEEF approach combines a physical description
of possible interactions with empirical data determined
experimentally (Guerois et al. 2002), resulting in two
main drawbacks: A full physical description of all pos-
sible forces involved in protein stability is needed, and
the free energies used in these methods are approxima-
tions derived from accurate models and experimental
data associated with errors that are difficult to estimate.

A new approach was recently published by Capriotti
et al. (2004) that uses a neural network-based method to
describe the direction (stabilizing or destabilizing) of a
mutational effect on protein stability.

We decided to develop a knowledge-based discrimina-
tion function based on a SEEF approach. The usage of
knowledge-based potentials for the prediction of ther-
mostability was shown in papers by Ota et al. (1995),
Wang et al. (1998), Gilis and Rooman (1996, 1997),
Topham et al. (1997), Guerois et al. (2002), and Zhou
and Zhou (2002). Ota et al. (1995) used an empirically
derived simple pseudo-energy potential originally devel-
oped for the evaluation of 3D-1D compatibility to
predict the thermal stability of 96 point mutations intro-
duced in ribonuclease H. Their pseudo-energy potential
consists of four terms: side-chain packing, hydration,
hydrogen-bonding efficiency, and local conformation.
They describe a top and bottom approach to represent
interacting directions. Wang et al. (1998) calculated a
protein mutant profile based on a mean force field

including protein main-chain characteristics and deter-
mined the thermal stability of 33 single-mutant proteins.
Gilis and Rooman (1996, 1997) developed two knowl-
edge-based potentials: a distance-dependent residue–
residue potential and a backbone torsion angle poten-
tial. They analyzed stability changes upon mutation for
up to 238 single-mutant proteins. The method Topham
et al. (1997) used to predict the thermal stability of
protein mutants is based on structural environment-
dependent amino acid substitution and propensity
tables. They analyzed 131 single mutations. Zhou and
Zhou (2002) used their DFIRE knowledge-based poten-
tial to predict the stabilities of 895 mutants.

Guerois et al. (2002) chose an EEEF approach to
predict thermal stability of single-mutant proteins. The
developed free energy function has eight elements and
was tested on 667 mutants. Recently Bordner and Abag-
yan (2004) published another EEEF approach to predict
the thermal stability of 1816 single point mutations from
81 proteins. Their free energy function consists of seven
elements, such as electrostatic, van der Waals, hydrogen
bonding, and torsional energies, which were calculated
with a force field.

Here, we present a knowledge-based potential func-
tion of the SEEF type which consists of a pairwise
energy function giving a direction- and distance-depen-
dent atomic description of the amino acid environment
and a torsion angle contribution. The computed stabili-
zation energies are compared with the free energy
changes of a large number of experimental investiga-
tions. The potential was developed and optimized with
a training data set (with 646 single mutations) and tested
on 946 single mutations. In the following we present the
discrimination function, the experimental data sets, and
the analysis of our results.

Results

The described discrimination function for the prediction
of protein thermostability consists of two parts: a knowl-
edge-based direction- and distance-dependent amino
acid–atom potential, and a knowledge-based torsion
angle potential. The parameters of this function are
optimized with a training set and evaluated with a test
set. All possible point mutations (sequence length times
19) are computed, and the predicted stabilization ener-
gies are calculated and compared to available experi-
mental results.

There are several ways to analyze the predictive power of
the potential function. The most common value in litera-
ture used is the correlation coefficient rcor between the
predicted and the experimental data (Ota et al. 1995; Gilis
and Rooman 1996, 1997; Guerois et al. 2002; Zhou and
Zhou 2002; Bordner and Abagyan 2004). Accordingly in
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most cases potentials are optimized to give maximal corre-
lation coefficients. Other equally important criteria that
should be considered are the correct prediction of the
direction of the stability change, rv, and the sensibility,
Sens (Capriotti et al. 2004). The optimized set of derived
parameters for the developed potentials are described in
Materials and Methods. A computer program was devel-
oped that creates a mutation profile for any given protein
with a given 3D structure.

Direction component of the amino acid–atom potential

We expect the distribution of atoms around an amino
acid to be dependent on the direction. Therefore we
tested whether the inclusion of a direction component
into the amino acid–atom potential could improve the
results (see Materials and Methods).

The prediction results for the amino acid–atom poten-
tial with and without a directional component are pre-
sented in Table 1. The differences between the amino
acid–atom potentials are minor. This changes when the
amino acid–atom potential is combined with the torsion
angle potential to our final discrimination function (see
Materials and Methods). The correlation coefficient rcor
for the discrimination function with a directional com-
ponent is 0.72 (rv=75%). These values are slightly
better for the discrimination function without direc-
tional component (rcor=0.71 and rv=73%).

Prediction of the free energy differences
for the training data set

The results for the training data set are shown in Table 2
and Figure 1. For the discrimination function, rcor is
0.72 (646 data points) with rv at 75% and a standard
deviation of 1.44 kcal/mol. The standard deviation s is
calculated from the difference between the predicted and
the experimental data. The sensibility reaches a value of
75%. The prediction results are strongly improved by
the combination of the amino acid–atom potential with
the torsion angle. rcor increases from 0.67 (amino acid–

atom potential) and 0.26 (torsion angle potential) up to
0.72. Furthermore, rv increases from 64.7% (amino
acid–atom potential) and 67.8% (the torsion angle
potential) to 74.5%.

As shown in Figure 1, there are distinct “outliers” where
the difference between calculated and experimental data is
much larger than for the average experiments. Excluding
those data pointswith a standard deviation greater than the
threefold standard deviation based on the training data set
(s=1.44kcal/mol) raises rcor to 0.81 (561data points, 87%
of the data set), rv to 76%, and Sens is 72% (seeDiscussion
for a justification of the exclusion). From the 85 excluded
mutations (13% of the original data set), only eight muta-
tions could not be assigned to a secondary structure by the
program DSSP (Kabsch and Sander 1983), and 55 (65%)
mutations have a solvent accessibility of lower than 20%
(see details in Materials and Methods). This indicates that
the over- or underestimation of calculated stabilization
energies in comparison to the experimental stabilization
energies is mostly due to cooperative effects (e.g., many-
body interactions, secondary structure interactions), struc-
tural rearrangements, or hydrophobic effects. These effects
cannot be correctly estimated by any currently published
method (Gilis and Rooman 1996, 1997; Topham et al.
1997; Guerois et al. 2002; Capriotti et al. 2004).

Use of the present method as an automatic approach
for prefiltering protein engineering experiments requires
a high sensibility and a reduction of the number of
necessary experiments. Therefore we limited our list of
stabilizing candidates to mutants with a predicted stabi-
lization effect larger than the calculated standard devia-
tion. By subtracting the standard deviation from the
calculated values, the sensibility increases to 96%, with
only six stabilizing mutations falsely predicted as desta-
bilizing (1lyd Gly30Ala, 2ci2 Lys37Ala, 2wsy Glu49Pro,
3lzm Lys60Pro, 4lyz Phe34Tyr, Gly102Arg).

Prediction of the free energy differences for the test set

The calculated predictions for the test database are
shown in Figure 2 and Table 3. The test set contains

Table 1. Results of the prediction with and without the directional component for the amino

acid-atom function and the discrimination function for the training data set

Method rcor (n) rv [%] Sens

Amino acid-atom potential with direction componenta 0.67 (646) 65 0.67

Discrimination functionb with direction component 0.72 (646) 75 0.75

Amino acid-atom potential without direction component 0.67 (646) 65 0.65

Discrimination functionb without direction component 0.71 (646) 73 0.75

aSee Materials and Methods.
bCombined amino acid-atom potential and torsion angle potentials; see Materials and Methods.
n, number of data points.
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single mutations collected from the ProTherm database
(Gromiha et al. 2000; see Materials and Methods for
details). The correlation coefficient between calculated
and experimental values is 0.46 (918 data points) with rv
of 70%; the standard deviation is 1.67 kcal/mol with a
sensibility value of 67%. By discarding mutations with a
difference between predicted and experimental data
greater than two or three times the standard deviation
(1.44 kcal/mol), rcor raises to 0.64 (851 data points, 93%
of the data set) with rv=70% (s=1.06 kcal/mol) and
rcor=0.74 (747 data points, 81% of the data set) with
rv=72% (s=0.75 kcal/mol), respectively. These find-
ings correspond to the results of the training data set.

We can optimize the sensibility to a value of 93% if we
subtract the standard deviation of 1.44 kcal/mol from
the 918 calculated values. Then up to 50% of all possible
candidates for a protein engineering experiment trying

to increase the thermostability can be excluded by our
discrimination function.

Dependence of the predictive power on
the position of the mutation site

In order to analyze the dependence of the results on the
mutation site, further investigations were carried out.
We describe the mutation site by the solvent-accessible
surface and the possible assignment to secondary struc-
ture elements of the wild-type amino acid. Results of the
analysis are presented in Tables 4 and 5. The best pre-
dictions are achieved for mutations located in secondary
structure elements or for mutation sites with a solvent-
accessible surface <20%. As expected, results for the
training data set are better than for the test set. The
discrepancies in the correlation coefficients for the

Table 2. Results of the prediction with the discrimination function for the training data set

Training data set

Method rcor (n) rv [%] (s [kcal/mol]) Sens

Amino acid-atom potential function 0.67 (646) 64.7 (1.44) 0.67

Torsion angle potential function 0.26 (646) 67.8 (1.48) 0.75

Discrimination function 0.72 (646) 75 (1.44) 0.75

Discrimination function with outliers >3sa excluded 0.76 (612) 75 (1.00) 0.73

Discrimination function with outliers >2sa excluded 0.81 (561) 76 (0.77) 0.72

Discrimination function with ncalc-s
a 0.72 (646) 52 (1.37) 0.96

as=1.44 kcal/mol.
ncalc, calculated values; n, number of data points.

Figure 1. Calculated stabilization energies DDGcalculated for the training data set with 646 data points compared to the

experimental values DDGexperiment. The linear regression line was obtained for 561 data points after the outliers (>2s) were

discarded (the equation is shown in the figure). Its correlation coefficient is rcor=0.81. The discarded mutations are indicated as

squares, and the other mutants are shown with rhombic symbols.
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b-strand with nearly the same number of data points are
remarkable (see Table 5). The rcor for the training data
set is 0.83, while the rcor for the test set is 0.38. Amino
acids located in a b-strand for the training data set are
frequently buried, with 68% having a solvent-accessible
surface of <20% while being changed to ALA or other
hydrophobic amino acids. In the test data set, a total of
only 45% of the wild-type amino acids have a solvent
accessible surface of <20%. The majority of these
amino acids are located at the surface of the protein and
are not as strongly restricted in their movement compared
to amino acids located in the interior of a protein. This
property makes structural rearrangements more likely.
The fact that surface or flexible amino acids located in
turns or a random fold are harder to predict is reflected by
our results (see Tables 4, 5).

Furthermore, in many cases polar or charged amino
acids in the protein interior (solvent-accessible surface
<20%) are substituted by nonpolar amino acids. A

buried single charge in the protein nucleus is very
uncommon because of the unfavorable interactions
with the nonpolar environment (Dill 1990). The charges
are paired to salt bridges, and polar groups form hydro-
gen bonds. If such a group is exchanged by a nonpolar
amino acid, a single noncompensated partial or full
charge is created. This effect seems to be underesti-
mated by the developed discrimination function: For
the training data set 68 mutations are predicted as sta-
bilizing, but in the experiment these mutations had a
destabilizing effect. A total of 43 (63%) mutations out of
the 68 mutations were exchanges from polar or charged
amino acids to nonpolar amino acids.

Dependence of results on the protein

The quality of prediction for single mutations shows
a dependence on the proteins analyzed (see Table 6).
Correlation coefficients for mutants of a specific protein

Table 3. Results of the prediction with the discrimination function for the test database

Test database

Method rcor (n) rv [%] (s [kcal/mol]) Sens

Discrimination function 0.46 (918) 69 (1.67) 0.67

Discrimination function with outliers >3sa excluded 0.64 (851) 70 (1.06) 0.68

Discrimination function with outliers >2sa excluded 0.74 (747) 72 (0.75) 0.67

Discrimination function with ncalc-s
a 0.46 (918) 59 (1.68) 0.93

as=1.44 kcal/mol.
ncalc, calculated values; n, number of data points.

Figure 2. Calculated stabilization energies DDGcalculated for the test data set with 918 data points compared to the experimental

values DDGexperiment. The linear regression line was obtained for 747 data points after the outliers (>2s) were discarded (the

equation is shown in the figure). Its correlation coefficient is rcor=0.74. The discarded mutations are indicated as squares, and

the other mutants are shown with rhombic symbols.
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can vary between 0.4 and 0.8. In many cases it is not
obvious whether differences in the prediction quality are
due to special structural properties of the protein in
question or whether they are connected to experimental
circumstances or different calculations of the free energy
of folding. The variant thermostabilities reported for T4-
lyzozyme mutants from Alber et al. (1987) are such a
special case. For this set of mutants we calculated an rcor
close to zero, whereas for the other mutants of the T4-
lysozyme the rcor is much higher.

Discussion

The discrimination function used in our approach con-
sists of two factors: an amino acid/atom-based potential
that describes the atomic “environment” of the amino
acid to be exchanged, and a torsion angle potential that
reflects how well an amino acid fits into the local main-
chain topology at the specific position, taking nonbond-
ing and through-bond effects into account. The quality
of the results is distinctly improved by the combination
of these two factors (see Materials and Methods).
Attempts to further improve the results by inclusion of
a directional component into the radial-symmetrical
mean force did not show a conclusive effect.

Force-field methods for the prediction of mutant pro-
tein stability are based on the knowledge of the 3D

structure of the native protein and the assumption that
the folding of the mutant is not different from that of the
native one. This is a requirement of any protein engi-
neering experiment trying to preserve protein function.
Nevertheless, this assumption is not correct given that
local changes of folding occur in many cases. Our
approach analyzes how well a mutant amino acid “fits”
into the atomic environment of the wild-type amino acid
and how well the new amino acid is able to reproduce
the original main-chain torsion angle. This approach
is likely to minimize any refolding in the predicted
mutants. On the other hand, during the evaluation of
the approach we do not know whether the assumption of
a structural identity between mutant and native protein
for the experimentally determined stabilization or desta-
bilization effects is correct. We can safely assume that
local refolding occurs with a higher probability in parts
of the protein without a secondary structure as well as
on the surface of the protein. Other reasons for failure of
the mean force approaches are the loss or the new for-
mation of highly specific interactions such as hydrogen
bonds or salt bridges or changes of amino acid side-
chain size in the interior of the protein. These effects
may cause structural changes or rearrangements. In
addition, mutations may alter the properties of the dena-
turated state (Gilis and Rooman 1996, 1997; Guerois
et al. 2002; Zhou and Zhou 2002). In the absence of

Table 4. Correlation coefficient rcor for the discrimination function dependent on the solvent accessible surface

of the wild-type amino acid

Training data set Test set

<20% <AS< 40% <20% <AS< 40%
Method rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%])

Discrimination function 0.76 (239,82) 0.56 (128,52) 0.54 (279,71) 0.58 (401,76) 0.29 (168,57) 0.19 (349,65)

Discrimination function mutations

discarded >3sa 0.78 (215) 0.56 (122) 0.54 (275) 0.72 (361) 0.51 (161) 0.29 (329)

Discrimination function mutations

discarded >2sa 0.86 (181) 0.68 (111) 0.58 (269) 0.81 (295) 0.55 (148) 0.43 (304)

as=1.44 kcal/mol.
n is the number of mutations assigned to the given solvent accessible surface, and rv is the number of correctly predicted mutations (for details, see
Materials and Methods).

Table 5. Results of the discrimination function dependent on the secondary structure

Helices b-strand Turns Random

Method rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%]) rcor (n,rv [%])

Discrimination function (training data set) 0.72 (296,73) 0.83 (119,87) 0.51 (135,70) 0.27 (96,69)

Discrimination function (test data set) 0.67 (485,70) 0.38 (110,72) 0.31 (189,65) 0.07 (134,66)

n is the number of mutations assigned to the given secondary structure element, and rv is the number of
correctly predicted mutations (for details, see Materials and Methods).
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detailed experimental information regarding the folding
of a protein mutant, the only basis for the exclusion of
specific values from the experimental data set is the
exclusion of mutants that show a behavior distinctly
different from that of the rest of the samples. Of course,
we see the danger that results can be “improved” by a
repeated exclusion of “outliers.” The decision upon
exclusion can only be based on the standard deviation
of the full data set and must be regarded with care.

Several methods for the prediction of thermostability
have been described (Miyazawa and Jernigan 1994; Ota
et al. 1995; Gilis and Rooman 1996, 1997; Topham et al.
1997; Wang et al. 1998; Guerois et al. 2002; Zhou and
Zhou 2002; Bordner and Abagyan 2004; Capriotti et al.
2004; Khatun et al. 2004). The largest data set used thus
far was by Bordner and Abagyan (2004). Capriotti et al.
(2004) used a data set consisting of 1615 mutations. Gilis
and Rooman analyzed up to 238 mutations (Gilis and
Rooman 1996, 1997), while other authors focused on a
single protein (Ota et al. 1995) or a few mutations
(Miyazawa and Jernigan 1994; Wang et al. 1998). In all
these works, so-called outliers were identified and dis-
carded from the test set for basically the same reasons
that prompted us to remove some of the values. Further-
more, often only correlation coefficients were reported.
Capriotti et al. (2004) used a neural network–based
method combined with an energy-based method to pre-
dict the stabilizing or destabilizing effect of a mutation
upon a protein. They correctly classified >90% of their
mutations, which is even better than with our approach.
Since they trained their neural network toward the direc-
tion of the stability change, they cannot predict the
importance of this change in the form of the correlation
coefficient.

Topham et al. (1997) predicted 68 mutations of barn-
ase and 83 mutations of Staphylococcal nuclease, with a

correlation coefficient of 0.77 and with 73.3% correctly
predicted mutations to be stabilizing or either destabiliz-
ing. The drawback of this method is the need for mutant
crystal structures; often only the wild-type crystal struc-
tures are known. Gilis and Rooman (1996, 1997) ana-
lyzed 238 mutations with a combined knowledge-based
amino acid–amino acid potential and torsion-angle poten-
tial. The best correlation they achieved is for 121 muta-
tions buried in the interior of the protein (solvent-ac-
cessible surface <20%) with a value of 0.8. Guerois et
al. (2002) developed an EEEF-potential called FOLD-X.
They optimized their potential with several training sets
derived from their test set. The best correlation coefficient,
0.8 (323 single mutations) for the training set was achieved
by discarding 5% of the mutational data. The correlation
coefficient for the test data set was 0.8 (591 single muta-
tions), after discarding 5% of the data. Zhou and Zhou
(2002) analyzed the effect on protein stability of 895 single
point mutations (DFIRE-based all-atom potential). The
best correlation coefficient achieved was 0.62. The sol-
vent-accessible surface distribution of these mutations
was not discussed. Bordner and Abagyan (2004) used a
data set of 1816 experimental stability values of single
point mutations in 81 different proteins. The correlation
coefficient for the training set (908 single mutations) was
0.82. For the test set they reported a covariance of 0.59
(removing 26 outliers from 908 single mutations). The
correlation coefficient was not reported.

In the discussion of the achieved results, two main
aspects will be addressed: (1) the question of why some
mutations are falsely predicted to be either stabilizing or
destabilizing, and (2) why some of the calculated pre-
dictions show a deviation from the experimental values
that is significantly higher than the calculated standard
deviation. This analysis will be exemplified in detail for
the training data set. In addition, the use of the correla-
tion coefficient as a measure of quality for the prediction
will be discussed.

Here, 648 mutations being assigned to a secondary
structure element were included in the test set with a
correlation coefficient of rcor=0.76. The reason why
mutations in secondary elements are discarded or falsely
predicted to be either stabilizing or destabilizing is often
breakage of hydrogen bonds. The mutations for barnase
(1bgs) were discussed in detail by Serrano et al. (1992).
In that work, polar and ionic amino acids that are sub-
stituted with hydrophobic amino acids (e.g., Tyr24Phe,
Asp54Ala, and Tyr99Val) were falsely predicted to be
stabilizing and discarded from the training set because
the corresponding data points were not within the con-
fidence range of 2s. These mutations are located in a b-
strand and are located additionally in the protein inte-
rior. Therefore, the environment is more likely to be
hydrophobic and the exchange of polar amino acids

Table 6. Results of the discrimination function dependent

on the protein for the training set

Protein n rv [%] rcor

1bgs 60 77 0.48

1l63 94 69 0.80

1lyd 78 68 0.55

1lz1 5 100 0.84

1rnb 118 75 0.54

1stn 83 96 0.71

2ci2 79 80 0.57

2lzm 16 50 –0.09

2wsy 18 89 0.52

3lzm 59 59 0.39

4lyz 36 61 0.42

n is the number of mutations assigned to the given protein, rv is the
number of correctly predicted mutations, and rcor is the correlation
coefficient (for details, see Materials and Methods).
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to hydrophobic amino acids should result in a more
stable protein. But in this case the mutations disrupt
up to five hydrogen bonds, resulting in structural
changes and unfavorable interactions. Furthermore, dis-
tinct structural rearrangements are observed in the crys-
tal structures of some mutations: in the case of the t4-
lysozyme1lyd (Glu11Met, correctly predicted but dis-
carded; Shoichet et al. 1995) and 1lyd (Thr157, all
possible amino acids, falsely predicted and discarded).

A question that must be addressed is whether the gen-
eral hydrophobic effect is overestimated in the potential.
This would lead to a general prediction of increased
thermostability when amino acids in the interior of the
proteins are exchanged by others with a higher hydro-
phobicity, even in those cases where the new amino acid
does not fit into the cavity created by the removal of the
original one. We had hoped that this effect was smaller
for an amino acid/atom-based potential compared to an
amino acid/amino acid potential. The results seem to
support this. In the training set and the test set, 64% of
the discarded mutations have a solvent accessibility lower
than 20%, and 90% of those are assigned to secondary
structure elements. The 295 mutations with a solvent
accessibility of <20% show a correlation coefficient of
rcor=0.81, indicating that the observed differences be-
tween prediction and experiment are not due to a general
over- or underestimation of the hydrophobic effect, but
probably caused by cooperative effects or structural rear-
rangements. Limited structural rearrangement leads to a
quantitative uncertainty, but the direction of the stability
change is often correctly predicted. The mutations
Ala31Ile, Ala31Leu, and Ala31Val in chicken egg lyso-
zyme are correctly predicted to be stabilizing, although a
structural relaxation is necessary for the introduction of
larger amino acids, but only for Ala31Ile, and the Ala31-
Leu stabilization effect was overestimated.

The discrepancies between the calculated stabilization
energies and the experimental values are most likely due
to such cooperative effects (e.g. many-body interactions,
secondary structure interactions), which are difficult to
handle (Gohlke et al. 2000). Cooperative effects are ob-
served in every unfolding study of proteins (Robertson
and Murphy 1997). These effects are not described accu-
rately by the presented discrimination function. On aver-
age, the effect of 10% of the buried mutations and
,14% of mutations assigned to secondary structure ele-
ments is not sufficiently predicted by the described dis-
crimination function.

To evaluate a prediction function for thermostability,
one can choose several criteria. The selection of these
criteria naturally depends on the usage of the method.
Often the correlation coefficient is not only used to
describe the correctness or quality of a method but also
as a criterion for the use in protein engineering or

enzyme optimization. However, as shown in the Results
section, the correlation coefficient can be significantly
increased with reasonable criteria (from rcor=0.46 to
rcor=0.8) (see Tables 3, 5) without an increase in the
percentage of correctly predicted mutations to be either
stabilizing or destabilizing, nor with an increase in the
sensibility.

This indicates that the correlation coefficient is insuf-
ficient as the sole criterion to assess the practical value or
quality of a method. This was also stated by Capriotti
et al. (2004). The correlation coefficient could be further
increased artificially to rcor=0.91 by an additional
restriction of included experimental data (393, 61% of
the original data points of the training data set), result-
ing in the best correlation coefficient for this number of
data published so far, but the correctly predicted muta-
tions to be either stabilizing or destabilizing would be
only 81%. About 20% of all mutations that are used to
evaluate these methods are predicted falsely, and we
assume that the large majority of these mutations cannot
easily be treated by energy functions because of experi-
mental errors, cooperative effects, and/or structural
changes (Gilis and Rooman 1996, 1997; Guerois et al.
2002). This resembles the use of mean force methods for
the treatment of the inverse protein folding problem,
where ,80% of a diverse set of sequences can be cor-
rectly assigned to its structure (Dill 1990, 1999; Brady
and Sharp 1997; Sippl 1999). In addition, 31% of the 561
mutations have an absolute value of the experimental
stabilization energy of <0.5 kcal/mol, which is in the
range of experimental errors (Yutani et al. 1987; Ruiz-
Sanz et al. 1995; Shih and Kirsch 1995; Shih et al. 1995;
Shoichet et al. 1995; Xu et al. 1998).

In the quality assessment of the results, particular
emphasis must be laid on the significance of the pre-
dicted effect. For example, for the training set we
achieved a sensibility of 96% (see Results). This means
that only six of 646 mutations are falsely predicted to be
destabilizing, but four of these six mutations have
experimental values of DDG<0.3 kcal/mol (1lyd
Gly30Ala, 2ci2 Lys37Ala, 3lzm Lys60Pro, 4lyz Phe34-
Tyr).

Conclusion

We have developed a knowledge-based potential that
predicts the stability change upon mutation of residues
that span most of the structural environments found in
proteins. The discrimination function was trained with
646 mutations introduced at 273 sites on 11 different
enzymes and finally tested on 918 mutations introduced
at 326 sites on 27 proteins

For 83% (1308 out of 1564) of all experimental muta-
tions on 31 different proteins, a correlation coefficient of
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0.78 between calculated and experimental data was
achieved. Moreover, 76% of the mutations were cor-
rectly predicted to be either stabilizing or destabilizing,
with an average error <0.75 kcal/mol as indicated by
the standard deviation. The expected quality of the
results depends on the localization of the mutation
within the protein. If the mutation site occurs in a sec-
ondary structure element or in the interior of a protein
(solvent accessibility of <20%), the results for the pre-
diction are much better than for other mutations.

The results indicate that the method is limited to muta-
tions that do not affect the backbone structure of the wild
type. Additive effects of mutations are expected for muta-
tions at positions with a large distance to each other.

The presented discrimination function is a fast
method to create a mutation profile with possible candi-
dates for point mutations and can be used in protein
engineering processes as a prefilter.

The program will be available via a Web interface at
http://www.hnb-cologne.uni-koeln.de.

Materials and methods

To estimate the changes in stability upon mutation, we calcu-
lated the free energy of folding for the wild-type (WT) DGWT

and the mutant (MT) DGMT. It was stated that the difference
of the computed free energies of folding equals the experimen-
tal stabilization energy DDG (Sippl 1990). For the computation
of free energies we used a discrimination function consisting of
two combined knowledge-based potentials: a direction- and
distance-dependent amino acid–atom-potential and a torsion
angle energy potential.

The direction- and distance-dependent
amino acid–atom potential

The radial distribution of two structure elements in a distinct
distance is described by the radial pair distribution function
(Gohlke et al. 2000). The distance-dependent pair potentials
DEij(rij) are derived following an approach developed by Sippl
(1990, 1993, 1995):

DEij rij
� �

¼ kT ln 1þms½ � � kT ln 1þms
g

2ð Þ
ij rijd
� �
g rð Þ

" #
ð1Þ

where g(2)ij(rij) is the radial pair distribution function of a pair
i,j separated by a distance rij. g(r) is the description of the
reference state. k is the Boltzmann constant, T is a conforma-
tional temperature, and m and � are constants (Gilis and
Rooman 1997).

g rð Þ ¼

P
k2K

P
p2P

g
2ð Þ
ij rij
� �

Nij rij
� � ð2Þ

The reference state is defined as an ensemble of structure
elements in a large set of protein structures. Summing the
occurrences of the structure elements i,j for one protein, P for
all k proteins, in the set of protein structures GP in the interval

(r) of rd and rd+dr and in the direction interval (v) gives the
number of structure pairs Nij(rijvij):

Nij rijvij

� �
¼ X
k2GP

X
p2P

d dij;r;v
� �

ð3Þ

where d(dij,r,v)= ,1 if dij 2[rd,rd+dr), otherwise is
d(dij,r,v)=0.

As some rarely occurring combinations of structural ele-
ment pairs may not be sufficiently represented in the data set,
the computed frequencies may not be accurate. To avoid the
problem of sparse data, Sippl (1990) introduced a correction
term with the values m and �. m is the number of occurrences
of the observed pairs, and � is a parameter with the value of
0.002 (see Equations 1, 4).
In addition to the distance information, a direction- and

distance-dependent description of the amino acid environment
includes the orientation v between a pair of structure elements.
This changes the pair potential function to:

DEij rijvij

� �
¼ kT ln 1þms½ � � kT ln 1þms

g
2ð Þ
ij rijvij

� �
g rvð Þ

" #
ð4Þ

In this study an amino acid–atom potential was used. For the
atomic description of the amino acid environment we defined
five classes of atom types: aliphatic carbon, aromatic carbon,
nitrogen, oxygen of amino acids, and oxygen of the solvent.
We developed an algorithm to fill and surround a protein with
solvent water, based on a grid model with a chosen lattice
constant of 0.6 Å. All grid space not occupied by protein was
defined as free and filled with water (with an approximate
volume of 30 Å3) (Richards 1974) when enough free grid
space is available (Colonna-Cesari and Sander 1990; Gerstein
and Levitt 1998; Lazaridis and Karplus 1999).
The amino acid is represented by three points and a direc-

tion. The points are the geometric center CZ, the CB (b-C-
Atom), and O (oxygen from the carbonyl group of the back-
bone) of the amino acid. The direction is defined by the vector
CZCB, and a plane was created by CZ, CB, O. The chosen
amino acid representation is based in some part on already
published approaches (CB, Bryant and Lawrence 1993 and
Huang et al. 1995; CZ, Kocher et al. 1994 and Ota et al.
1995; O, Feig et al. 2000) and was enhanced to fit our
approach. The vector n of the plane is defined as the vector
product CZCBxCZO, whereas CZCB, CZO, CZCBxCZO is a
right-handed system. Distances between the amino acid and
the atom types are measured from the CZ point. The angle
between an atom type and the direction vector determines the
relative orientation of the structure element pair. The angle is
given in polar coordinates, which are used to describe every
point relative to CZCB.

The torsion angle potential

The torsion angles w andC describe the local interactions of an
amino acid with its direct sequence neighbors. Every amino
acid prefers specific torsion angle pairs and differs in its dis-
tribution of (w,C)-pairs. From this distribution of (w,C)-pairs
a knowledge-based potential can be derived (Dengler 1998).
For this purpose the axis of the Ramachandran wC map is
divided into intervals of 1˚ , resulting in 129,600 fields. To
achieve a steady distribution out of a discrete distribution of
(w,C)-combinations, the (w,C)-values are normalized. Values
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are obtained from the protein structure set. The normalized
distribution n(w,C) of (w,C) pair occurrences is used to calculate
the potential energy DEaa(w,C) for a specific amino acid aa
with a distinct torsion angle pair (w,C) via the inverse Boltz-
mann equation:

DEaa
j;cð Þ ¼ �kT ln

naaðj;cÞ

nallðj;cÞ

 !
ð5Þ

where all refers to the average values of all 20 amino acids.

The discrimination function

The direction- and distance-dependent amino acid–atom
potential Eaap was combined with the torsion angle potential
Etp to the discrimination function Eww:

Eww ¼ a � Eaap þ b � Etp ð6Þ
The best results for the training data set for the discrimination
function were achieved with two half spheres up and down the
defined plane, a distance of 3–13 Å with an interval length of
0.5 Å, and the weighting factors a, b=1.

Calculation of the stabilization energy

To estimate the stabilization energy, the folding energies of the
wild-type DGWT and the mutant DGMT were computed using
Equations 4–6. For this purpose it was assumed that the wild
type and the mutant have the same backbone structure. The
stabilization energy DDG (the difference in folding free energy
between mutant and wild type) was determined using the fol-
lowing equation:

DDG ¼ DGMT � DGWT ð7Þ

The stabilization energy is thus negative if the mutated protein
is more stable than the wild-type protein.

Evaluation of the predictive power

To evaluate the predictive power of the discrimination function
several criteria were chosen, namely the correlation coefficient
rcor between the computed and the experimental values, the
number of correctly predicted mutations (rv) to be either sta-
bilizing or destabilizing, and the sensibility (Sens) of the pre-
diction:

Sens ¼ rtrue positive

rtrue positive þ rfalse negative
ð8Þ

rtrue positive is the number of mutations correctly predicted to be
stabilizing, and rfalse negative is the number of mutations falsely
predicted to be destabilizing.

Experimental data sets

Three experimental data sets were used: a protein structure
data set, the training set, and the test set.
The knowledge-based potentials were derived from the pro-

tein structure data set of 286 well-resolved (<2.5 Å) and

refined protein structures with low sequence homology (Ber-
man et al. 2000).

The training set contained 646 DDG experimental data
points from 11 proteins extracted from the literature (Gilis
and Rooman 1996, 1997; Topham et al. 1997).The experimen-
tally studied proteins (PDB codes) were barnase (1bgs, 1rnb),
t4-lysozyme (1l63, 1lyd, 1lz1, 2lzm, and 3lzm), staphylococcal
nuclease (1stn), chymotrypsin inhibitor (2ci2), tryptophan
synthase (2wsy), and the hen egg white lysozyme (4lyz).

The experimental DDG values for the test mutant database
were exclusively retrieved from the ProTherm database (Gro-
miha et al. 2000). Stabilization energies of single mutations
measured by thermal denaturation were considered, resulting
in 918 data points from 27 proteins (PDB codes 1abm, 1ank,
1bni, 1bpi, 1csp, 1cyo, 3gap, 1lhm, 1lz1, 1mbn, 1myl, 1rn1,
1rop, 1rtb, 1sar, 1stn, 1sup, 1tyu, 1ycc, 2ci2, 2lzm, 2rn2, 2trx,
2wsy, 3ssi, 1dyj, and 4lyz).

A BLAST run (Blossum 62, e-value 1e-3) resulted in 25
independent sequence families, and six of them (two lysozyme
classes) were picked for the training set (Altschul et al. 1997).
The test set included all 25 sequence families. About 50% of all
single point mutations in the combined data set were derived
from lysozyme experiments.

Computer programs

For the assignment of secondary structure the program DSSP
(Kabsch and Sander 1983) was used (helices [a-helix, p helix,
and 3–10 helix], b-strands, turns [bend, hydrogen bonded turn,
and residue in isolated b-bridge], and random [nonassignment
with DSSP]). The calculation of the solvent accessibility was
performed by the program psa (http://www-cryst.bioc.cam.ac.
uk/,joy). Similar to the work of Gilis and Rooman (1997), the
mutations were sorted in three classes: solvent-accessible sur-
face <20%, solvent-accessible surface between 20% and 40%,
and solvent-accessible surface >40%.
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