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Abstract

Recently, a series of closely related theoretical constructs termed the ‘‘topomer search model’’ (TSM)
has been proposed for the folding mechanism of small, single-domain proteins. A basic assumption of
the proposed scenarios is that the rate-limiting step in folding is an essentially unbiased, diffusive
search for a conformational state called the native topomer defined by an overall native-like topo-
logical pattern. Successes in correlating TSM-predicted folding rates with that of real proteins have
been interpreted as experimental support for the model. To better delineate the physics entailed, key
TSM concepts are examined here using extensive Langevin dynamics simulations of continuum Ca

chain models. The theoretical native topomers of four experimentally well-studied two-state proteins
are characterized. Consistent with the TSM perspective, we found that the sizes of the native
topomers increase with experimental folding rate. However, a careful determination of the corre-
sponding probabilities that the native topomers are populated during a random search fails to
reproduce the previously predicted folding rates. Instead, our results indicate that an unbiased
TSM search for the native topomer amounts to a Levinthal-like process that would take an impos-
sibly long average time to complete. Furthermore, intraprotein contacts in all four native topomers
considered exhibit no apparent correlation with the experimental f-values determined from the
folding kinetics of these proteins. Thus, the present findings suggest that certain basic, generic yet
essential energetic features in protein folding are not accounted for by TSM scenarios to date.

Keywords: protein folding; topomer search model; topomer-sampling model; Levinthal search;
explicit-chain modeling

Many single-domain proteins fold via apparent two-state
processes with rates that vary widely, frommsec�1 to sec�1

(Jackson 1998; Baker 2000). In 1998, an insightful discov-
ery was made: These folding rates were found to be pre-
dictable to approximately within one to two orders of
magnitude using a very simple topology-based parameter

called the relative contact order, CO (Plaxco et al. 1998).
This parameter quantifies the average sequence separation
between native contacts divided by protein length. Pro-
teins with low CO values (typically a-helical proteins)
were found to fold faster than proteins with high CO
values (typically a/b- and b-proteins). Since this seminal
finding, other topology-based parameters have been
found that exhibit similar correlation with folding rates.
These include long-range order (Selvaraj and Gromiha
2001), total contact distance (Zhou and Zhou 2002),
‘‘cliquishness’’ (Micheletti 2003), local secondary structure
content (Gong et al. 2003), and the topomer-derived para-
meter considered in this work (Makarov and Plaxco 2003).
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Several theoretical constructs that did not directly con-
sider explicit chain representations have had notable
successes in reproducing this empirically observed rate–
topology relationship (Alm and Baker 1999; Galzitskaya
and Finkelstein 1999; Muñoz and Eaton 1999; Weikl and
Dill 2003). For more realistic explicit-chain models that
involve direct simulations of folding kinetics, however, it
has proven less straightforward (Koga and Takada 2001;
Faisca and Ball 2002; Cieplak and Hoang 2003); none-
theless, significant recent advances have been made
(Jewett et al. 2003; Kaya and Chan 2003c; Chavez et al.
2004; Ejtehadi et al. 2004).

Among the theoretical efforts aiming to elucidate the
remarkable contact order-dependent folding rates, a series
of closely related models under the name of ‘‘topomer
search model’’ or ‘‘topomer-sampling model’’ (TSM) has
been proposed in the past five years as a possible mechan-
istic basis for the empirically observed rate–topology rela-
tionship (Debe and Goddard 1999; Debe et al. 1999;
Makarov andMetiu 2002; Makarov et al. 2002; Makarov
and Plaxco 2003; Gillespie and Plaxco 2004). These topo-
mer constructs share the idea that the folding of small
single-domain proteins is a two-step process: The first step
is an essentially unbiased, diffusive search for an overall
native-like topological state termed the ‘‘native topomer
state.’’ In the second step, after the chain has formed the
correct gross topology, the native contacts rapidly zipper
to form the completed native structure. Since this second
step is assumed to occur very rapidly, the rate-limiting
step in folding is the essentially unbiased search process
in the first step, and folding rates are therefore determined
by the ‘‘size,’’ or extent in conformational space, of the
native topomer state.

The topomer folding picture may be schematically illu-
strated by the highly simplified energy landscape carica-
tures in Figure 1. Here the energy landscape ‘‘outside’’
of the native topomer (the part represented by a steep
funnel in Fig. 1) has been drawn flat to highlight the
unbiased nature of the hypothetical TSM process (Debe
and Goddard 1999). This corresponds to the case in

Makarov et al. (2002) for which ‘‘the barrier to folding is
purely entropic,’’ although the possibility of a general
energy favoring contact formation has also been consid-
ered as part of a TSM process (Makarov et al. 2002,
p. 3538; see Discussion below). Thus, in a proposed
unbiased topomer-search scenario, the first step of the
folding process is a search on this flat region of the energy
landscape. Then, as soon as the native topomer is found,
folding proceeds quickly and downhill to the native state
until all native contacts are formed. As a consequence of
this folding picture, the folding rate of a protein is con-
trolled by a quantity Ptop, the probability that the native
topomer state is populated during a random search. Slow-
and fast-folding proteins thus have ‘‘tight’’ and ‘‘loose’’
native topomers, respectively, corresponding to the two
landscapes inFigure 1with smaller and larger ‘‘golf holes.’’

To our knowledge, the original version of TSMwas first
proposed by Debe et al. (1999). Using a discrete chain
growth method to generate large numbers of random con-
formations, the total number of distinct topomer states (of
which the native topomer is one)was estimated for proteins
with chain lengths up toN=100 amino acid residues. For
instance, they found the number of topomers to be
�33 107 for N=100. It was then argued that if the topo-
mer state space was sampled on a nanosecond timescale,
native topomers could be found on typical folding times,
even in the absence of a mechanism that simplifies and
expedites the search. In a subsequent paper, Debe and
Goddard (1999) set out to test themodel further by estimat-
ing the quantities Ptop for a set of 18 b- and a/b-proteins
using a similar chain growth method (all-a proteins were
excluded from this data set). The folding rates that resulted
from their calculations showed a good correlation with
experimental data (correlation coefficient 0.78).

In all TSM scenarios, the proposed folding process is
quickly completed once the native topomer is located. It
follows that if TSM is to provide a rationalization of
apparent two-state folding mechanisms, the precise defi-
nition of the native topomer state is of critical importance.
In the original TSM study by Debe and colleagues, ‘‘topo-
mers are tubes of topologically equivalent conformations’’
(Debe and Goddard 1999): Two structures (conforma-
tions) were classified as topomeric (i.e., belonging to the
same topomer state) based on a test procedure in which
equal-strength harmonic forces were applied between cor-
responding Ca atoms of two optimally superimposed
structures. If a conjugate gradient minimization proce-
dure could completely relax the spring forces, that is, if
small backbone moves of one structure could bring it onto
the other without getting trapped in a local minimum, the
two structures were classified as belonging to the same
topomer (Debe et al. 1999).

In the subsequent development of the TSM approach
by Makarov and colleagues, however, the native topomer

Figure 1. Simple schematic illustration of the energy landscape in the

TSM, for a slow-folding (left) and a fast-folding (right) protein. The

horizontal dimensions represent protein conformational variation or

conformational entropy; the vertical dimension provides the free

energy of every given protein conformation—with appropriate aver-

aging of solvent degrees of freedom (Dill and Chan 1997).
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state was defined by specific collections of native contacts,
as the set of conformations in which all sequence-distant
native contacts are formed. In other words, TSM is the
conformational ensemble in which all sequence-distant
residues (as defined by the formalism) that are in contact
in the native state are in close spatial proximity. Hence,
the number of sequence-distant native contacts, LD, plays
a central role in this more recent TSM formulation, as will
be detailed below. This approach is different in many
respects from the original TSM of Debe and Goddard
(1999) and Debe et al. (1999). Certain features introduced
in the later formulation of Makarov and colleagues are
seen as instrumental in extending the TSM’s ability to
predict folding rates to include also purely a-helical pro-
teins, as opposed to only b- and a/b-proteins (Makarov
and Metiu 2002; Makarov et al. 2002; Makarov and
Plaxco 2003).

The kinetic process of topomer sampling was envi-
sioned by Debe and colleagues to be mainly among
relatively compact conformations with low (favorable)
solvation energies, as was depicted by the kinetic path
on their ‘‘Rose Bowl’’ (a stadium in Pasadena, California)
landscape (see Debe et al. 1999, Fig. 5). This amounts to
postulating a folding mechanism that involves a fast,
‘‘burst-phase’’ collapse to an ensemble of compact con-
formations that are partitioned into different topomers.
In that case, the flat areas in Figure 1 represent only such
compact conformations but not the open conformations
that presumably have higher solvation energies. The bulk
of the search time for the native topomer is then spent in
different compact conformations. But such a folding
mechanism does not appear to correspond to that of
many real, apparent two-state proteins—typified by chy-
motrypsin inhibitor 2 (Jackson and Fersht 1991)—that
exhibit no significantly populated compact folding inter-
mediates. In contrast, the topomer search approach of
Makarov and colleagues seeks the probability of locating
the native topomer among all possible conformations,
most of which are presumably open (Makarov et al.
2002), and is therefore conceptually more in line with
the principles of cooperative protein folding (Chan et al.
2004; Gillespie and Plaxco 2004).

For this reason, our present analysis focuses primarily
on the more recent TSM formulation of Makarov and
colleagues with the above-described contact-based defi-
nition of the native topomer (Makarov and Metiu 2002;
Makarov et al. 2002; Makarov and Plaxco 2003). In
their approach, TSM prediction of folding rates is
reduced to solving the following problem: What is the
probability P(nD) that nD sequence-distant residue pairs
are brought into proximity by a random search process?
In this notation, the native topomer probability Ptop is
identified with P(LD). The parameter LD (which is
denoted QD in Makarov and Plaxco 2003) is closely

related to the long-range order parameter LRO pro-
posed previously by Selvaraj and Gromiha (2001),
namely, LD/N=LRO provided that the same definition
of a contact is used. Based on results from inert
Gaussian chains (without consideration of polymer
excluded volume), Makarov and Plaxco (2003) intro-
duced the approximate formula P(LD)= gaLD where a
and g are constants. This expression leads to a simple
topology-based rate-prediction formula that was tested
on a set of 24 two-state proteins (Makarov and Plaxco
2003), a diverse set that did not exclude all-a proteins
as had been done previously (Debe and Goddard 1999).
The rate-prediction formula showed excellent correla-
tion with experimental folding rate data with a
correlation coefficient �0.9 (Makarov and Plaxco
2003), even though folding rates predicted using LD

can sometimes be drastically different from those pre-
dicted using CO (Jones and Wittung-Stafshede 2003).

Because of this empirical success and the potential
physical insights it may offer, it is imperative to
take an in-depth look at the TSM perspective as several
key aspects of it remain to be better elucidated. As it
stands, TSM is not a self-contained, explicit-chain
model. TSM investigations thus far have not used direct
simulations of folding kinetics. Instead, kinetic beha-
viors and folding rates were deduced from presumed
thermodynamics–kinetics relationships. In this basic
respect, TSM is akin to other non-explicit-chain
modeling of CO-dependent folding that have also
enjoyed high degrees of success (Alm and Baker 1999;
Muñoz and Eaton 1999). However, the relationship
between the thermodynamics and kinetics of chain
molecules can be subtle, and explicit-chain results do
not always agree with expectations from non-explicit-
chain considerations (Karanicolas and Brooks 2003;
Chan et al. 2004). Therefore, ultimately, TSM or any
other non-explicit-chain model of protein folding has to
be evaluated by ascertaining whether and how the
model assumptions can emerge from polymer physics.
With this in mind, this article explores the feasibility of
the proposed TSM folding mechanism by performing
extensive Langevin molecular dynamics simulations
using an explicit Ca chain model. We focus on four
apparent two-state proteins with diverse CO values.
These chain models allow us to assess the logic of the
physical picture afforded by TSM, and to perform struc-
tural comparisons with experiments.

In the analysis below, we first derive a clear structural
characterization of the native topomers for the four
proteins. Then, by using standard histogram reweight-
ing techniques, we estimate their P(LD) values. We find
them to be much smaller than that stipulated by the
TSM approximation P(LD)= gaLD. In fact, our calcula-
tions show that finding the correct native topomer state

www.proteinscience.org 1645

A critical assessment of the topomer search model



in a random, unbiased TSM search is so unlikely that it
is comparable to the hypothetical Levinthal search pro-
cess. Finally, to connect TSM with common under-
standing of folding kinetics, we compare experimental
f-values with TSM-predicted f-values calculated by
taking the ensemble of conformations constituting a
native topomer state to be the TSM-prescribed folding
transition state.

Results

Proteins

We focus on the four single-domain proteins in Table 1
that cover a variety of chain lengths, secondary struc-
ture contents, and folding rates. They are part of a
larger set of roughly 30 single-domain proteins that
have been shown to fold via simple, apparent two-state
thermodynamics and kinetics. A list of these proteins
along with experimental folding data can be found in
Ivankov et al. (2003).

Preliminaries: Definitions and assumptions

Following Makarov and Plaxco (2003), we use a spatial
proximity cutoff parameter rc and a sequence separation
cutoff parameter lc to determine the set of sequence-
distant native contacts: An amino acid pair ij is consid-
ered part of the native topomer contact set if the Ca’s of
amino acids i and j are separated by a spatial distance
rnij< rc and their sequence separation |i� j|> lc. Thus,
the number of contacts LD in this set depends on the
choice of lc and rc. In Table 2, we report the LD values
for our four proteins, for several different choices of lc
and rc within the limits 4 £ lc £ 12, and 6 Å £ rc £ 8 Å.
Table 2 shows that LD depends rather strongly on lc and
rc, and this dependence is particularly strong for 1lmb.
For this protein, LD varies almost by a factor 10
between the different values of lc and rc considered here.

We then define the native topomer state of a protein
as the set of conformations in which every LD amino
acid pair has formed a ‘‘contact’’ or is otherwise in close

spatial proximity. To simplify the terminology, in the
following we will use ‘‘contact’’ to indicate simply that
two Ca atoms are close in space. For this purpose, two
definitions of contact are used. Unless stated otherwise,
we use the contact criterion rij< 1.2rnij , where rij is the
Ca–Ca distance between i and j. This criterion has been
used in previous studies of native-centric Ca models
(Clementi et al. 2000; Kaya and Chan 2003a). In certain
considerations, we find it useful to use a slightly more
permissive contact criterion, rij< rnij+3.0 Å, which
entails a broader definition of a native topomer. It
should be noted that both of these contact criteria are
independent of the cutoff parameter rc.

Chain simulation of the native topomer search process

To assess the TSM folding picture by an explicit-chain
approach, it is necessary to (1) construct an overall
conformational ensemble that is essentially unbiased,
(2) determine the size of the conformational space
covered by the native topomer as a sub-ensemble
of the overall conformational ensemble, and (3) estimate
by explicit construction the probability that this
conformational sub-ensemble can be located by a diffu-
sive search, as envisioned by TSM. We adopt a simple
Ca chain model for this purpose, with the following
potential energy function:

E0 ¼ krep
X
i<j�3

�ij
rij

� �12
þ kbon

X
bonds

bi � bni
� �2

þ kben
X
angles

�i � �ni
� �2 þ ktor

X
torsion

1� cos 3 �i � �ni
� �� �

;

ð1Þ
where bi, yi, fi, and rij are the virtual bond lengths, bond
angles, torsion angles, and Ca–Ca distances, respec-
tively, and bni, y

n
i, f

n
i, and rnij are the corresponding native

values. This energy function is designed to capture the
basic polymer statistics of a generic self-avoiding poly-
peptide chain. The use of the yni and fn

i values in the last

Table 1. Data for the four proteins studied

Protein pdb N Rn
g (Å) kf (sec

�1) Texp (�C)

Acylphosphatase 1aps 98 12.6 2.36 10�1 28

Chymotrypsin inhibitor 2 2ci2 64 10.8 4.86 101 25

Spliceosomal protein U1A 1urn 96 12.2 3.26 102 25

l-repressor 1lmb 80 11.5 1.16 104 25

Protein databank id, pdb; number of amino acids, N; radius of gyra-
tion, Rn

g; and experimental folding rate in water, kf, determined at
temperature Texp (Jackson and Fersht 1991; Silow and Oliveberg
1997; van Nuland et al. 1998; Myers and Oas 1999).

Table 2. Number of sequence-distant native contacts LD

rc = 8 Å rc = 7 Å rc = 6 Å

lc = 4 8 12 lc = 4 8 12 lc = 4 8 12

1aps 236 216 205 167 155 147 92 85 79

2ci2 108 93 88 80 69 67 47 41 40

1urn 180 156 140 123 108 98 70 59 53

1lmb 85 58 49 45 25 19 24 12 9

Here we focus on the cutoff values lc and rc within the limits suggested
by Makarov and Plaxco (2003).
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two terms introduces a small bias toward the native
state. These terms are included here for computational
efficiency. Their presence does not alter our main con-
clusion, based on the results from Equation 1, that the
probability of locating the native topomer by an
unbiased search is vanishingly small (see below). This
is because the native-centric nature of these terms in
Equation 1 implies that the relative size of the native
topomer sub-ensemble would be even smaller in an
entirely unbiased overall conformational ensemble. The
first term of the above potential function accounts for
polymer excluded volume. Its summation is over all
amino acid pairs ij, and the parameters sij are chosen
in the following manner: sij= 0.85rnij for pairs ij in con-
tact in the native state (rnij< rc); otherwise, sij= 4.0 Å.
To speed up the calculations, the repulsive energy term
is evaluated using a cutoff procedure with cutoff radius
2sij. This choice of the sij parameters ensures that the
native conformation would not be made inaccessible by
unphysical repulsive forces.

A motivation for adopting a simplified Ca model in this
study rather than using chain representations that account
for more structural details is computational efficiency:
A simplified chain model allows for extensive conforma-
tional sampling and reliable probability estimations that are
essential in addressing issues pertinent to the TSM. In this
regard, it is noteworthy that the TSM itself—like several
other topology-based folding scenarios—is also an inher-
ently structurally low-resolution formulation that does not
refer directly to sequence-specific interactions (Makarov
and Plaxco 2003). Hence, a Ca chain model enjoys the
advantage of making direct connections to the underlying
mathematical approximations of the TSM. Continuum
(off-lattice) Ca models have been used extensively in the
literature for studying protein folding, mostly in combina-
tion with Go�-type energy functions (Clementi et al. 2000)
but also for structure prediction (Nanias et al. 2003). In
particular, our model is similar to the one introduced in
Clementi et al. (2000) and further studied in Kaya and
Chan (2003a). Following Kaya and Chan (2003a), we
choose the strengths of energy terms in Equation 1 to be
krep= �, kbon=100 �, kben=20 �, and ktor=0.5 �, respec-
tively, where the energy unit � is set to 1, and use Langevin
dynamics to calculate the thermodynamic behavior. The
temperature is kept constant at T=1.0, and snapshots are
taken every 100 time steps. Simulation details are otherwise
the same as in Kaya and Chan (2003a).

The native topomers

The energy function in Equation 1 describes a disordered
and ‘‘floppy’’ protein chain that samples many
different conformations. To obtain a subset of these
conformations that corresponds to the native topomer

state of each of the four proteins studied here, we
impose harmonic constraints representing the sequence-
distant topomer contact pairs on the Ca chain.
This is achieved by using the energy function

Etop ¼ E0 þ ktop
X
constr:

rij � rnij

� �2

; ð2Þ

where the summation shown is over the LD sequence-
distant native contacts as defined by the cutoff parameters
lc and rc (see Table 1). The conformational sampling
procedure here is similar to the determination of ensem-
bles of partially disordered protein conformational states
that uses experimental data as constraints (Choy and For-
man-Kay 2001; Vendruscolo et al. 2001), the main differ-
ence being that the constraints in this study are supplied
by the TSM hypothesis instead of experimental measure-
ments. In Equation 2, the topomer constraint strength is
taken to be ktop=10 �, making these harmonic forces one
order of magnitude weaker than the strength kbon of the
virtual bonds between sequentially adjacent Ca atoms.We
perform Langevin dynamics simulations of the energy
function Etop for each of our four proteins and different
choices of the parameters lc and rc. Each simulation is
started from the native structure. The system is first equi-
librated for 108 simulation time steps, after which sam-
pling is performed for 109 time steps.

In general, a smaller lc and a larger rc will produce a
larger number of topomer constraints, resulting in a topo-
mer ensemble that more closely resembles the native pdb
structure. This trend can be seen from Table 3, which
shows thermodynamic averages of the radius of gyration
Rg, the root-mean-square deviation (rmsd) from the cor-
responding native structure, and the fraction of native
contacts Q for four different parameter choices of lc and
rc. Smaller lc and larger rc naturally lead to smaller Ærmsdæ
and larger ÆQæ values, consistent with more native-like
ensembles. We note also that ÆRgæ remains fairly close to
the corresponding native values (see Table 1) across the
various choices of lc and rc.

The conformational ensembles of native topomers
obtained here are a direct logical consequence of the
TSM assumptions of Makarov and Plaxco (2003). An
advantage of our explicit-chain approach is that it can
supply relatively detailed conformational information
that was not available in their TSM formulation that
used an analytical approximation of conformations of
chains without excluded volume. To provide a graphic
structural illustration of the ensemble of topomer con-
formations obtained from our simulations, we display in
Figure 2 a selected set of these conformations optimally
superimposed on the corresponding native structure.
These conformations are the first 25 centroids from a
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simple clustering scheme on the complete topomer
ensembles (see figure caption). It is interesting to note
that, qualitatively, these drawings appear to be consis-
tent with the TSM perspective (Makarov et al. 2002;
Makarov and Plaxco 2003) that a slow-folding protein
such as 1aps has a ‘‘tighter’’ transition state ensemble
than, for example, the much faster folding protein 1lmb,
which has a very ‘‘loose’’ native topomer state (Fig. 2).

A similar picture is offered by a more recent non-expli-
cit-chain analysis of the correlation between folding
rates and presumed ensemble sizes of ‘‘transition states’’
(Bai et al. 2004) derived from the total contact distance
measure (Zhou and Zhou 2002). Here, the trend exhib-
ited in Figure 2 is further demonstrated by Figures 3
and 4, which show the normalized probability distribu-
tions P(rmsd) and P(Q) for lc=12 and rc=8 Å. The
order of these distributions in terms of their closeness to
the native structure follows the order of the experi-
mental folding rates for these proteins (see Table 1), as
expected from the TSM picture. The same rmsd and
Q order holds for practically all the other choices of
lc and rc within the limits 4 £ lc £ 12 and 6 Å £ rc £ 8 Å
studied here.

Native topomer ensemble sizes
and folding rate predictions

We turn now to a more quantitative assessment of the
TSM. In the previous section we saw that the native
topomer ensembles of the four proteins display various
degrees of ‘‘floppiness’’; the 1lmb topomer ensemble is,
in a sense, larger than that of 1aps (see Fig. 2). The
TSM perspective hypothesizes that it is these differences
in ensemble sizes that underlie the different folding rates
observed for different proteins. More precisely,
TSM stipulates that the folding rate is essentially pro-
portional to LDP(LD), the probability of populating the
native topomer during a random, diffusive search, since
TSM considers this to be the rate-limiting step in the
folding of small, single-domain proteins (Makarov and
Plaxco 2003).

As mentioned briefly above, Makarov and Plaxco
(2003) made the approximation, based on considera-
tions of Gaussian inert chains, that P(LD)= gaLD,
where g and a are constants applicable to all proteins.
This means that bringing each additional sequence-
distant native pair together contributes on average a
constant multiplicative factor a (<1) to the overall
probability P(LD) of the native topomer state among

Figure 2. Illustrations of the native topomers for the proteins 1aps,

1ci2, 1urn, and 1lmb. Shown are the top 25 conformations (red)

selected by a simple clustering procedure on the full lc=12, rc=8 Å

topomer ensembles. Each of the 25 conformations is optimally super-

imposed on the corresponding native structure (dark trace). In the

clustering procedure, the highest ranking conformation is the one

with the largest number of conformational neighbors, where two con-

formations are considered to be neighbors if their rmsd is less than a

certain cutoff (1.3–4.0 Å). The next highest ranking conformation is

the conformation with most neighbors in the reduced ensemble, where

the highest-ranking conformation and its neighbors have been

excluded, and so on.

Table 3. Native topomer thermodynamic averages

lc = 4, rc = 8 Å lc = 12, rc = 8 Å lc = 4, rc = 6 Å lc = 12, rc = 6 Å

<Q> <rmsd> <Rg> <Q> <rmsd> <Rg> <Q> <rmsd> <Rg> <Q> <rmsd> <Rg>

1aps 0.99 0.97 12.5 0.96 1.43 12.5 0.97 3.09 12.6 0.86 5.37 12.6

2ci2 0.95 2.19 10.4 0.90 2.68 10.3 0.92 4.74 10.8 0.79 5.21 11.0

1urn 0.96 2.45 11.9 0.86 3.06 12.0 0.90 6.73 12.9 0.70 7.41 13.4

1lmb 0.87 3.07 10.8 0.58 4.44 11.1 0.83 9.42 12.9 0.34 11.0 14.3

Thermodynamic averages (denoted by <...>) of fraction of native contacts (Q), root-mean-square deviation (rmsd, in Å), and radius of gyration
(Rg in Å), are obtained from simulations of the energy function Etop (see equation 2) at temperature T = 1.0. Q is calculated using the contact
definition rij<1.2rnij.

Fig 2. live 4/c
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the full ensemble of all accessible conformations. (The
first three contact pairs are assumed to contribute with
somewhat different factors, which are taken into
account by the overall multiplicative factor g 6¼ 1.) The
topomer search rate was then postulated to be given
approximately by the formula kf= kLDP(LD), where
kf is the folding rate, and kLD is the frequency of
attempted contact formation. This formula was fitted
to experimental folding rate data for a set of 24 two-
state proteins yielding an excellent correlation coeffi-
cient of �0.88 (Makarov and Plaxco 2003). It should
be noted that the dominant, exponential dependence on
LD in this Makarov-Plaxco expression is in P(LD).
Thus, this rate correlation formula resembles closely
the ln kf!LRO hypothesis proposed previously by Sel-
varaj and Gromiha (2001) because LRO=LD/N.

The success of this empirical two-parameter fit
implies that the structural quantity LD or LRO—like
the original CO parameter (Plaxco et al. 1998)—is
capturing significant aspects of the physics of apparent
two-state protein folding. Obviously, the more impor-
tant issue, then, is whether the physical picture offered
by the TSM perspective is supported by this remarkable
folding rate correlation as well. Does the empirical
success of the TSM kf (LD) formula necessarily imply
that the proposed process of topomer search is correct
or even physically plausible? To provide a logical answer
to this question, an essential first step is to determine the
mathematical validity of the P(LD)= gaLD formula;
more specifically, whether this formula, indeed, provides
the native topomer probability it purports to describe.
Obviously, unless the answer to this basic question is
affirmative, the empirical success of the TSM kf(LD)
formula can only be compared with empirical rate cor-
relation with LRO and other proposed parameters but
cannot logically be translated into support for the
broader topomer-search discourse.

We therefore first focus on the TSM formula
P(LD)= gaLD. By fitting experimental data, the two

constants g and a have been determined to be a=0.86
and g=43 10�5 for lc=12 and rc=6 Å (Makarov
and Plaxco 2003). Using these fitted values of Makarov
and Plaxco in conjunction with the LD values for lc=12
and rc=6 Å in Table 2, the gaLD values for our four
proteins are found to be ranging from 10�5 to 10�10

(Table 4). Thus, according to this Makarov-Plaxco for-
mula, populating the native topomer state during a
random conformational search is about 33 104 times
more likely for llmb than for 1aps, for example; and
this predicted probability difference is approximately
equal to the folding rate difference of these two proteins.

Now, is this predicted probability difference valid?
Does the Makarov-Plaxco P(LD) formula adequately
describe the relative size of the native topomer sub-
ensemble relative to the full conformational ensemble?
To tackle this question, we compute the probability
P(LD) for our four proteins in explicit-chain conforma-
tional ensembles defined by the energy function E0 in
Equation 1. To err on the side of affording a higher
probability to the native topomer, in this analysis we use
the more permissive contact criterion rij< rnij+ 3.0 Å to
determine if amino acid residues (Ca positions) are in
contact. The most direct way to ascertain P(LD) would
be to perform Langevin dynamics simulations with
E0 and count the fraction of conformations that fulfill
the native topomer criterion, that is, having the
LD amino acid pairs close in space. But such a brute-
force approach is not computationally feasible because
of the smallness of P(LD), making the native topomer
very unlikely to be visited by unbiased conformational
sampling. Thus, to enhance sampling of the native topo-
mer, we introduce the auxiliary energy function

E� ¼ E0 þ �Ebias; ð3Þ

where Ebias is a potential with a bias toward the native
topomer and l is a bias strength parameter. Two-

Figure 4. Probability distributions P(Q) for 1aps, 2ci2, 1urn, and

1lmb, as obtained using lc=12 and rc=8 Å in Equation 1, and

sampling at T=1.0.

Figure 3. Probability distributions P(rmsd), where rmsd is from the

corresponding native pdb structure, for 1aps, 2ci2, 1urn, and 1lmb, as

obtained using lc=12 and rc=8 Å in Equation 1, and sampling at

T=1.0.
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dimensional histograms Pl(nD, Ebias) are recorded for a
series of l, where nD denotes the number of sequence-
distant native contacts formed. A standard histogram
reweighting technique (Ferrenberg and Swendsen 1989)
is then applied to obtain an improved estimate of P0(nD,
Ebias), and hence of P0(nD=LD)=P(LD). Further
details of this reweighting procedure, including the pre-
cise form of Ebias, are given in Materials and Methods.
It should be noted that by design Ebias is not a function
of all Ca positions, but only of those that are part of the
native topomer constraint set, such that the added bias
is toward the somewhat disordered native topomer state
(whose sampling we aim to enhance) rather than toward
the fully native pdb structure.

Table 4 shows the results of our P(LD) calculations
for four different choices of lc and rc. For the four
proteins studied, our explicit-chain estimates of P(LD)
lie in the range �10�86 to 10�18, in contrast to the much
larger values produced by the formula P(LD)= gaLD

using the particular a and g parameters of Makarov
and Plaxco. In fact, some of the computed explicit-
chain P(LD) probabilities in Table 4 are as small as
what would be expected for a Levinthal search. For
instance, assuming that each Ramachandran torsion
angle can occupy three discrete values, the total number
of conformations for a 64-amino-acid protein (such as
2ci2) would be roughly (33 3)64� 1061. (The essential
exponential increase with chain length N of the number
� �N of all possible conformations—most of which are
noncompact—applies to chains with excluded volume as
well. The effect of excluded volume in three dimensions
leads to an appreciable but not large decrease in �. For
instance, for chains configured on simple cubic lattices,
� decreases from 6 to �4.68; e.g, see Barber and
Ninham 1970; Chan and Dill 1991). From a polymer
physics perspective, the results in Table 4 are not sur-
prising. This is because the native topomer ensembles,
especially those with relatively large LD’s (e.g., 1aps),

are constituted of conformations quite closely resem-
bling that of the native pdb structure itself (cf. Figs. 3
and 4). A probable cause of the gross overestimation of
native topomer probabilities by the Makarov-Plaxco
gaLD formula is its neglect of excluded volume. Excluded
volume places enormous restrictions on the conforma-
tional freedom of compact chains (Chan and Dill 1990),
but excluded volume effects are not taken into account
in the Makarov-Plaxco TSM formulation. We note that
the relative values of the P(LD) probabilities computed
here mostly follow the same order as that provided by
the P(LD)= gaLD expression, suggesting that this for-
mula might apply approximately for a different set of a
and g. For example, fitting this formula to our explicit-
chain P(LD) results for lc=12 and rc=8 Å yields the
parameter values of a=0.60 and g=4.53 10�33; but in
that case the exceedingly small value of g would not
conform to the TSM picture of Makarov and Plaxco
(2003), who have related a g� 10�5 value to ‘‘the extra
entropy associated with the first few ordering events’’
(Makarov and Plaxco 2003, p. 21). More fundamentally,
however, the very small values of the present explicit-
chain P(LD) values strongly support the argument
against the TSM speculation that the ‘‘entropic cost of
finding the native topomer may be reasonable even in
the absence of native-like interactions that may favor
this set of conformations’’ (Makarov and Plaxco 2003,
p. 22). Quite to the contrary, the vanishingly small
native topomer probabilities we obtained imply that an
unbiased, diffusive search for the native topomer among
all accessible conformations, like the hypothetical
Levinthal search, is highly unlikely to succeed and is
therefore not a viable mechanism for apparent two-
state folding.

f-values and rate-limiting formation of the native
topomer

In the TSM picture, the rate-limiting step of folding is
the search for the native topomer. Thus, TSM predicts
how the conformational ensemble of any given protein
should look at the point when the rate-limiting step is
achieved during the folding process. In principle, these
structural predictions of TSM can be independently
verified or falsified by experiments, irrespective of the
mathematical/physical question raised above regarding
whether the TSM formula provides the correct prob-
ability for the hypothetical native topomer state.

The native topomer state has been identified with the
folding transition state. According to Makarov et al.
(2002), the TSM model ‘‘assumes that the folding rate
is controlled by the rate of forming all the native con-
tacts observed in the folded protein’’ (note that these
‘‘contacts’’ refer to native topomer contacts that require

Table 4. Estimated probabilities P(LD)

rc = 8 Å rc = 6 Å

lc = 4 lc = 12 lc = 4 lc = 12 gaLD

1aps 23 10�86 83 10�85 83 10�82 33 10�75 33 10�10

2ci2 23 10�47 73 10�45 23 10�38 13 10�36 13 10�7

1urn 83 10�73 43 10�68 83 10�60 13 10�47 13 10�8

11mb 73 10�60 33 10�48 23 10�37 13 10�18 13 10�5

P(LD) is the probability that the LD sequence-distant native contacts
are formed during a search process described by the energy function
E0 (see Equation 1). Two amino acid residues i and j are assumed to
contact each other if rij< rnij+3.0 Å. For comparison, we have
included the corresponding values from the Makarov-Plaxco
P(LD)=gaLD formula with a=0.86 and g=46 10�5.
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a contacting pair to be separated by at least a certain
number of residues along the chain), and that the state
created when all contacts that define the native topomer
is formed is a ‘‘transition state’’ of the model (Makarov
et al. 2002, pp. 3536, 3539). Therefore, it is instructive to
compare the structural characteristics of the native
topomer state with the folding transition state properties
inferred by experimental techniques.

A common approach to characterize the transition
state ensemble for two-state proteins is through
f-value analysis (Fersht et al. 1992). In these experi-
ments, collection of single amino acid mutations is per-
formed and their effects on the folding rate and stability
are measured. The goal of f-value analysis is to map out
the degree of ‘‘interaction’’ of the mutated amino acids
in the transition state. The final result for an amino acid
is expressed as a f-value, which states whether the
amino acid is ‘‘ordered’’ (f� 1) or ‘‘disordered’’
(f� 0) in the transition state ensemble. Notwithstand-
ing the recent controversy about the interpretation of
experimental f-values (Sanchez and Kiefhaber 2003;
Fersht 2004; Hubner et al. 2004), f-value analysis is a
widely adopted approach. Thus, it is worthwhile to
delineate the logical relationship between experimental
f-values and the corresponding quantities implied by
TSM, even though f-values were not computed by
Makarov et al. themselves.

It is relatively straightforward to use the conformational
ensembles from our simulations of the hypothetical native
topomers to calculate TSM-predicted f-values, which can
then be compared with available experimental f-value
data for the four proteins studied here. Similar procedures
have been applied before by other researchers to compare
experimental f-values and theoretical f-values predicted
by non-explicit-chain (Alm and Baker 1999; Galzitskaya
and Finkelstein 1999; Muñoz and Eaton 1999) as well as
explicit-chain (Clementi et al. 2000, 2003; Ejtehadi et al.
2004) models.

Before turning to more detailed calculations, several sali-
ent conclusions about TSM-predicted f-values can be
drawn by considering the general properties of the native
topomer state (cf. Fig. 2). Any given amino acid residue
making mostly sequence-distant native contacts in a pro-
tein’s pdb structurewill, because of the topomer constraints,
havemanyof its spatiallyneighboringaminoacid residues in
the native structure also in proximity in the native topomer
state. Consequently, TSM would predict a high f-value
for the given amino acid residue. In fact, if all of this amino
acid residue’s native pdb contacts were sequence-distant, f
would be predicted byTSMtobe�1.On the other hand, an
aminoacidresiduemakingmostly localcontacts,asmightbe
the case for residues in a-helical regions, is likely to have a
lower TSM-predicted f-value because by definition the
amino acid residues it contacted in the native pdb structure

are not required to be in spatial proximity in the native
topomer state.

To calculate the TSM-predicted f-values, we use the
following definition of f-value for an amino acid resi-
due i:

�icalc ¼
< Ni >

Nn
i

ð4Þ

where ÆNiæ is the average number of native contacts made
by amino acid residue i in the native topomer conforma-
tional ensemble, and Nn

i is the total number of native pdb
contacts for this amino acid residue. This definition is
identical to that introduced by Vendruscolo et al. (2001)
to construct transition-state ensembles from experimental
data. In the present calculation, a contact is considered
formed if rij<1.2rnij. Figure 5 comparesfi

calc and f-values
obtained from experiments (Itzhaki et al. 1995; Burton
et al. 1997; Chiti et al. 1999; Ternström et al. 1999).
As expected, the TSM-predicted fi

calc-values display a
tendency to be lower in a-helical regions than in b-sheet
regions. It is quite clear from Figure 5 that the
TSM-predicted and experimental f-values do not follow
the same trend along the chain sequences. The correlation
coefficient between fi

calc and fi
exp is <0.1 in each of the

four cases, although there are isolated individual
calculated f-values that match the corresponding experi-
mental values well. These results indicate that, at least
for the four proteins studied, the TSM predictions about
the structural characteristics of the rate-limiting transi-
tion-state conformational ensemble are very different
from that obtained from common experimental f-value
analysis.

TSM ‘‘c-values’’

A more informative way to characterize the folding
transition state than the f-values for individual amino
acid residues is to consider the participation of pairs of
contacting amino acid residues in the transition state.
We apply this to the conformational ensembles of the
four native topomer states, and determine the probabil-
ity  ij

calc for each amino acid residue pair ij in the native
contact set to be in contact in these topomer ensembles
(Fig. 6). As before, a contact in these ensembles is
defined by rij< 1.2rnij. These TSM-predicted quantities
are analogous to the  -values in experimental analysis,
wherein bi-histidine metal binding sites are introduced
for selected pairs of amino acid residue positions, and
the stability of folding pathways with the metal binding
pair formed relative to other pathways is regulated by
metal ion concentration. The resulting  -value of a
native contact ij, a number between 0 and 1, then repre-
sents the ratio of protein molecules that have the given
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metal binding site in the transition state (Sosnick and
Krantz 2001).

Figure 6 displays our computed  ij
calc values for the

lc=12, rc=8 Å native topomer ensembles. By TSM
definition, the probability of being in contact is close to
1 for pairs ij that are more than lc steps from the
diagonal i= j. It is thus a general TSM prediction that
 ij
TSM� 1 for amino acid pairs ij that are distant in

sequence. Not surprisingly, in line with the calculated
f-values, the TSM-predicted  -values in Figure 6 indi-
cate that the a-helical regions are relatively more dis-
ordered in the native topomer states.  -value analysis is
a relatively novel method, and experimental data are
quite limited thus far. None of our four proteins has
been studied experimentally with this technique. None-
theless, TSM predictions in Figure 6 should be useful
for future assessment when pertinent experimental data
become available.

TSM and native-centric explicit-chain folding models

In the above, we have shown by explicit-chain sampling
that the population of the hypothetical native topomer
state as a fraction of all accessible conformations is
dramatically lower than that originally stipulated by
Makarov and Plaxco (2003), and that the structural
properties of the native topomer states of the four

proteins considered in this study do not appear to
resemble that of the corresponding folding transition
states inferred from conventional experimental f-value
analysis. To further elucidate the relationship between
the TSM picture and explicit-chain dynamics, we now
consider a class of native-centric models that allow for
direct kinetic simulations of folding rates (Clementi
et al. 2000; Koga and Takada 2001; Kaya and Chan
2003a).

One of the main justifications for the use of native-
centric models to study the folding process has been the
empirically observed relationship between native topol-
ogy and folding rate, emphasizing the important ener-
getic information embodied in the native topology of
natural proteins. This principle is, naturally, also central
to the TSM. We therefore find it worthwhile to compare
and to put into context these two types of approaches.
In particular, we choose to compare the TSM with the
Langevin dynamics version (Kaya and Chan 2003a) of
the continuum Ca model of Clementi et al. (2000),
because a recent variation of this explicit-chain model-
ing construct has been shown to provide a good correla-
tion between model-predicted and real folding rates of
16 apparent two-state proteins (Chavez et al. 2004).

Conformational search in these native-centric models
is directed, not unbiased. The main energy term driving
chain collapse and folding in this native-centric model

Figure 5. Comparison between TSM-predicted (+) and experimental (*) f-values. The lines between data points serve merely

as a guide for the eye. The secondary structure of the proteins along the sequences is indicated by large green and small black

rectangular shapes for a-helical and b-sheet regions, respectively.

Fig 5. live 4/c
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consists of Lennard-Jones-like interactions between
every pair of amino acid residues ij that satisfies
|i� j|>3 and forms a contact in the native pdb struc-
ture (Clementi et al. 2000). We consider two different
definitions for two residues to be a native contact pair in
this model: (1) if their Ca–Ca separation in the native
pdb structure is less than a certain cutoff distance rc; (2)
if any two heavy (non-hydrogen) atoms, one from each
residue, are within 4.5 Å; this is identical to the defini-
tion used recently by Chavez et al. (2004). Definition (1)
is sensitive to the choice of rc. It turns out that the
thermodynamic behaviors of three of our four proteins
do not appear to be two-state-like for rc=6 Å and
rc=7 Å (data not shown). Here we focus only on the
better-behaved rc=8 Å case. Computational runs of
109 simulation time steps are executed for each of the
four proteins for the two different native contact sets we
just described, using the potential energy function and
Langevin dynamics simulation protocol detailed else-
where (Equations 1, 2; see related discussion in Kaya
and Chan 2003a). In the present investigation, the

simulations are performed at these model proteins’
respective folding temperature Tf, the temperature at
which the given chain model’s specific heat capacity is
at its maximum.

Figure 7 shows our simulated free-energy profiles in
the fraction of native contacts Q. The location of the
free-energy barrier along these profiles (the single peak
between the unfolded and folded minima at low and
high Q, respectively) varies slightly between the four
proteins and the two different contact sets. The chain
structures in these peak regions are commonly taken as
the transition state conformations for these and similar
native-centric explicit-chain models (Clementi et al.
2000; Nymeyer et al. 2000; Chavez et al. 2004). How-
ever, it has been pointed out that not all structural
details of transition-state conformations can be cap-
tured by such simple procedures, because the factors
determining whether a conformation belongs to the
folding transition state can be complex (Du et al. 1998;
Hubner et al. 2004). In other words, some true transi-
tion-state conformations of the model may reside

Fig 6. live 4/c

Figure 6. Probabilities of native contacts being formed ( ij
calc-values) in the lc=12, rc=8 Å topomer ensembles. The color

scale goes from  =0 (green) to  =1 (red). The triangular regions above and below the main diagonal provide identical

information.
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outside the Q-based free-energy peak region. Nonethe-
less, inasmuch as kinetic transitions between different
Q-values are not too discontinuous, conformations
populating the free-energy barrier region are indicative
of general features of the conformations associated with
the rate-limiting step in folding (Kaya and Chan 2002).
With this in mind, in the following discussion we refer to
the conformations in the free-energy barrier regions in
Figure 7 as the putative transition states of the native-
centric explicit-chain models.

Figure 7 shows that these putative transition-state
conformation are found roughly around Q� 0.4–0.6,
and that they are quite dissimilar to the corresponding
native topomer ensembles, which have very different
ÆQæ-values (Fig. 7, shaded areas). For 1aps, 2ci2, and
1urn, in terms of Q, the native topomers are far more
native-like than the explicit-chain putative transition
states. In these cases, even if some of the true transi-
tion-state conformations do reside outside the Q-based
free-energy peak region, it is highly unlikely that they
would share many similarities with the native topomer
ensembles that have Q-values essentially equal to (2ci2

and 1urn) or higher than (1aps) the Q-based native free-
energy minima of the explicit-chain models (although
the possibility cannot be ruled out entirely without an
exhaustive determination of transition-state conforma-
tions in the explicit-chain models). For 1lmb, the situa-
tion is more complicated because of the strong
dependence of ÆQæ on the cutoff parameters lc and rc.
Taken together, these observations suggest strongly that
the native topomer states do not generally correspond to
the folding transition state in these models. Instead, they
are more representative of conformations that are vis-
ited after the rate-limiting step in the folding of these
explicit-chain models.

Finally, we compare the TSM rate-prediction formula
kf!LDa

LD and the folding rate results from the native-
centric models. Following Chavez et al. (2004), we deter-
mine folding rates in the native-centric model at Tf using
the direct Langevin dynamics simulation method of Kaya
and Chan (2003a). Folding and unfolding rates are iden-
tical at the transition midpoint. Thus, the folding rate kncf
of the native-centric models at Tf is defined as the recipro-
cal of the mean first passage time (MFPT) from the
beginning of an unfolded ‘‘phase’’ to the initiation of a
folded phase, or vice versa, during the Langevin dynamics
simulation [i.e., kf

nc= (MFPT)�1]. The unfolded and
folded phases correspond to Q£Qu and Q�Qf, respec-
tively, where Qu and Qf are the unfolded (low Q) and
folded (high Q) free-energy minima. The MFPT was
determined by averaging over 40 (1aps) to 3225 (1lmb)
folding/unfolding events recorded during 109 simulation
time steps. Figure 8 shows that the correlation between
LDa

LD and kf
nc is good, which is perhaps not surprising

given that both sets of results have been shown previously
to correlate strongly with real folding rate data (Makarov
and Plaxco 2003; Chavez et al. 2004). We note, however,
that both the topomer search rate-prediction formula and

Figure 8. Comparison between the TSM quantity LDa
LD (a=0.86)

(Makarov and Plaxco 2003) of the four proteins and the corresponding

folding rate kf
nc computed in this study from direct kinetic simulations

of the native-centric Langevin dynamics models at each model’s Tf.

Results for kf
nc denoted by 3 and ) are, respectively, for the native

contact sets (1) and (2) specified in the caption for Fig. 7.

Figure 7. Free-energy profiles for the four proteins are given by the

negative logarithm of the conformational distribution P(Q) in Q,

obtained in this study by simulations of native-centric models (Kaya

and Chan 2003a) at T�Tf. Results from two native contact sets are

shown: (1) contact pairs are defined by native Ca–Ca distance rnij<8 Å

(dashed curves); and (2) contact pairs are defined by the shortest spatial

separation between non-hydrogen atoms in the two amino acid residues

as described by Chavez et al. (2004) and in the text (solid curves). For

comparison with the hypothetical TSM picture, the range of variation of

ÆQæ of the corresponding native topomers across different (lc, rc) criteria

(Table 3) is indicated by the shaded areas.
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the native-centric model predict 1urn to fold roughly an
order of magnitude slower than 2ci2, but in fact the
opposite is true (see Table 1).

Despite the limitations of native-centric models with
essentially pairwise additive interactions (which include
the models used here) in their ability to capture experi-
mental features of kinetic cooperativity when native
stability is significantly higher than that at the transition
midpoint (Kaya and Chan 2003a; Chan et al. 2004),
comparing them with TSM predictions offers valuable
insights. The predicted folding rates of the two
approaches correlate well, but the native topomer states
most likely do not correspond to the explicit-chain tran-
sition states. Moreover, as an unbiased search for the
native topomer state is not viable (see above), it is not
clear whether there is any definitive way to construct
viable explicit-chain models that are consistent with the
TSM. In any event, the results in Figures 7 and 8
indicate clearly that a good rate correlation by itself is
far from sufficient to pin down the underlying folding
mechanism.

For the native-centric explicit-chain model considered
here, every point in the conformational space has an
energetic bias toward the native state. Frustration in
the model arises solely from chain connectivity and
excluded-volume effects. As Q increases, the combined
effects of these incremental energetic favorabilities and
the reduced conformational freedom as the chain
acquires an increasing number of favorable contacts
result in a free-energy slope (with respect to Q) that
becomes first zero and then negative at intermediate
values of Q. In contrast, TSM predicts conformational
characteristics that are much more native-like at the
rate-limiting step of folding. In this connection, it has
been pointed out that, as a consequence of experimen-
tally observed protein folding cooperativity, ‘‘an excess
of 90% of the native structure is required for the free
energy of a typical single-domain protein to drop below
zero’’ (Gillespie and Plaxco 2004, p. 855). However, the
configurational position of the transition state is deter-
mined by the gradient of free energy with respect to the
reaction coordinate(s), not by the value of free energy
itself. As an illustration of this basic principle, we note
that a chain model’s stability and cooperativity can be
arbitrarily enhanced by adding an ad hoc favorable
energy to the unique native structure as a whole without
affecting the folding kinetics (Kaya and Chan 2003b).
Therefore, the above observation of Gillespie and
Plaxco does not necessarily imply that transition states
of real, cooperative proteins have to be very close to the
native state. In fact, such a proposal would appear to be
inconsistent with many chevron predictions of inter-
mediate solvent exposure of folding transition states
(Plaxco et al. 1998).

Discussion

The point of contention of this article is not the

remarkable correlation between folding rates of appar-

ent two-state proteins and parameters derived from

native topology. The empirical success of these para-

meters—these include the original CO, LRO, and the

LDa
LD of TSM, and several others—suggests strongly

that they are capturing important aspects of protein

physics, which we should try to better understand. The

subject matter of our investigation is whether the fold-

ing mechanism offered by the TSM formulation of

Makarov et al. (2002) and Makarov and Plaxco (2003)

is physically viable. In other words, is it mathematically

and physically possible for the TSM LDa
LD formula to

really describe the topomer search process postulated by

the TSM picture? Generally speaking, multiple models

based on very different underlying mechanisms can give

similar predictions (cf. Fig. 8), thus a good correlation

with real folding rate is not sufficient for validating a

proposed mechanism. To ensure that the predictions of

a model formulation do, indeed, follow logically from

the stated assumptions, issues of mathematical validity

and internal consistency should be examined as well.
In obtaining ensembles of structures consistent with

the Makarov-Plaxco definition of a native topomer, we

found it natural to apply harmonic forces between the

LD sequence-distant contacts required to be in proxi-

mity by the TSM. It is possible that using a different

strength ktop of the harmonic forces can have some

effect on the results. However, in view of the rather

strong dependence of LD on the parameters lc and rc,

the dependence on ktop is likely not critical. It has also

been suggested by Makarov and Plaxco (2003) that

‘‘proximity’’ in their topomer definition does not neces-

sarily have to mean close in space but refers to ‘‘any

orientation in which elements can collide to form the

native contacts more rapidly than the rate-limiting step

in folding’’ (Makarov and Plaxco 2003, p. 22). But it is

unclear how such a description should be implemented

in an explicit-chain context. Moreover, under such a

definition, there is no longer a close conceptual link

between the topomer search picture of folding and the

parameter LD defined by the simple criterion rnij< rc.
Our explicit-chain computation demonstrates that the

Makarov-Plaxco formulation has grossly overestimated
the probability of finding the hypothetical native topo-
mer among all accessible conformations, by tens of
order of magnitudes in some cases (Table 4). This
means that the TSM LDa

LD formula does not actually
describe the postulated topomer search process in the
TSM picture. The likely reason for this failure is that
excluded volume effects on chain conformations were
neglected. Unlike the original topomer formulation of
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Debe et al. that took excluded volume into account
(Debe and Goddard 1999; Debe et al. 1999), the con-
formational statistics of Makarov et al. (2002) were
based on Gaussian inert (phantom) chains. It is not
difficult to see how a neglect of excluded volume can
lead to such large errors: If there were no excluded
volume, all Ca positions of a phantom protein chain
can be confined within a sphere of diameter �3.8 Å,
the virtual bond length between two sequential Ca’s.
Since all inter-Ca distances in such conformations are
less than the cutoff rc, these unphysical conformations
are included in the native topomer. By the same token,
unphysical topomer conformations can be constructed
for spheres with different diameters <rc. Theseandother
similarly unphysical ‘‘super-compact’’ conformations satis-
fying a given (lc, rc) criterion are all accepted as part of the
native topomer state in the Makarov-Plaxco formulation,
leading to a hugely inflated conformational count.

Another way to illustrate this problem of gross con-
formational overcount is the following. For real chains
with excluded volume, when a sufficiently large set
of consistent pairwise contact constraints is imposed,
the number of viable conformations would reduce to
unity or very close to unity. After all, this polymer
principle is what allows compact protein native
structures to be determined by NMR. (Presumably,
hypothetical native topomer ensembles can be explored
using common softwares such as XPLOR for NMR
structure determination by imposing TSM interresidue
distance restraints. Indeed, Figure 2 is reminiscent of
NMR structural displays. It should be noted, however,
that in NMR structure determination, instead of simple
harmonic constraints, biharmonic, square-well, and
other restraining potentials are usually adopted for dis-
tance geometry; see, e.g., Brünger et al. 1986; Brünger
1992.) But this basic condition is not satisfied by
the Makarov-Plaxco formulation. Take 2ci2 as an
example. For rc=8 Å, there are a total of 124 native
contacts (rnij<8 Å, |i� j|> 3; the corresponding num-
bers for 1aps, 1urn, and 1lmb are 263, 213, and 141,
respectively). This number is only slightly larger than
the 108 native contacts that define the lc=4, rc=8 Å
2ci2 native topomer (Table 2). Direct explicit-chain
simulations of Ca models have indicated that the set of
124 native contacts is sufficient to essentially specify the
2ci2 native conformation uniquely (up to a mirror sym-
metry). If we substitute LD=124 into the Makarov-
Plaxco formula P(LD)= gaLD with a=0.86, we obtain
a probability of P(124)=3.03 10�13. Since the
unfolded states of small, two-state proteins are expected
to consist of mostly open conformations (Kohn et al.
2004), the number of all accessible 2ci2 conformations
may be very roughly estimated as �1061 by assuming
three rotational states per dihedral angle (see above).

Even a much more conservative consideration based
on three rotational states per amino acid residue yields
an estimate of 364� 33 1030. Therefore, if the Makarov-
Plaxco P(LD) expression is adequate for a realistic
chain, the probability factor it predicts for LD=124
should be sufficiently small to reduce the huge number
of all accessible 2ci2 conformations to order unity. But
the predicted P(124)� 10�13 factor is 17 to 48 orders of
magnitude too large to do so, underscoring the formu-
la’s gross overestimation of the conformational freedom
of compact chains with excluded volume.

Polymer excluded volume is notoriously difficult to
treat by analytical methods, especially for compact con-
formations (Barber and Ninham 1970; Freed 1987;
Chan and Dill 1991). Moreover, the impact of excluded
volume effects is much more severe for compact con-
formations than for open conformations (Chan and Dill
1989; Camacho and Thirumalai 1993). In this context,
explicit-chain modeling is indispensable in many appli-
cations. In the absence of the mathematical discipline
and the deductive logic it affords, errors incurred by
analytical approximations and semiquantitative argu-
ments are often difficult to delineate.

Based on their P(LD) estimate, Makarov and Plaxco
(2003) have stated that ‘‘this is precisely how the topo-
mer search model solves Levinthal’s paradox; whereas
the number of conformations in the native topomer is
small relative to the total number of conformations
available in the unfolded ensemble, it is enormously
larger than unity’’ (Makarov and Plaxco 2003, p. 22).
The simple considerations above and our explicit-chain
sampling data have made it quite clear that this asser-
tion is not tenable. Although the number of conforma-
tions in a native topomer is larger than unity, in general
it is very far from sufficiently large to allow an unbiased
search of the native topomer among all accessible
conformations to be a viable solution to Levinthal’s
paradox.

It has long been recognized that protein folding can-
not be achieved by unbiased conformational search
(Baldwin 1994). In light of the present findings, it is
even more clear that the neglect of energetic contribu-
tions to the rate-limiting step of folding in the bulk of
the TSM argument is not appropriate. The proponents
of TSM have acknowledged that this is ‘‘obviously a
potentially significant omission’’ (Makarov and Plaxco
2003, p. 22). Indeed, in order for protein folding to be
achievable in physiological time scales, conformational
sampling has to have elements of directed search
(Leopold et al. 1992; Zwanzig et al. 1992; Bryngelson
et al. 1995; Thirumalai and Woodson 1996; Dill and
Chan 1997; Dobson et al. 1998), although the high
degrees of thermodynamic and kinetic cooperativity of
many natural proteins imply that their underlying
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energy landscapes may be somewhat different from
those derived from certain common protein chain mod-
els (Kaya and Chan 2003b; Chan et al. 2004; Scalley-
Kim and Baker 2004).

The main thrust of the TSM discourse is on the
estimation of the (incorrectly) presumed affordable
entropic cost of unbiased search for the native topomer.
Nonetheless, the possibility of incorporating a general
native-favoring energy term in the topomer search
process has also been explored (Makarov et al. 2002).
A desire to capture the high degree of cooperativity in
protein folding was one of the motivations for the TSM
proposal (Gillespie and Plaxco 2004). An explicit-chain
construct that has apparently been inspired by the TSM
perspective is the lattice model, with excluded volume,
of Jewett et al. (2003). Instead of the usual linear rela-
tionship between Q and energy E in common Go� mod-
els, Jewett et al. (2003) introduced a nonlinear Q–E
relationship, controlled by a parameter s, to enhance
the cooperativity of their models and yet (when s 6¼?)
allow for a native-centric directed conformational
search. Relative to the corresponding common Go�
models, the Jewett et al. construct results in an improve-
ment in correlation between model folding rate and CO,
and a slight increase in the folding rate diversity. But these
improvements are considerably less significant than
another lattice model that uses a different cooperative
interaction scheme involving local–nonlocal coupling
(see Chan et al. 2004, Fig. 7). It is unclear whether
folding rate correlation with CO can be meaningfully
improved further within the class of model interaction
schemes of Jewett et al. (2003) by increasing their coop-
erative parameter s beyond the highest value of s=3
that they used because s?? entails a Levinthal search.
Such an unphysical process would most likely also abol-
ish the dependence of folding rates on native topology.
While these models are rudimentary, the following
conceptual implication of this comparison is clear:
Cooperativity per se is insufficient for protein-like corre-
lation between folding rate and native topology. The spe-
cific energetic interactions that give rise to the
cooperativity is the determining factor (Kaya and Chan
2003c). The TSM folding scenario of unbiased search for
the native topomer has not been verified by any explicit-
chain model with a proper account of excluded volume. In
fact, the analysis in this paper demonstrates that such a
search cannot succeed. Inasmuch as the lattice model of
Jewett et al. (2003) is an explicit-chain implementation of
a more relaxed version of the TSM idea (i.e., without
insisting on an unbiased search), the lattice model results
mean that even such a relaxed TSM-inspired mechanism,
when evaluated in an explicit-chain context, is quite far
from capturing the trend of topology dependence in real
protein folding.

Besides the unrealistic unbiased conformational search
process it advocated, the hypothetical TSM folding process
may be regarded as a particular form of a general
nucleation mechanism (Fersht et al. 1992; Abkevich et al.
1994; Fersht 1995; Thirumalai and Guo 1995), with
TSM offering a more definitive, and therefore falsifiable,
prediction on the structural characteristics of folding
transition states (cf. Fig. 2). It follows that not every protein
model that produces a high degree of cooperativity can be
regarded as an implementation of the TSM idea. Leaving
aside the question of how the TSM-predicted sets of
rate-limiting structures are located by conformational
search, we have attempted a simple experimental evaluation
of these structural predictions. The results so far are not
positive.

An aspect of the TSM perspective worth further
exploring is the idea relating to the size of transition
state conformational ensemble as part of the entropic
component of the free-energy barrier to folding (Bai
et al. 2004). However, as is clear from the discussion
above, energetic or enthalpic contributions to the rate-
limiting step in folding cannot be neglected. Favorable
intrachain interactions must exist in chains in the
unfolded ensemble to direct the conformational search.
Experimental observations of protein folding coopera-
tivity using low-resolution techniques should serve as
an important modeling constraint (Chan et al. 2004).
But cooperativity as such does not eliminate all confor-
mations with free energies intermediate between that of
the folded and unfolded states. Sparsely populated or
‘‘hidden’’ intermediate conformations exist (Bai et al.
1995; Ollerenshaw et al. 2004; Kaya and Chan 2005).
An elucidation of the protein folding process must
involve deciphering the stability and kinetic connectiv-
ities of these conformations, because this information
holds the key to how conformational search is directed
during folding. Further advance would require con-
certed efforts in theory and experiment. In this endea-
vor, self-contained, explicit-chain modeling that
embodies an adequate account of polymer excluded
volume is an essential tool.

Materials and methods

Estimating the probabilities P(LD)

To estimate the thermodynamic quantities P(LD) in the expli-
cit-chain model defined by the energy function E0 in Equation
1, we use the following computational strategy: An auxiliary
energy function El=E0+ lEbias is used to calculate two-
dimensional probability histograms Pli

(nD, Ebias), where nD is
the number of sequence-distant native contacts, for a series of
K discrete bias strengths l1, ..., lK. The maximum bias
strength, lK, is chosen so that there is a significant population
of the native topomer state at that l, namely, PlK

(LD)>10�4.
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These histograms can then be combined through standard
histogram reweighting technique (Ferrenberg and Swendsen
1989) to give improved estimates of Pl(nD, Ebias), for any l.
Hence, by using l=0 in this reweighting procedure we obtain
P0(nD, Ebias), from which the desired probability
P0(LD)=P(LD) can easily be calculated.
The above sampling strategy is straightforward. In principle,

if infinite sampling were possible, the result should be inde-
pendent of the specific choice of the bias potential. In practice,
however, care must be taken so that the native topomer state is
sampled in a representative way. We therefore construct Ebias

not as a function of all the N Ca positions of the Ca chain, but
only of the subset of the Ca positions that are involved in the
LD sequence-distant native contacts as defined by TSM. This
bias function is composed of a ‘‘torsion’’ and a contact term:

Ebias ¼
X
k

1� cos �0k � �0k
n

� �h i
�
X
kl

e� rkl�rn
klð Þ

2
=2; ð5Þ

where f0
k are the torsion angles formed by four consecutive Ca

positions in the TSM-defined subset, and �0k
n
the correspond-

ing values in the native pdb structure. The first summation is
over all such torsion angles. The second summation is over all
native contacts kl (rnkl< rc) for which both k and l are part of
the TSM-defined subset of Ca positions.
We obtain the two-dimensional probability distributions

Pli
(nD, Ebias) by a dynamical-parameter method closely related

to simulated tempering (Lyubartsev et al. 1992; Marinari and
Parisi 1992; Irbäck and Potthast 1995). In simulated temper-
ing, the configurational space of the system is expanded to
include the temperature, which becomes a dynamical para-
meter. Here we instead let the bias parameter l become a
dynamical parameter. We use eight different linearly separated
values (K=8) from l1=0 to lK. The maximum bias used,
lK, ranges from 1.15 (for 1aps and lc=4 and rc=8 Å) to 8.0
(for 1lmb and lc=12 and rc=6 Å). Conformational sampling
is performed using Langevin dynamics, exactly as before for
the constrained chain simulations, and changes between adja-
cent li values are performed as elementary Monte Carlo
moves. Frequent visits to l1=0 effectively decorrelate the
generated sequence of conformations and improve sampling.
For each lc and rc in Table 4, a simulation with a sampling
time of 109 steps is performed to obtain the eight Pli

(nD, Ebias)

histograms, which are then combined to give the correspond-
ing P(LD) value. As an example, we display in Figure 9 the
marginal distributions Pli

(Ebias) obtained from one of these
simulations, showing that sufficient overlaps between adjacent
Ebias distributions are obtained despite the relatively few
li values used. Each simulation is initiated from a disordered
conformation. We note that the dynamical parameter method
used here works well together with the histogram reweighting
technique since it provides the free energies at each chosen
li value (the so-called g-parameters), which are needed to
achieve a self-consistent solution to the multiple-histogram
reweighting equations (Ferrenberg and Swendsen 1989).
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