
Physicochemical and residue conservation
calculations to improve the ranking
of protein–protein docking solutions

YUHUA DUAN,1 BOOJALA V.B. REDDY,2 AND YIANNIS N. KAZNESSIS1,2

1Department of Chemical Engineering and Materials Science and 2Digital Technology Center, University of
Minnesota, Minneapolis, Minnesota 55455, USA

(RECEIVED June 18, 2004; FINAL REVISION September 20, 2004; ACCEPTED September 30, 2004)

Abstract

Many protein–protein docking algorithms generate numerous possible complex structures with only a few
of them resembling the native structure. The major challenge is choosing the near-native structures from the
generated set. Recently it has been observed that the density of conserved residue positions is higher at the
interface regions of interacting protein surfaces, except for antibody–antigen complexes, where a very low
number of conserved positions is observed at the interface regions. In the present study we have used this
observation to identify putative interacting regions on the surface of interacting partners. We studied 59
protein complexes, used previously as a benchmark data set for docking investigations. We computed
conservation indices of residue positions on the surfaces of interacting proteins using available homologous
sequences and used this information to filter out from 56% to 86% of generated docked models, retaining
near-native structures for further evaluation. We used a reverse filter of conservation score to filter out the
majority of nonnative antigen–antibody complex structures. For each docked model in the filtered subsets,
we relaxed the conformation of the side chains by minimizing the energy with CHARMM, and then
calculated the binding free energy using a generalized Born method and solvent-accessible surface area
calculations. Using the free energy along with conservation information and other descriptors used in the
literature for ranking docking solutions, such as shape complementarity and pair potentials, we developed
a global ranking procedure that significantly improves the docking results by giving top ranks to near-native
complex structures.

Keywords: protein–protein interaction; docking; conservation index; binding free energy; molecular rec-
ognition; computer simulations

Predicting the structure of protein–protein complexes using
computational methods has progressed substantially (Cher-
fils and Janin 1993; Janin 1995; Shoichet and Kuntz 1996;
Sternberg et al. 1998; Camacho and Vajda 2002; Halperin et
al. 2002; Smith and Sternberg 2002). Numerous docking
algorithms have been developed based on shape-comple-
mentarity search algorithms (Katchalski-Katzir et al. 1992),

such as PUZZLE (Helmer-Citterich and Tramontano 1994),
DOCK (Ewing et al. 2001), FTDock (Gabb et al. 1997),
DOT (Mandell et al. 2001), and ZDOCK (Chen et al.
2003a). Since protein–protein docking is a hard problem to
address due to the large number of degrees of freedom
involved, some new techniques were introduced into dock-
ing procedures: HEX uses expansion of the molecular sur-
face and electric field in spherical harmonics (Ritchie and
Kemp 2000), BIGGER involves surface-implicit methods
(Palma et al. 2000), and AutoDock (Morris et al. 1998),
DARWIN (Taylor and Burnett 2000; Gardiner et al. 2003),
GAPDOCK (Gardiner et al. 2003), and GEMDOCK (Yang
and Chen 2004) use genetic algorithms.
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In principle, calculation of the free energy change upon
binding of two proteins should allow determination of the
native structure. Although the enthalpic part of the free
energy can be calculated with some accuracy, the entropic
contributions are not easy to calculate without resorting to
semiempirical and less accurate calculations. Furthermore,
the computational load can become too large, especially for
unbound docking (starting with individual protein crystal
structures), which can potentially involve large protein con-
formation changes. Heuristic criteria, such as shape-
complementarity and coarse-grained residue potentials,
have been used with relative success (Camacho et al.
2000a). Still, the main bottleneck is choosing the near-na-
tive structures from large sets of generated complexes based
on a standard global ranking procedure that will bring the
near-native structures at the top of the generated structures
data set.

Additional information has been used to better select
near-native structures: HADDOCK (Dominguez et al.
2003) and TreeDock (Fahmy and Wagner 2002) use infor-
mation based on chemical shift perturbation data resulting
from NMR titration experiments or mutagenesis, whereas
ConsDock (Paul and Rognan 2002) uses consensus analysis
for protein–ligand interactions. ProMate (Gottschalk et al.
2004) is based on a statistical analysis of several properties
found to distinguish binding regions from nonbinding ones.

Recent studies of protein complexes have tested the im-
portance of factors, such as interface propensity of residues,
accessible surface area, planarity, protrusion, packing ener-
gies, and binding areas (Jones and Thornton 1996; Tsai et
al. 1997; Larsen et al. 1998; Lo Conte et al. 1999). A test
using averages of these factors as an indicator of protein-
binding sites showed an ∼66% success rate for 59 predic-
tions (Jones and Thornton 1997).

There have also been several reports investigating the
role of conservation of interfacial residues in naturally oc-
curring protein complexes, using evolutionary tracing of
conserved residues in homologous sequences and structures
(Lichtarge and Sowa 2002; Ben-Zeev and Eisenstein 2003;
Glaser et al. 2003; Lichtarge et al. 2003; Mihalek et al.
2004; Yan et al. 2004). Our recent analysis of well-resolved
protein complexes indicated that the density of highly con-
served residues is higher in protein–protein interface posi-
tions compared to the other positions of the protein surfaces
(B.V.B. Reddy and Y.N. Kaznessis, in prep.). We actually
find that highly conserved positions in surface regions of
proteins involved in non-antibody–antigen complexes tend
to be in interacting patches. On the other hand, for anti-
body–antigen complexes, a very low number of conserved
positions is observed in the interface regions. This informa-
tion can potentially assist in the selection of near-native
structures. However, to our knowledge, no attempts have
been made to use residue conservation information to filter
and rank the docking solutions of protein complexes.

In this paper we describe our docking analysis and rank-
ing of docked complex structures for 59 benchmark com-
plexes (Chen et al. 2003b). In the first stage, we use FTDock
(Gabb et al. 1997; Moont et al. 1999) to generate 10,000
docked models for each of the complexes. Our study is
focusing on the second stage to refine and rerank the docked
structures. We use conserved residue position information
as a filter to reduce the number of docked structures. Be-
sides filtering, we use conservation information to rank the
remaining docked structures. We evaluate these approaches
and report on the results.

In this paper we also report on our efforts to develop a
global ranking scheme. For each docked model, we relax
the conformation of the side chains by minimizing the en-
ergy with CHARMM and then calculate the binding free
energy using a generalized Born method and the solvent-
accessible surface area. We finally develop a global ranking
procedure so that the near-native structures rank at the top,
using all available information from docking, free energy
calculations, and residue conservation information.

Results and Discussion

In order to test the usefulness of our filter and ranking
methods, we applied our algorithms to a benchmark of 59
nonredundant protein complexes first used by Chen et al.
(2003b). This benchmark set includes 22 enzyme–inhibitor
complexes, 19 antibody–antigen complexes, 11 other com-
plexes, and seven difficult test cases. This benchmark has
been used by other groups to test their docking methods
(Gray et al. 2003; Li et al. 2003). Gottschalk et al. (2004)
also used 21 complexes of this benchmark to test their scor-
ing function of tightness of fit. Since unbound–unbound
docking (using single protein crystal structures as input) is
more challenging than bound–bound docking (using the
structures obtained from protein-complex crystals), we have
carried out the unbound–unbound docking and unbound–
bound docking as given by the benchmark (Chen et al.
2003b).

Analysis of FTDock performance

Using FTDock (http://www.bmm.icnet.uk/docking) (Gabb
et al. 1997; Moont et al. 1999), we obtained 10,000 docked
models and their ranks according to the correlation function
(equation 3) of shape complementarity and pair potential
(see “Docking calculations” below). For these 10,000 mod-
els, we calculated the root mean square deviation (RMSD)
of C� atoms of each model structure from the native com-
plex structure. We then defined “hits” as the number of
models having RMSD <4.5 Å from the native structure
(shown in Table 1). Also shown in Table 1 are the lowest
RMSD (LRMSD) complex obtained with FTDock and its
corresponding shape-complementarity rank and pair-poten-
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Table 1. The results of FTDock and filtering for the benchmark complexes

FTDock results After filtering and reranking

Complex Hits LRMSD (Å) SC_rank PP_rank NRC G_rank (other work) Hits (E_hits) I_fact (I1, I2) IOR

1A0O 13 2.62 9346 371 2721 31 (284a, 11b) 12 (4) 3.39 9.07
1ACB 29 0.31 7497 2654 2485 89 (18a, 1b, 11c) 21 (15) 2.91 (1.94, 1.96) 17.75
1AHW 9 3.33 2942 2437 2875 316 (7a, 1b) 5 (0) 1.93 0
1ATN 11 0.40 2960 249 4211 7 (7a, 1b) 9 (7) 1.94 (1.94, 1.65) 32.75
1AVW 0 4.69 5697 958 3998 2102 (3a, 2b, 1c) 0 (0) 1 (1.0, 1.0) 0
1AVZ 25 2.64 7580 2611 2210 686 (53466a, _b) 21 (0) 3.80 (2.86, 1.81) 0
1BQL 0 5.30 5668 1176 2615 570 (13a, 1b) 0 (0) 1 (1.0, 1.0) 0
1BRC 21 1.29 1022 12 2825 12 (24a, 3b, 106c) 12 (6) 2.02 (1.23, 1.79) 14.1
1BRS 36 1.66 2822 21 2785 13 (65a, 13b, 599c) 29 (9) 2.89 8.64
1BTH 14 3.70 5851 909 3110 693 8 (0) 1.84 (1.68, 1.16) 0
1BVK 13 3.03 5974 1602 2322 512 (821a, 1314b) 13 (1) 4.31 (3.07, 2.00) 1.79
1CGI 89 1.58 3143 78 2753 84 (4a, 8b, 16c) 70 (25) 2.86 (1.86, 2.08) 9.83
1CHO 60 1.25 631 83 3504 21 (3a, 1b, 5c) 44 (19) 2.09 (1.48, 1.86) 15.1
1CSE 56 0.92 7556 9248 2981 304 (198a, 1b, 500c) 43 (5) 2.58 (1.81, 1.61) 3.47
1DFJ 1 3.24 5005 168 2894 997 (1a, 1b, 181c) 1 (0) 3.46 0
1DQJ 13 2.95 4294 986 3428 1306 (9249a, 952b) 12 (0) 2.69 (1.55, 1.65) 0
1EFU 0 5.71 5786 550 4205 898 0 (0) 1 (1.00, 1.00) 0
1EO8 2 3.01 8161 125 1395 0 0 (0.00, 3.56)

2812 134 (1497a, _b) 2 (1) 3.56 14.06
1FBI 17 2.68 730 3869 2880 1381 (642a, 153b) 14 (0) 2.86 (2.12, 1.52) 0
1FIN 0 5.94 9597 7502 4072 389 0 (0) 1 (1.00, 1.00) 0
1FQI 6 3.05 5230 949 2810 379 2 (0) 1.19 0
1FSS 70 1.80 640 5758 2694 7 0.37 (0.58, 2.26)

2697 1086 (50a, 42b, 8c) 42 (2) 2.26 1.28
1GLA 5 2.75 4405 239 3846 34 (9794a, _b) 5 (3) 2.60 (1.56, 2.12) 23.18
1GOT 0 5.80 9134 320 3245 222 0 (0) 1 (1.00, 1.00) 0
1IAI 5 3.27 6733 473 2274 29 (997a, _b) 4 (1) 3.52 (3.24, 2.03) 5.68
1IGC 92 1.03 7439 8306 2628 2552 (153a, 21b) 11 (0) 0.46 0
1JHL 19 0.74 9474 482 4404 1414 (333a, 41b) 19 (0) 2.27 (1.15, 1.97) 0
1KKL 5 3.26 5019 2753 3076 2569 4 (0) 2.60 (2.12, 1.25) 0
1KXQ 9 0.46 2717 344 3476 1 8 (3) 2.56 (1.16, 1.82) 13.04
1KXT 16 0.45 184 2194 3794 265 8 (0) 1.32 (1.02, 1.00) 0
1KXV 16 1.69 2934 525 3901 139 9 (0) 1.44 (1.27, 1.10) 0
1L0Y 1 2.93 5717 1339 3004 0 0 (0.0, 0.0)

2799 1587 0 (0) 0 0
1MAH 46 1.10 8347 3904 3258 2 0.13 (0.39, 1.58)

2754 653 (24a, 1b, 2c) 20 (2) 1.58 2.75
1MEL 10 1.26 6387 460 2579 7 (3a, 1b) 6 (3) 2.33 (1.64, 1.98) 12.90
1MLC 10 1.39 716 1230 2544 58 (128a, 2b) 9 (3) 3.54 (2.30, 1.97) 8.48
1NCA 7 0.41 3974 3226 1637 0 0 (0.00, 2.06)

2778 600 (1a, 8b) 4 (0) 2.06 0
1NMB 6 0.77 903 677 2136 148 (135a, 1b) 3 (0) 2.34 (2.35, 0.99) 0
1PPE 660 0.56 966 5 2695 5 (1a, 1b, 9c) 394 (74) 2.22 (1.24, 1.57) 5.00
1QFU 5 0.69 2920 997 1439 0 0 (0.60, 3.60)

2781 190 (388a, 29b) 5 (3) 3.60 16.6
1SPB 40 0.95 183 163 2837 1 (1a, 1b) 33 (9) 2.91 (1.83, 1.59) 7.73
1STF 15 0.63 60 2822 2803 2 (1a, 1b, 302c) 15 (10) 3.57 (2.19, 2.15) 18.67
1TAB 80 0.72 1359 3723 3591 1318 (79a, 10b, 319c) 49 (0) 1.71 (1.32, 1.24) 0
1TGS 25 1.64 8598 293 3046 54 (3a, 8b, 22c) 22 (11) 2.89 (1.89, 1.95) 15.23
1UDI 24 2.34 4032 4754 2824 18 (5a, 3b, 1c) 24 (3) 3.54 3.53
1UGH 7 3.80 2481 2222 2785 771 (8a, 1b) 5 (1) 2.56 5.57
1WEJ 10 2.74 8512 295 2433 451 (183a, 4b) 10 (0) 4.11 (2.52, 1.81) 0
1WQ1 13 2.39 420 7315 2833 510 (15a, 16b) 11 (0) 2.99 0
2BTF 5 1.61 2420 53 3909 59 (2a, 1b) 5 (4) 2.56 (1.35, 2.07) 31.27
2JEL 8 2.86 6887 1221 1955 40 (233a, 301b) 8 (3) 5.12 (2.18, 1.93) 7.33
2KAI 76 1.51 1070 1032 2801 154 (388a, 144b, 112c) 36 (4) 1.69 (1.24, 1.59) 3.11
2MTA 15 2.87 32 20 2676 4 10 (1) 2.49 2.68

(continued)
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tial rank. It can be seen in Table 1 that there are 26 com-
plexes with LRMSD <2.5 Å, 15 complexes with LRMSD
>2.5 Å but <3.5 Å, and eight complexes with LRMSD >3.5
Å. We are thus confident that FTDock can generate model
complexes close to native structures. Nonetheless, for five
complexes (1AVW, 1BQL, 1EFU, 1FIN, 1GOT), FTDock
failed to generate near-native structures, as the LRMSDs for
these complexes are >4.5 Å.

In order to explore the effect of conformation change on
docking procedure, we also carried out a bound–bound dock
for 1FIN (listed in Table 1 as 1FIN_BB). Comparing with
unbound–unbound docking of 1FIN, we observe that the
bound–bound docking gives a model complex with
LRMSD � 0.41 Å, with ranks of 15 and 21 for shape
complementarity and pair potential, respectively. For un-
bound–unbound 1FIN docking we could only get a lowest
RMSD model of 5.94 Å with very high rank values of 9597
(shape complementarity) and 7502 (pair potential).

The rank based on shape complementarity predicts near-
native structures very poorly: the average rank of the
LRMSD complexes is 4123, with only three of the 60 com-
plexes registering ranks better than 100. It is thus clear that
shape complementarity is not by itself an adequate means
for choosing near-native structures.

The pair-potential rank did improve the ranks for 47 com-
plexes out of the 60 cases. From Table 1, it can be observed
that there are only 12 complexes with pair-potential ranking
worse than shape complementarity. Nonetheless, ranks
based on pair potential do not have impressive predictive
ability. For example, only five complexes (1BRC, 1BRS,
1PPE, 2MTA, 2SIC) have ranks <20 for the LRMSD
model, and another three complexes (1CGI, 1CHO, 2BTF)

have ranks of LRMSD complexes <100. The rest have very
high rank values.

Filters performance

First, we try to reduce the number of possible docked mod-
els from the generated 10,000, without filtering out the
lower RMSD models. As described in “Filters” below, we
developed two filters based on residue conservation infor-
mation. In the functionally interacting natural proteins, such
as enzyme–inhibitor complexes, we gave higher ranks for
the models with a higher number of conserved positions in
the interface region. In the case of antigen–antibody inter-
actions, the interacting regions are highly variable, and we
gave higher ranks for the models with low numbers of con-
served positions. After performing the first filter, we used
filter II (see below) to reduce the number of complexes to
∼2000–4000 models. These results are also shown in Table
1. It can be seen that combining with the conservation filter
and filter II the number of complexes is reduced from 56%
to 86%.

In Table 1, there are 11 complexes (1A0O, 1AHW,
1BRS, 1DFJ, 1FQ1, 1IGC, 1UDI, 1UGH, 1WQ1, 2MTA,
4HTC) for which sufficient homolog sequences were not
available from nonredundant databases to calculate the con-
served residue position information. Therefore, only filter II
is applied for these complexes (in this case, filter II only
includes three normalized ranks without the conserved resi-
due position information).

When we applied the filters to the model sets, some near-
native structures are also filtered out (false negatives), be-
sides nonnative structures. Here we define the improvement
factor (I_fact) as:

Table 1. Continued

FTDock results After filtering and reranking

Complex Hits LRMSD (Å) SC_rank PP_rank NRC G_rank (other work) Hits (E_hits) I_fact (I1, I2) IOR

2PCC 39 2.28 8412 606 3410 500 (22338a, _b) 31 (2) 2.33 (1.64, 1.62) 2.20
2PTC 59 1.42 277 1067 2914 71 (193a, 2b, 75c) 42 (10) 2.44 (1.70, 1.76) 6.94
2SIC 16 1.86 162 4 3690 1 (11a, 1b, 674c) 13 (11) 2.20 (1.12, 1.68) 31.22
2SNI 23 2.52 4015 1756 2928 268 (1262a, _b, 2281c) 18 (5) 2.67 (1.75, 1.73) 8.13
2TEC 54 0.45 305 9612 2943 139 (1a, 1b, 324c) 52 (11) 3.27 (2.04, 1.90) 6.22
2VIR 5 0.80 3403 3484 2035 362 (1101a, 80b) 5 (2) 4.91 (4.13, 2.01) 8.14
3HHR 1 4.50 6462 2838 3125 889 1 (0) 3.20 (1.89, 2.04) 0
4HTC 11 1.46 1912 761 2813 1 (3a, 1b, 6c) 11 (6) 3.56 15.34
1FIN_BB 10 0.41 15 21 4035 2 10 (9) 2.48 (1.18, 2.22) 36.32

The number of complexes with RMSD <4.5 Å (Hits), shape-complementarity ranks (SC_rank), pair potential ranks (PP_rank) and the lowest RMSD
(LRMSD) model in the 10,000 possible docked models for each complex are shown. After applying the filters, the number of complexes remaining (NRC),
the sorting global score calculated from equation 12 for the LRMSD (G_rank), the number of hits within the first 100 ranks (E_hits), the improvement over
random (IOR), the improvement factor by combining filter I and filter II (I_fact), and the I_fact for performing filter I and II separately (I1, I2) are also
given in the right portion. The numbers in italic are obtained by performing only filter II. The ranks obtained in other work are given in parentheses.
“_” indicates that no hit was found.
aZDOCK (PSC+DE+ELEC) rank (Chen et al. 2003a).
bZDOCK (PSC)+RDOCK rank (Li et al. 2003).
cRanks of the first near-native complex (Gottschalk et al. 2004) are also shown for comparison with the G_rank.

Conservation filter for protein–protein docking

www.proteinscience.org 319



I_fact � (hits/models)f/(hits/models)i,

where hits/models is the ratio of the number of structures
with RMSD < 4.5 Å from the native structure over the num-
ber of complex models, before—(hits/models)i—and af-
ter—(hits/models)f—applying the filters.

The results are shown in Table 1 and Figure 1. It is
observed that there are 48 out of 60 complexes with I_fact
>1.0. Most of them (44) are >2.0, which means the improve-
ment is >100%. For a few complexes, applying the filter
resulted in >400% improvement.

There are five out of 60 complexes (1AVW, 1BQL,
1EFU, 1FIN, 1GOT) with I_fact � 1.0. From Table 1, it
can be observed that for these five complexes (see “Analy-
sis of FTDock performance” above), FTDock did not gen-
erate any near-native structure (with RMSD <4.5 Å), that is,
no hits are found. When we examined these structures more

carefully, we found that except for 1FIN, in which the
LRMSD structure was filtered out, the LRMSD structures
are still in the filtered subset of these proteins. Moreover,
the filters have reduced the number of model structures for
these five complexes by a factor of 2.5 to 4. This shows that
the filters assist with even these five complexes.

Our filters failed for seven complexes: there are three
complexes (1FSS, 1IGC, 1MAH) for which I_fact is <1.0
(Fig. 1; Table 1). For these structures proportionately more
near-native model structures are filtered out than unrelated
ones. In Figure 1, it can also be observed that four com-
plexes (1EO8, 1L0Y, 1NCA, 1QFU) have I_fact � 0. This
means that we filtered out all of the near-native structures
(two, one, seven, and five hits for the four complexes, re-
spectively). When we examined the number of conserved
residue positions at the interface for these four complexes,
we found that there is a high number of conserved residue
positions for antibody–antigen systems 1EO8 and 1QFU,
and a low number of conserved residues for non-antibody
1L0Y and 1NCA, contrary to most of the complexes inves-
tigated.

The global rank (see next section) for these four failed
complexes (1EO8, 1L0Y, 1NCA, 1QFU) and two of the
complexes (1FSS, 1MAH) without improvements are also
given in Table 1 without using filter I. It is observed that
except for 1L0Y, the I_fact values of the rest of five com-
plexes are >1.0, and the lower RMSD models are still in the
subset. 1L0Y only has one hit (see Table 1) and is filtered
out by filter II, but other lower RMSD models are still in the
subset. Conserved residue position information cannot be
calculated for 1IGC, since there are not enough homologous
sequences in the database. The result of 1IGC listed in Table
1 is obtained by just using filter II. Its improvement (I_fact)
is still <1.0 since lower RMSD models are filtered out.

By comparing the results before and after filtering (Table
1), it becomes clear that only in a few cases (1AHW, 1CHO,
1FIN, 1FQ1, 1IGC, 1KKL, 1WQ1), the LRMSD model
structure was filtered out, but even in these cases the second
lowest RMSD complex is retained into the remaining sub-
set. For all other complexes the structure closest to the
native structure is always in the remaining subset. This dem-
onstrates that our conserved residue information filters work
well for the benchmark set.

In order to check the redundancy of filter I and filter II,
we tested them separately on those complexes that have
enough conserved residue position information. The I_fact
values for performing these two filters separately are also
listed in Table 1 (columns I1 and I2). Both of them do
improve the efficiency with most of I_fact values (I1, I2)
being >1.0. After combining them, we observed further sig-
nificant improvement (I_fact in Table 1). The combined
I_fact values are greater than the individual I_fact values
(I1, I2). We conclude, thus, that it is necessary to include
filters when conserved residue information is available, in

Figure 1. The improvement after filtering. The results are (1) 48 out of 60
complexes have I_fact > 1; (2) there are five complexes (1AVW, 1BQL,
1EFU, 1FIN, 1GOT) with I_fact � 1 because FTDock did not generate
hits to begin with; (3) there are three complexes for which our filters
worsen the results (1FSS, 1IGC, 1MAH) with 1 > I_fact � 0 after filtering;
(4) there are four complexes (1EO8, 1L0Y, 1NCA, 1QFU) for which our
combined filter failed with I_fact � 0.0 since all of the near-native struc-
tures (2, 1, 7, and 5, respectively) were filtered out. After applying only
filter II for these seven complexes, I_facts were improved (I_fact > 1.0)
(Table 1).
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order to substantially decrease the number of model struc-
tures and improve the prediction.

The efficiency of global ranking

The free energy of binding would in principle suffice to
determine the native structure from a large set of complexes.
Unfortunately, the free energy we calculated does not rank
near-native structures at the top of the list. This could be the
result of inaccuracies in the potential force fields used for
calculating enthalpic terms or in the empirical entropic
terms. Conformational changes upon binding, whether local
or global, can also result in significant changes in the free
energy of binding (Camacho et al. 2000a). As a result we
have to resort to empirical descriptors, and since none can
individually predict near-native structures with great accu-
racy, we decided to combine multiple descriptors in a global
ranking scheme.

Empirical rankings based on more than one descriptor
have been attempted before: In ZDOCK (Chen et al. 2003a)
shape complementarity, electrostatics and desolvation ener-
gies were combined to get a final target function, and Au-
toDock (Morris et al. 1998) involved more energy terms
into the score function. A major bottleneck for composite,
global scoring functions is that the weights for different
quantities are difficult to determine.

As described in “Global normalized ranking” below, we
derived a global ranking function by renormalizing the rank
of each descriptor used (equation 11), and used weights 1, 1,
2, 4, and 5 for shape complementarity, binding free energy,
conservation index, desolvation energy, and pair-potential
energy, respectively, in a new global ranking function
(equation 12). Using this function we obtained a new global
rank for each model complex. Some examples (18 out of 60
complexes) of the global rank versus the RMSD are shown
in Figure 2.

The rank of the LRMSD structure for each complex is
also listed in Table 1 (G_rank). From Figure 2 and the value
of the G_rank, we can see that in most of the model com-
plexes the near-native complexes have lower ranks. Com-
paring our G_rank with PP_rank in Table 1, there are only
four cases (1CGI, 1EO8, 1JHL, 1L0Y) for which our
G_rank is higher than the pair-potential rank. For another 56
complexes, our global ranking fairs better than the pair-
potential rank. Comparing our results with the results ob-
tained by rigid-body displacement (Gray et al. 2003), Pro-
Mate (Gottschalk et al. 2004), ZDOCK (Chen et al. 2003a),
and RDOCK (Li et al. 2003) (ranks are also listed in Table
1 for comparison), our ranking scheme produces a similar
fraction of accurate predictions, although each method may
not produce accurate predictions for the same complexes.
Overall, our ranking results compare well with ZDOCK and
ProMate results. RDOCK results are better than ours in
most cases.

Since the methods for generating the decoy complexes,
for evaluating and ranking them are dissimilar in all these
studies, the information obtained and reported herein can be
considered as complementary to other methods.

In Table 1, we also give the number of hits (E_hits)
within the first 100 ranks. For 22 complexes, application of
the global rank resulted in no hits in the top 100 ranked
structures. We should note that for five of them there were
no hits to begin with, because FTDock did not generate any.
For the rest of 38 complexes, application of the global rank-
ing improves substantially the predictive ability. Specifi-
cally, we calculate the improvement over random (IOR) for
these 38 complexes

(IOR � (E_hits/100)/(Hits/NRC),

where NRC is the number of complexes after filtering, and
we find significant IOR values (see Table 1). The average
calculated IOR for these 38 complexes is 11.18. Even when
the 17 complexes with IOR � 0 are included in the average
calculation, the average IOR for the 55 complexes for which
FTDock generated hits is 7.72.

Figure 3 shows model structures of the best predictions
superimposed on the native structures for some of the se-
lected targets with rank <10. The complexes 4HTC, 2MTA,
1SPB, 1STF, 1KXQ, and bound–bound 1FIN (1FIN_BB)
have given excellent prediction with rank of 1 or 2 for the
lowest RMSD structure.

Comparing 1FIN with 1FIN_BB, we can see for bound–
bound docking (1FIN_BB) we get better results over the
unbound–unbound docking (Fig. 3d). This should be ex-
pected since unbound–unbound docking involves a large
conformational change. Since we only performed our algo-
rithms on unbound–unbound cases (except for 1FIN, where
we did both, and the unbound–bound complexes in the
benchmark), it is expected that our docking procedure will
give better results for bound–bound docking systems. More-
over, if the initial docking procedure (FTDock) gave more
hits, then our ranking procedure could potentially determine
the near-native structures.

Concluding remarks

In this work we have demonstrated the usefulness of con-
served residue position information in identifying possible
near-native complex model structures from docking solu-
tions. We have used this information to develop two filters,
reducing the number of docked model structures by 56% to
86% depending on the complex, while keeping near-native
complexes in the remaining subset. We applied our method
to a benchmark set of 59 complexes. There are 11 com-
plexes for which we didn’t find enough homolog sequence
information. Thus, we could not apply our filter at present.
Only for four of the remaining complexes did our filter fail
to retain the near-native structures, and for another three out
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of 60 complexes (the 59 benchmark and the FIN bound–
bound calculation), our filter did poorly compared to
FTDock results.

After filtering, we minimized the side-chain structure of
the remaining model structures, and we calculated the bind-
ing free energy and desolvation energy. We developed a
ranking scheme by renormalizing and weighting a combi-
nation of the ranks based on conservation position informa-

tion, shape complementarity, desolvation energy, pair po-
tential, and binding free energy. Excluding the five com-
plexes for which FTDock did not generate any hits (with
RMSD < 4.5 Å), the average improvement over random for
the top 100 ranked structures is 7.72. For 17 complexes
IOR � 0, but for the majority (38 complexes) we observed
significant improvements in predictive ability, in terms of
predicting near-native structures in the highest-ranked 100

Figure 2. Global ranking for 18 complexes. RMSD vs. rank score (equation 12) for those decoys from FTDock and filtered by our
filters.
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structures. Generally, our approach can be easily adapted to
any other docking algorithms to refine their ranking results.

Materials and methods

In Figure 4, we present a diagram with the steps that constitute our
method. Briefly, for any two protein molecules A and B, we gen-
erate 10,000 structures using FTDock (Gabb et al. 1997; Moont et
al. 1999). FTDock also calculates a shape-complementarity value
and a pair-potential value for these 10,000 model structures. We
then calculate conservation indices for the surface positions of the
proteins and also calculate the desolvation energy upon binding.
Using these two properties, along with the shape complementarity
and the pair potential, we develop two filters to reduce the number
of model structures to a number considerably lower than 10,000.

We then use CHARMM to minimize the energy of the filtered
structures, and we calculate the free energy of binding. Finally, we
use the ranks of the model structures for all the properties to
generate a global ranking scheme, which improves our ability to
pick near-native structures from the set of putative native struc-
tures. The methods are detailed as follows.

Docking calculations

To generate model docked structures, we used the FTDock soft-
ware package (Gabb et al. 1997; Moont et al. 1999; http://www.
bmm.icnet.uk/docking), which uses an efficient geometric recog-
nition algorithm to identify molecular surface complementarity
(Katchalski-Katzir et al. 1992). This method is based on a purely
geometric approach and takes advantage of techniques applied in
the field of pattern recognition. The geometric recognition algo-

Figure 3. Selected structures from our global predictions. Red and blue indicate the experimental co-crystal. Green and purple indicate
the best prediction of rank <10 determined by equation 12. For 1FIN, the bound–bound (green and purple) and unbound–unbound
(black and light blue) results are shown in the same figure.
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rithms include a digital representation of the proteins by 3D dis-
crete functions for the surface and the interior, a correlation func-
tion calculation using Fourier transformation that assesses the de-
gree of molecular surface overlap and penetration upon relative
shifts of the molecules in 3D, and a scan of the relative orientations
of the molecules in 3D. Here we just give a brief summary of the
docking procedure we followed.

The calculation of shape complementarity between any two pro-
teins A and B initially projects the two molecules onto a 3D grid
of N3 points, represented by discrete functions:

A�l,m,n� or B�l,m,n� = �1 inside the molecule

0 outside the molecule
(1)

Then the surface and the interior of each molecule is distinguished
by parameters � and � respectively:

A�l,m,n� = �
1 on the surface of the molecule

� inside the molecule

0 outside the molecule

B�l,m,n� = �
1 on the surface of the molecule

� inside the molecule

0 outside the molecule

(2)

The correlation function (score) is calculated as:

C�a,b,r� = �
l=1

N

�
m=1

N

�
n=1

N

A�l,m,n� * B�l + a,m + b,n + r�

(3)

where

C�a,b,r� = �
= 0 no contact between 2 molecules

�0 contact between the surfaces

�0 penetration forbidden

with (a, b, r) the shift vector of molecule B around molecule A. We
used � � 1, � � −15 for the empirically chosen parameters to
calculate the correlation function C(a, b, r). Using a discrete fast-
Fourier transform (FFT), the computation is on the order of
N3 ln(N3) instead of the order of N6 of the direct calculation using
equation 3. Using this scoring function, we ranked all of the pos-
sible generated complex structures (in our case we initially keep
10,000).

Moont et al. (1999) generated empirical residue–residue pair
potentials to further screen possible protein–protein docking com-
plexes by FTDock. We also used their 20 × 20 matrix of pairwise
interaction potentials. For each docked complex, we calculate the
distance between residues of the two proteins. If this distance is
<4.5 Å, we obtain the interaction value from the matrix, then sum
up all the values and get the final interaction energy for each
complex. Using this interaction information, a new rank (pair-
potential rank) is generated.

Conservation of residue positions

To evaluate the extent of conservation of interacting positions on
the surface of proteins, we calculate conservation indices as fol-
lows:

Homologous sequences

The two protein sequences of each investigated complex were
used to obtain their homologous sequences from SWALL, an an-
notated nonredundant protein sequence database (nonredundant
SWISS-PROT + TrEMBL + TrEMBLnew), using the FASTA3
(http://www.ebi.ac.uk/fasta33/) sequence similarity search tool at
the European Bioinformatics Institute. Homologous sequences
with <30% gaps in the sequence and >35% sequence identity to the
parent sequence were used for analysis. If the evolutionary dis-
tance (described below) between any two sequences is <5%, then
we randomly removed one of the sequences from the homolog set.
The remaining sequences were used for calculating the residue
conservation index (described below).

Evolutionary distance

Evolutionary distance among the sequences is calculated using the
structure-based amino acid substitution matrix M(a, b) (Gonnet et
al. 1992). A similarity score Sii for sequence i is calculated by
summing the identical substitution [diagonal values from M(a, b)].
Similarly, score Sjj is calculated for sequence j. A similarity score
Sij between the sequences i and j is calculated using substitution
matrix values of corresponding aligned residues between the two
sequences. An evolutionary distance (EDij) between the two se-
quences is calculated using

EDij = ���1 −
Sij

Sii
� + �1 −

Sij

Sjj
�� �2� × 100 (4)

Figure 4. Schematic representation of the algorithms used.
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Conservation index of residue position

Evolutionary distances between the reference sequence and its
homologs were used to calculate residue conservation index (CIl)
for each position l using the amino acid substitution matrix, similar
to the amino acid variability or conservation used by Valdar and
Thornton (2001). Conservation Index (CIl) is a weighted sum of all
pairwise similarities between all residues present at the position.
The CIl value is calculated using equation 5 in a given alignment
and takes a value in the range [0, 1].

CIl =
�

i

N

�
j�i

N

ED�si� × ED�sj� × Mut�si�l�, sj �l��

�
i

N

�
j�i

N

ED�si� × ED�sj�

(5)

where N is the number of homologous sequences in the alignment;
si(l) and sj(l) are the amino acids at the alignment position l of
sequences si and sj, respectively; ED(si) and ED(sj) are the average
evolutionary distance of s(i) and s(j) from the remaining homologs.
Mut(a, b) measures the similarity between the amino acids a and b
as derived from the amino acid substitution matrix M(a, b) de-
fined as:

Mut�a,b� =
M�a,b� − M�a,b�low

M�a,b� max − M�a,b�low
(6)

where a, b are the pairs of amino acids at a given alignment
position l. M(a,b)low is the lowest value in the substitution matrix
(−5 in the Gonnet matrix; Gonnet et al. 1992) and M(a, b)max is the
maximum value among all the possible substitution pairs in that
position. Thus Mut(a, b) takes a value in the range [0, 1].

Using PSA (Richmond and Richards 1978; Sali and Blundell
1990), the solvent-accessible surface area (SASA) of amino acids
is calculated and used to identify surface residues and buried resi-
dues. We have then identified the top 8% and 17% of highly
conserved residues, which have solvent accessibility >25% of their
total surface area. As an example, in Table 2 we list the highly
conserved surface residues of complex 1TAB’s E and I chains.

For each complex, we add all conservation indices for each
conserved position and use them to rank the complexes after fil-
tering. In this case, two conservation ranks are obtained for groups
1 and 2, respectively. We have observed (B.V.B. Reddy and Y.N.

Kaznessis, in prep.) that in the functionally interacting natural
proteins, such as enzyme–inhibitor complexes, the surface density
of conserved positions is significantly higher in the interface re-
gion than in the rest of the protein surface. In Table 3 we demon-
strate that this observation is valid for the benchmark set of pro-
tein–protein complexes investigated herein with sufficient homo-
log sequences.

Based on the CI values, calculated with equation 5, we have
divided all the available sequence positions into four groups: group
1 positions have CI values �0.4, group 2 positions have CI values
between 0.4 and 0.6, group 3 positions have values between 0.60
and 0.85, and group 4 positions have values >0.85. In Table 3, the
distribution is shown of amino acid positions in each group with
different conservation indices. We have used a 10% solvent ac-
cessibility cutoff to differentiate surface residues and buried resi-
dues and only looked at surface residues. We also present the ratio
between the fraction of noninterfacial (noninteracting) and inter-
facial (on the protein–protein interface) surface residues at all the
conservation intervals.

It can be seen from Table 3 that for non-antigen–antibody com-
plexes the ratio increases progressively from 0.85 to 1.53 at higher
CI intervals. This is a clear indication that the number of highly
conserved positions in the interfacial region is significantly more
compared to noninterfacial regions.

This finding is not in agreement with the study of Caffrey et al.
(2004), who reported only a slight increase in conservation of
interfacial regions. A calculation of average conservation indices
for the interacting patches of the benchmark protein–protein com-
plexes explains the discrepancy and verifies the results of our
previous study (B.V.B. Reddy and Y.N. Kaznessis, in prep.). This
calculation shows that the average conservation indices for all the
residues in the interaction sites are indeed only slightly higher as
shown by other researchers (Caffrey et al. 2004; B.V.B. Reddy and
Y.N. Kaznessis, in prep.). Nonetheless, although the average CI of
interacting patches is not a useful measure for the prediction of
interacting sites on protein surfaces, the actual number of highly
conserved residues in the interfacial region can help in accurately
identifying putative interaction sites on given protein structures.
Therefore, we have used the number of highly conserved positions
per interaction site as our filter to identify the interaction sites. We
assigned high ranks to complexes that had a large number of
conserved positions at the interacting interface for non-antigen–
antibody complexes.

From Table 3 it can be also seen that for antigen–antibody
complexes the ratio decreases progressively from 2.98 to 0.36 at
higher CI intervals (unlike the non-antigen–antibody complexes).

Table 2. The top 17% highly conserved positions for 1TAB

3G (55.6, 0.85) 4G (33.9, 0.98) 6T (33.9, 0.98) 10N (26.5, 0.46)
11T (56.6, 0.46) 21G (85.2, 0.51) 31N (37.5, 0.52) 32S (25.5, 0.47)
40H (37.1, 0.98) 69K (37.2, 0.49) 74P (70.8, 0.46) 77N (42.4, 0.47)
92S (50.8, 0.44) 93A (52.5, 0.63) 97N (58.7, 0.47) 101A (31.6, 0.45)

1TAB:E
102S (32.8, 0.62) 107T (90.6, 0.44) 113G (74.8, 0.45) 139K (46.3, 0.45)
141P (27.2, 0.55) 144S (37.1, 0.47) 146S (67.3, 0.57) 149K (42.9, 0.48)
158S (78.4, 0.45) 167E (77.4, 0.45) 169G (53.4, 0.64) 170K (42.5, 0.57)
174Q (61.3, 0.53) 184S (83.8, 0.46) 194G (29.4, 0.96) 196G (59.2, 0.53)
200K (66.0, 0.46) 208K (27.7, 0.54) 214S (63.7, 0.46) 218Q (75.8, 0.47)

1TAB:I 13C (40.5, 1.00) 15K (104.0, 0.67) 18P (58.8, 0.89) 23C (36.7, 0.96)
31C (33.3, 0.68) 35C (59.1, 0.75)

Solvent-accessible area and the conservation index (CI in equation 5) are given in parentheses, respectively. The
residues shown in bold fall in the top 8% list.
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This is a clear indication that the number density of highly con-
served positions in the interfacial region is significantly smaller
compared to noninterfacial regions. From Table 3 it can be seen
that the ratio decreases at higher CI intervals for both antigen and
antibody regions. Therefore, we gave higher ranks to the models
with low numbers of conserved positions.

That the antigen interface is not conserved in the manner of
non-antibody–antigen complexes is perhaps an unexpected find-
ing. At present we do not have any clear explanation for this
finding, and to our knowledge there is no study on conservation
signals for antigens. Nonetheless, based on the strength of the
signal, we have used a reverse conservation filter for both anti-
bodies and antigens.

In principle, it is more difficult to predict the binding site of an
antigen, since for antibodies this region is known. Our computa-
tions provide a means for identifying the antigen-binding site.

Filters

Conservation position filter

Using homologous sequences we calculated conservation indices
for each docked model using equation 5. We have identified the
top 8% (defined as group 1) and top 17% (defined as group 2) of
highly conserved and well-exposed surface residues, in each poly-
peptide chain of the interacting complex.

We counted the total number of group 1 and group 2 positions
in each modeled complex interface region. Using the group 1 and
group 2 conservation positions as a filter, the total number of
docked models is reduced. We selected only the models that have
at least four of group 1 positions or six of group 2 positions in the
interface region of the enzyme–inhibitor model complexes. In the
case of antigen–antibody complexes (e.g., 1JHL, 1KXQ), we have
reversed the selection, limiting to two or less group 1 positions and
four or less group 2 positions. We chose these cutoffs because we

maximized the number of filtered docking solutions out of the
10,000 generated structures with the minimum number of near-
native structures, as discussed in “Results” above.

Filter II

A second filter was developed to lower the number of model
structures further, using the average conservation rank along with
other three ranks (shape complementarity, pair potential, and de-
solvation energy; described in the next section). If the rank of a
complex is worse than 1200 in any of the four rankings, then the
corresponding model is filtered out of the set of putative near-
native structures. Filter II is performed with only three ranks if
conservation information is not available as described in “Results”
above.

Side-chain relaxation and binding free
energy calculation

Since the generated docked complexes have very strong side-chain
overlap effects (atoms are very close to each other), we cannot
calculate the binding energy correctly. Therefore, for each possible
complex we perform energy minimization to reduce the side-chain
overlap effects. We used the CHARMM (Brooks et al. 1983) mo-
lecular mechanics simulation package for energy minimization.
With CHARMM, we built in the missed atoms and all hydrogen
atoms, fixed all backbone atoms, and let the side-chain atoms relax
to the minimum internal energy. Minimization was stopped if the
energy did not change by more than 0.1% of the total energy of the
complex. We should note here that this step is particularly com-
putationally intensive. We thus worked on only the filtered struc-
tures after using the calculated conservation indices.

Using the relaxed structures, we calculated the binding free
energy. With some approximation, the free energy change can be

Table 3. The occurrence and the fraction (shown in parentheses) of residue positions in
different classes of conservation indices for the interfacial and noninterfacial surface region of
the benchmark structures with sufficient homolog sequences

Conservation index (CI) of group intervals

<0.40 0.40–0.60 0.60–0.85 >0.85

Nonantigen–antibody complexes
Noninterfacial surface residues 3266 (0.42) 2058 (0.26) 1497 (0.19) 1009 (0.13)
Interfacial surface residues 405 (0.35) 253 (0.22) 259 (0.23) 225 (0.20)
Ratio 0.85 0.84 1.19 1.53

Antigen–antibody complexes
Noninterfacial surface residues 1128 (0.16) 2154 (0.31) 2169 (0.31) 1440 (0.21)
Interfacial surface residues 282 (0.49) 147 (0.25) 106 (0.18) 43 (0.07)
Ratio 2.98 0.81 0.58 0.36

Only antibody regions
Noninterfacial surface residues 860 (0.17) 1729 (0.34) 1700 (0.34) 761 (0.15)
Interfacial surface residues 196 (0.61) 73 (0.23) 43 (0.13) 9 (0.03)
Ratio 3.59 0.66 0.40 0.19

Only antigen regions
Noninterfacial surface residues 268 (0.15) 425 (0.23) 469 (0.25) 679 (0.37)
Interfacial surface residues 86 (0.33) 74 (0.29) 63 (0.25) 34 (0.13)
Ratio 2.30 1.27 0.96 0.36

Solvent accessibility >10% is used as the cutoff to define a residue as surface residue.
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divided into several terms (Camacho et al. 2000b; Dennis et al.
2002):

�G = �Ges + �Gcav + �Gbinding + …

≈ �Gcoulomb + �Gpol + �
i

	iSASAi + �Gbinding (7)

These terms can be calculated separately: �Gcoulomb and �Gpol can
be calculated with the Generalized Born model with the Debye-
Huckel approximation (Jayaram et al. 1998, 1999):

�Gpol = −166 �1 −
1


� �i=1

n

�
j=1

n qi qj

fGB
(8)

�Gcoulumb = 332 �
i=1

n−1

�
j=i+1

n qi qj

rij
(9)

where fGB � (rij
2 + �ij

2e−D)1/2, �ij � (�i�j)
1/2, D � rij

2/(2�ij)
2,

and �i is the effective Born radius of the atom, which can be
obtained by pairwise dielectric descreening procedure (Hawkins et
al. 1996). The desolvation energy term ∑	kSASAk can be calcu-
lated using the Solvent-Accessible Surface Area for each residue
(SASAk). The weights (	k) for each residue are taken from the
work of Wang et al. (1995). For the binding interaction, we use van
der Waals interaction of the form:

�Gbinding = �
i, j

�Aij

rij
12

−
Bij

r ij
6 � (10)

The summation is for all the atom pairs from the two proteins. The
potential parameters Aij and Bij for each atom pair are taken from
the CHARMM force field (Brooks et al. 1983) and AutoDock
(Morris et al. 1998). From the value of free energy �G, we cal-
culated a new rank for all filtered possible complexes.

We also generated a rank based on only the desolvation term of
the free energy, which is the only part of the free energy that can
be calculated without relaxing the docked structures with minimi-
zation.

Global normalized ranking

Our goal is to determine an optimal ranking procedure for identi-
fying near-native structures. We could use a weighted sum of all
the calculated descriptors (shape complementarity, pair-potential,
CHARMM energy, binding free energy, desolvation energy, con-
servation indices) to produce a global rank for the filtered subset of
docked models, but values of these properties are not in the same
units, and the weights are not universal and hard to optimize. In
our algorithm, instead of using the real value of each descriptor,
we used the rank of each property since they have the same mean-
ing and can be summed together.

For each individual descriptor, a normalized ranking method is
applied. The rank was obtained by finding the maximum (Vmax)
and minimum (Vmin) of their values and using the following equa-
tion:

NORM_RANKi = 1 + ANINT � Vi

Vmax − Vmin

N
� (11)

where Vi is the property value of complex i, and N is the total
number of complexes after filtering. There may be some gaps if the
difference between complexes is large, and several complexes can
have the same rank number if their values are very close to one
another. Nonetheless, this normalized method clearly reveals the
difference among the complexes. Specifically for the binding free
energy descriptor, we set the Vmax equal to zero. If for a complex
the binding free energy is greater than zero, we assign the highest
rank (in our case is 10,000) to that complex.

The global score is simply obtained by a weighted average of all
normalized ranks:

GLOBAL_Score =
1.0

100 * M �
i

M

	i * NORM_RANKi (12)

where M is the number of rank methods (descriptors), and 	i is the
weights for descriptor i. Factor 100 is a scale factor that reduces
the maximum of global_score to 100.

To determine which properties should be included in our global
ranking and what their weights should be (	i in equation 12), we
calculated Pearson’s correlation coefficients (Devore and Peck
2001) between each of the descriptor ranks and the RMSD of the
models from the native structure. From our calculated correlation
coefficients, we found the CHARMM energy has a particularly
low value of correlation coefficients (<0.10). Therefore we have
excluded the CHARMM energy from our ranking procedure and
only use M � 5 descriptors (shape complementarity, pair poten-
tial, conserved residue, binding free energy, desolvation energy)
into our final global rank.

Ideally, for the best possible prediction, the correlation coeffi-
cient would be equal to 1 (best ranked having lowest RMSD,
second best ranked having second lowest RMSD, etc.). These
coefficients provide a measure of the predictive ability of a single
descriptor. They also provide a means of comparing the different
descriptors.

There is no descriptor that does well, in terms of correlation
coefficient values, for all 59 complexes. Specifically, we found
that the pair-potential descriptor has a significant correlation co-
efficient value (>0.10) for 22 complexes, desolvation energy has
significant positive correlation in 13 complexes, conserved residue
descriptor has significant correlation in 10 complexes, shape-
complementarity values correlate well with RMSD in three com-
plexes, and that the binding free energy has significant correlation
coefficient values in three complexes. For some complexes more
than one descriptor gives significant correlation coefficient values.

We determined the weights for equation 12 using the relative
number of complexes for which each descriptor does well, in terms
of predictive ability and correlation coefficient values. Taking also
into account the fact that for some complexes more than one de-
scriptor does well, we used weights of 1, 1, 2, 4, and 5 for shape
complementarity, binding free energy, conservation index, pair-
potential energy, and desolvation energy, respectively. Hence, we
use these relative coefficients as the weights 	 for each descriptor
in equation 12.
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