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Abstract

Protein-protein interaction networks (PINs) are scale-free networks with a small-world property. In a small-world network,
the average cluster coefficient (,C.) is much higher than in a random network, but the average shortest path length
(,L.) is similar between the two networks. To understand the evolutionary mechanisms shaping the structure of PINs,
simulation studies using various network growth models have been performed. It has been reported that the
heterodimerization (HD) model, in which a new link is added between duplicated nodes with a uniform probability, could
reproduce scale-freeness and a high ,C.. In this paper, however, we show that the HD model is unsatisfactory, because (i)
to reproduce the high ,C. in the yeast PIN, a much larger number (nHI) of HD links (links between duplicated nodes) are
required than the estimated number of nHI in the yeast PIN and (ii) the spatial distribution of triangles in the yeast PIN is
highly skewed but the HD model cannot reproduce the skewed distribution. To resolve these discrepancies, we here
propose a new model named the non-uniform heterodimerization (NHD) model. In this model, an HD link is preferentially
attached between duplicated nodes when they share many common neighbors. Simulation studies demonstrated that the
NHD model can successfully reproduce the high ,C., the low nHI, and the skewed distribution of triangles in the yeast PIN.
These results suggest that the survival rate of HD links is not uniform in the evolution of PINs, and that an HD link between
high-degree nodes tends to be evolutionarily conservative. The non-uniform survival rate of HD links can be explained by
assuming a low mutation rate for a high-degree node, and thus this model appears to be biologically plausible.
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Introduction

The information of protein-protein interaction networks (PINs)

at the whole-genome level is now available from several organisms,

including Saccharomyces cerevisiae [1–3], Caenorhabditis elegans [4], and

Drosophila melanogaster [5]. These data were provided by using high-

throughput experimental techniques such as yeast two-hybrid

screens [1,2]. The structure of PINs is represented as nodes

(proteins) and links (interactions between proteins). Studies of PIN

structures have revealed that PINs exhibit the following interesting

properties [6].

First, PINs are scale-free networks [7,8]. The number of links

connected to a node is called a degree. The degree distribution P(k)

gives the probability that a node has k links (i.e., degree k). In a

scale-free network, P(k) decays as a power law, following P(k),k2c

[9]. (In the case of PINs, it is known that P(k) better fits a power law

with an exponential cut-off, i.e., P(k),(k0+k)2c e2k/kc [7,10].)

Therefore, a scale-free network is highly heterogeneous and is

characterized by the presence of a large number of nodes having

only a few links and a small number of nodes (hubs) that have

numerous links. A scale-free network is known to be tolerant to

random removal of nodes, but it is very fragile against selective

removal of hubs [7,11]. Second, PINs are small-world networks

[4,5,8,10]. A small-world network is highly clustered like regular

lattices, but it has small path lengths like a random network [12]. A

small-world property is quantified by two statistics of a network,

the average cluster coefficient ,C. and the average shortest path

length ,L.. The cluster coefficient of node i is defined as Ci = 2ei/

ki(ki21), where ki is the degree of node i and ei is the number of

links connecting ki neighbors of node i to one another [12]. (When

ki is zero or one, Ci is defined to be zero.) In other words, ei is the

number of triangles that pass through node i. Ci is equal to one

when all neighbors of node i are fully connected to one another,

while Ci is zero when none of the neighbors are connected to one

another. A small-world network is characterized by a ,C. that is

larger, and an ,L. that is similar, to those of a random network

[12]. (In a random network, ,C. = ,k./N and ,L.,logN/

log,k. [13], where ,k. is the average degree and N is the

number of nodes.) Scale-free and small-world properties are

commonly observed in various complex networks such as the

Internet [9], coauthorship of scientific papers [14], metabolic

pathways [15], and functional connections in the human brain

[16]. Third, PINs show a hierarchical structure. In a network

showing a hierarchical structure, ,C(k)., the average cluster

coefficient of k-degree nodes, decays as a power law ,C(k).,k2m

[17,18]. This indicates that a node with a small number of links
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has a high C and belongs to a small subnetwork in which all nodes

are densely connected, while a hub has a low C and links different

subnetworks. Fourth, PINs show a disassortative structure, in

which ,Knn(k). (‘‘nn’’ represents ‘‘nearest neighbors’’), the

average degree among the neighbors of all k-degree nodes, follows

,Knn(k).,k2n [19–21]. Therefore, the connections between a

hub and a low-degree node are favored, while those between hubs

and those between low-degree nodes are suppressed [19–22].

It has been reported that the emergence of scale-free networks

can be explained by the mechanisms of network growth and

preferential attachment, in which a new node is preferentially

attached to a node that already has many links [23]. In the PIN

evolution, gene duplication is thought to be responsible for

preferential attachment, because gene duplication creates a new

node having the same interacting patterns as the original node,

and a high-degree node is more likely to gain a new link by the

duplication of a randomly selected node than a low-degree node

[6]. To account for the properties of PINs mentioned above,

several network growth models have been proposed. These models

are generally based on gene duplication and divergence. In a

divergence process, some of the links created by duplication are

removed and some new links are added to a network. Sole et al.

[10] proposed a model in which a divergence process includes two

mechanisms, random removal of links from one of the duplicated

nodes and random attachment of new links between a duplicated

node and another node. Both simulation and analytical studies

have shown that this model can generate scale-free and small-

world properties [10,24–27]. However, studies have reported that

a network generated by this model having the same number of

nodes and links as those in the yeast and fly PINs showed a much

smaller ,C. than these PINs [10,28,29]. To overcome this

difficulty, Vazquez et al. [30] and Ispolatov et al. [29] proposed

the heterodimerization (HD) model. In this model, gene

duplication is followed by divergence and HD; in the divergence

process links are removed from duplicated nodes with a uniform

probability a, and in the HD process a new link is established

between two duplicated nodes with another probability b, forming

a heterodimer [29,30]. When a self-interacting protein is

duplicated, the duplicated proteins will interact to each other.

Therefore, b in the HD model represents the probability that a

randomly selected protein is self-interacting and the link between

two duplicated proteins survives after divergence. Simulation and

analytical studies have shown that the HD model could reproduce

a similar ,C. to the yeast and fly PINs as well as a scale-free

property [28–30]. The reason for the successful reproduction of a

large ,C. is that an HD process creates a triangle, and a network

containing a large number of triangles shows a large ,C..

Middendorf et al. [28] reported that the HD model could best

reproduce the fly PIN among seven network growth models using

a technique from machine learning.

In this paper, we examine the yeast PIN, since it constitutes the

most reliable PIN data currently available at the whole genome

level [31]. We first show that the HD model is unsatisfactory as an

evolutionary model of the yeast PIN. We then propose a new

model named the non-uniform heterodimerization (NHD) model,

in which an HD link is preferentially attached between two

duplicated nodes that share many common neighbors. The NHD

model can successfully reproduce various features of the yeast PIN

that cannot be explained by the HD model.

Results

In this study, we examined two models, the heterodimerization

(HD) model and the non-uniform heterodimerization (NHD)

model (see Materials and Methods for details). In the HD model,

there are two parameters, the probability that a link is removed

from one of the duplicated nodes (a) and the probability that a new

link is attached between two duplicated nodes (b) (Figure 1A),

which represents the probability that a duplicated protein is self-

interacting and the interaction between two duplicated proteins

survives after the divergence process. These parameters were

determined to let ,k. and ,C. in a generated network be the

same as those in the yeast PIN. To compare the number of HD

links in a generated network with that in the yeast PIN, we defined

an evolutionary distance (Figure 1B). Two nodes are defined to be

homologous when the evolutionary distance between these nodes

is lower than or equal to a given threshold value dT. The statistics

of the networks generated by the HD model are shown in Table 1.

The number of homologous pairs in the yeast PIN (nH = 6,544) is

between nH for dT = 3 (5,309) and that for dT = 4 (8,337). However,

the number of interactions between homologous nodes (nHI = 395

and 514 for dT = 3 and 4, respectively) is much larger than that in

the yeast PIN (175). This observation is consistent with the

investigation of the fly PIN by Ispolatov et al. [29], in which it was

reported that the HD model requires a much larger number of

HD links (270) than the actual number in the fly PIN (142) [32] to

generate the 1,405 triangles present in the fly PIN.

As was mentioned in the Introduction, the HD model can

generate a network with a high ,C., because an HD link

produces triangles. When two duplicated nodes share nN common

neighbors, nN new triangles are created by an HD link between

them (Figure 1C). Therefore, if a new link is attached between

duplicated nodes more preferentially when a larger number of

neighbors are shared between them, it is expected that HD links

fewer than those required by the HD model can reproduce the

high ,C. in the PIN. For this reason, we examined the NHD

model, in which the probability that a new link is added between

duplicated nodes is proportional to the number of neighbors

shared by these nodes. The probability of removing a link (a) and

the proportionality constant to add a new link (b) were adjusted to

let ,k. and ,C. in a generated network be the same as those in

the yeast PIN. The results of simulations by the NHD model are

shown in Table 1. Both nH (6,544) and nHI (175) in the yeast PIN

are between the values for the NHD model with dT = 3 and 4

(nH = 5,315 and 8,351, respectively, and nHI = 157 and 208,

respectively). Moreover, the values of nHI/nH for the NHD model

with dT = 3 and 4 are very close to that in the yeast PIN.

Therefore, both a high ,C. and a low nHI were well reproduced

by the NHD model. Table 1 also shows that ,L. in both HD and

NHD networks are similar to that in a random network, indicating

that they are small-world networks. However, interestingly, ,L.

in the yeast PIN is much lower than that in a random network (see

Discussion).

Figure 2A shows the degree distribution of the networks

generated by the HD and NHD models and that of the yeast

PIN. Although there is a discrepancy between the model networks

and the yeast PIN for a large k (see Discussion), the results showed

that both models can reproduce the degree distribution of the

yeast PIN that follows a power law with an exponential cut-off.

Figure 2B shows that ,C(k). in the networks generated by the

models follows a power law, indicating that these networks exhibit

a hierarchical structure. In the case of the yeast PIN, however,

,C(k). decreases following a power law as k increases only for a

non-small k (k.10). This relationship was also observed in the

previous studies [18,19]. As shown in Figure 2C, both the HD and

NHD networks display a disassortative structure ,Knn(k).,k2n,

but the values of n are smaller than that in the yeast PIN (see

Discussion).

Yeast Protein Network
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Figure 2D shows the probability PT(nT) that a given link is

contained in nT triangles in a network. For example, nT = 2 for the

link between nodes A and A9 (dashed line) in the middle of

Figure 1C. The probability distribution PT(nT) is a statistic

describing a spatial distribution of triangles in a network. In a

network generated by the HD model, the spatial distribution of

triangles can be regarded to be random, because addition of a new

HD link occurs randomly. As shown in this figure, the distribution

of PT(nT) in the yeast PIN is quite different from that in the

network by the HD model, suggesting that the spatial distribution

of triangles in the yeast PIN is highly skewed. In other words, in

the yeast PIN, the extent of overlapping of triangles is larger than

the expectation from a random distribution. On the other hand,

the PT(nT) distribution for the NHD model is close to that in the

yeast PIN. Therefore, the structure of a network generated by the

NHD model is more similar to the PIN than that by the HD

model.

In the HD and NHD models, self-interactions were not

explicitly considered, though it was assumed that an HD link is

created only when a self-interacting protein is duplicated.

However, in the yeast PIN, the fraction of self-interacting proteins

is only 0.049, and ,k. increases slightly (3.84) when self-

interactions are considered. The effect of self-interactions to other

statistical properties of the yeast PIN is negligible (Figure S1).

Therefore, it is expected that explicit consideration of self-

interactions in a model does not essentially alter the results

described above. We should also note that the fraction (0.049) of

self-interactions in the yeast PIN is consistent with the value of b
(0.028) in the NHD model. The fraction in the yeast PIN is much

smaller than that (0.18) in the human transcription factor network,

in which the statistical properties are considerably different

between the networks with and without self-interactions [33].

We also examined the effect of gene deletions that are caused by

mutations. For this purpose, we modified the NHD model by

adding the process of random elimination of nodes (NHD+E

model). However, the elimination of nodes did not essentially

change the results (Table S1 and Figure S2).

Discussion

In this study, we showed that the NHD model can successfully

reproduce both a high ,C. and a low nHI in the yeast PIN,

whereas the HD model cannot regenerate the value of nHI. We

also demonstrated that the distribution of triangles in the yeast

Figure 1. Simulation. (A) HD model. Node A is duplicated to generate node A9. Each of the links to node A9 is removed with a uniform probability a
(left). Note that this method is based on completely asymmetric divergence [44], in which only one (A9) of the duplicated nodes is the target of
removal of links. An HD link between node A and node A9 is attached with a uniform probability b (middle). (B) Evolutionary distance. When a node is
duplicated, the evolutionary distance between each of the duplicated nodes and each of the other nodes in a network is assumed to increase by one
due to mutations occurring in the duplicated nodes during the divergence process. Suppose that the evolutionary distance between node A and
node B is d (left). After the duplication of node A to generate node A9 and the divergence of them, the evolutionary distance between nodes A and B,
and that between nodes A9 and B become d+1 whether a link between nodes A and B and that between A9 and B are present or not (middle). (A
dashed line indicates absence of a link.) The evolutionary distance between nodes A and A9 is defined to be 1 regardless of the presence of a link
between them. After that, if node A9 is duplicated to create node A’’, the evolutionary distance between nodes A and B continues to be d+1, while the
evolutionary distances between nodes A and A9, A and A0, B and A9, and B and A0 become 2, 2, d+2, and d+2, respectively (right). (C) NHD model. In
this model, the probability that a link is added between A and A9 is proportional to the number (nN) of common neighbors shared by these nodes.
doi:10.1371/journal.pone.0001667.g001

Yeast Protein Network
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PIN is highly skewed and the skewed distribution can be

reproduced by the NHD model but not by the HD model. These

results suggest that the NHD model would reflect the actual

evolutionary mechanism of PINs.

Is the NHD model biologically realistic? In the PIN evolution,

when a self-interacting protein is duplicated, an HD link between

duplicated proteins is added to the PIN. Some HD links survive in

evolution, but other links disappear because of mutations

occurring at interacting sites in one or both of the duplicated

proteins. Therefore, in the HD model, an HD link is assumed to

survive at a uniform rate. On the other hand, in the NHD model,

it is assumed that the survival rate of an HD link is proportional to

the number of common neighbors shared by the duplicated nodes.

Figure 3A shows the probability PHD(nN) that two homologous

nodes have an HD link when they share nN common neighbors.

This figure indicates that PHD(nN) is nearly constant regardless of

nN in the networks by the HD model. On the other hand, in the

yeast PIN, PHD(nN) increases in proportion with nN, which is

consistent with the NHD model. These observations suggest that,

in the evolution of PINs, the survival rate of HD links is not

uniform in terms of nN. Therefore, the NHD model appears to be

realistic. The value of PHD(nN) in the NHD network is smaller than

that in the yeast PIN for nN,15. This appears to happen because,

in the NHD network, several protein pairs have very large values

of nN, which is not the case in the yeast PIN. That there are no

protein pairs with large nN in the yeast PIN may be due to the high

duplicability of low-degree nodes [34], which was not considered

in the NHD model (see below).

Why, then, is the survival rate of HD links not uniform, but

rather proportional to the number of common neighbors? One

possible explanation is as follows. It has been reported that the

degree of proteins in the yeast PIN is negatively correlated with

their evolutionary rates [35–37], though this assertion is

controversial [38]. Not surprisingly, proteins connected by an

HD link that has a large nN tend to have a high degree (Figure 3B).

Therefore, the evolutionary rates of proteins in an HD link with a

large nN are expected to be low. If this is the case, the possibility of

the occurrence of mutations at the binding sites would also be low,

and thus the survival rates of HD links having a large nN are

thought to be higher than those of HD links having a small nN.

Although the degree distribution P(k) of the NHD network is

generally in good agreement with that of the yeast PIN, the

number of nodes with k.50 in the former is much smaller than

that in the latter (Figure 2A). The average of the maximum

degrees among the NHD networks is 75.2, while the maximum

degree in the yeast PIN is 286. Moreover, though the NHD

network exhibits a disassortative structure ,Knn(k).,k2n, the

value of n is considerably smaller than that in the yeast PIN

(Figure 2C). These discrepancies might be resolved by introducing

a mechanism wherein low-degree nodes duplicate more frequently

than high-degree nodes. Prachumwat and Li [34] reported a

negative correlation between the degree of proteins and their

duplicability. Due to the disassortative structure (Figure 2C), low-

degree nodes have more links to high-degree nodes than to low-

degree nodes. Therefore, as a result of frequent duplication of low-

degree nodes, links between a high-degree node and a low-degree

node are preferentially generated, and a high-degree node tends to

gain new links. For this reason, with the mechanism of high

duplicability of low-degree nodes, the degrees of hubs and the

value of n in Figure 2C are expected to become larger than the

current values. Moreover, the lack of HD links with high nN in the

yeast PIN (Figure 3A) would also be explained with this

mechanism, because HD links with high nN should be rare if the

duplicability of high-degree nodes is low.

Although PINs are generally considered to be small-world

networks [4,8,10,24], the ,L. in the yeast PIN is much lower

Table 1. Statistics of the networks by the HD and NHD models and the yeast PIN

Model dT aa ba nH
b nHI

c nHI/nH ,k.d ,C.e ,L.f

HD model 1 0.725 0.061 1,312 (11) 140 (12) 0.107 (0.009) 3.73 (0.09) 0.066 (0.006) 6.45 (0.14)

2 2 2 3,031 (27) 269 (19) 0.089 (0.006) 2 2 2

3 2 2 5,309 (43) 395 (25) 0.074 (0.005) 2 2 2

4 2 2 8,337 (65) 514 (31) 0.062 (0.004) 2 2 2

5 2 2 12,363 (92) 628 (42) 0.051 (0.003) 2 2 2

NHD model 1 0.745 0.028 1,308 (11) 52 (6) 0.040 (0.005) 3.74 (0.07) 0.066 (0.006) 6.23 (0.12)

2 2 2 3,030 (22) 105 (11) 0.035 (0.004) 2 2 2

3 2 2 5,315 (42) 157 (17) 0.029 (0.003) 2 2 2

4 2 2 8,351 (61) 208 (21) 0.025 (0.003) 2 2 2

5 2 2 12,373 (86) 259 (28) 0.021 (0.002) 2 2 2

Yeast PINg 6,544 175 0.027 3.74 0.066 4.85

Randomh 3.74 0.00096 6.27

The number in parentheses represents the standard deviation calculated from 100 networks generated by simulations. 2, the same as above.
a.Parameters used in the simulations. See Materials and Methods.
b.The number of homologous pairs. Two nodes are defined to be homologous when the evolutionary distance between the two nodes is dT or less.
c.The number of interactions between homologous proteins.
d.The average degree.
e.The average cluster coefficient.
f.The average shortest path length.
g.The yeast PIN without self-interactions.
h.A random network that has the same ,k. and N as those in the yeast PIN, where N is the number of nodes (3,891) in the yeast PIN. The values of ,C. and ,L. were

calculated using the formulae ,K./N and logN/log,k., respectively.
doi:10.1371/journal.pone.0001667.t001

Yeast Protein Network
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Figure 2. Properties in the networks by the HD and NHD models. Black squares, red diamonds, and green crosses show the values for the
yeast PIN, the network generated by the NHD model, and the network by the HD model, respectively. The results for the HD and NHD models
were obtained by taking the average among 100 networks generated by simulations. (A) Degree distribution P(k). The dashed line represents
(k0+k)2ce2k/kc with c= 2.7, k0 = 3.4, and kc = 50. (B) Distribution of the average cluster coefficient ,C(k).. Dashed lines in red and green indicate
k20.68 and k20.90, respectively. (C) Distribution of ,Knn(k). indicating a disassortative structure. Dashed lines in black, red, and green represent k20.47,
k20.18, and k20.14, respectively. (D) Distribution of PT(nT), the probability that a given link is contained in nT triangles.
doi:10.1371/journal.pone.0001667.g002

Figure 3. HD links in the yeast PIN and in the networks by simulations. Black squares, red diamonds, and green crosses show the values for
the yeast PIN, the network generated by the NHD model, and the network by the HD model, respectively. (A) Distribution of PHD(nN), the probability
that an HD link exists between two homologous proteins when they share nN common neighbors (for dT = 3). The slopes of the dashed lines are 0.028
(red) and 0 (green). The result for dT = 4 is nearly identical to this result (data not shown). (B) Distribution of ,kHP(nN)., the average degree of
proteins that are connected by HD links and share nN common neighbors with their homologous proteins. The dashed line is a regression line
(r = 0.73).
doi:10.1371/journal.pone.0001667.g003

Yeast Protein Network
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than that in a random network (Table 1). In fact, this

observation is consistent with the previous result by Pastor-

Satorras et al. [24], in which it was reported that ,L. in the

random network and that in their model network were 8.0 and

6.8, respectively. (However, they mentioned that these two

values are ‘‘comparable’’.) Therefore, the yeast PIN is an ‘‘ultra-

small’’ network, in which ,L. is lower than that in a random

network. It is known that a scale-free random network is ultra-

small [39,40]. The yeast PIN can be randomized without

changing the distribution of P(k) by using the random rewiring

method [21]. In this method, two links in a network were

chosen randomly, and these links were rewired by exchanging

their connecting partners. After randomization of the yeast PIN,

,L. (4.49) is similar, but ,C. (0.010) becomes much lower

than that in the yeast PIN. Therefore, the yeast PIN is far from

a scale-free random network. Nevertheless, interestingly, the

yeast PIN is an ultra-small network.

The difference in the value of ,L. between the yeast PIN and

the NHD network may be explained in the following way. It was

reported that the removal of hubs drastically increases the value of

,L. in the yeast PIN [41]. Therefore, the low ,L. in the yeast

PIN might be due to the fact that the number of hubs in the yeast

PIN is larger than that in the NHD network (Figure 2A). (There

are 17 nodes with k.50 in the yeast PIN, while the average

number of nodes with k.50 among the NHD networks is 5.8.) In

fact, if we eliminate all nodes with k.50 and all links connected to

them from the yeast PIN and the NHD network, both ,L. and

,C. become similar between the two networks (,L. = 6.13 and

6.51, and ,C. = 0.063 and 0.060 for the yeast PIN and the NHD

network, respectively). It therefore appears that the presence of a

large number of hubs in the yeast PIN would be the reason for a

very low ,L..

The above discussion would indicate that the NHD model is

merely a rough approximation of the actual mechanism of the PIN

evolution. However, we should note that although our new model

contains only two free parameters, it could well capture various

aspects of the structure of the yeast PIN. The availability of high-

quality interaction data from other species will thus help to clarify

the architecture and evolution of PINs in greater detail.

Materials and Methods
Data

Human-curated interaction data of the yeast PIN were

downloaded from the MIPS (Munich Information Center for

Protein Sequences) database (http://mips.gsf.de) (18 May 2006)

[3]. The interaction data are separated into several components

that are not connected to each other; we used the largest

component containing 3,891 proteins and 7,270 non-redundant

interactions. Among these proteins, 191 proteins are self-

interacting. The amino acid sequences of 6,736 yeast proteins

were also obtained from the MIPS database. In order to estimate

the number of interactions between homologous proteins in the

yeast PIN, we identified homologous gene pairs. Self-against-self

homologous searches were conducted for the 6,736 sequences by

using the BLASTP program [42] with the cut-off E-value of 1e-5.

We identified 6,544 homologous pairs (nH) and 175 interactions

between these pairs of proteins (nHI) in the yeast PIN (see Table 1).

The value of nHI/nH did not essentially change when a more

stringent cut-off E-value was used (nHI/nH was 0.027 and 0.032 for

the E-values of 1e-5 and 1e-10, respectively).

Simulation
In this study, we used the ‘‘minimal genome’’ containing 113

proteins as the initial network, because the first living organism is

assumed to have had at least 113 proteins [43]. We generated a

single component random network containing 113 nodes with

,k. = 3.74, which is the average degree of the yeast PIN. The

evolutionary distance between two nodes present in the initial

network was assumed to be infinity. We obtained very similar

results when we started a simulation from the initial network

containing only two nodes.

At each time step of simulation in the HD model, a new node is

added to the network according to the following rules (Figure 1A).

(1) A node is randomly selected (A) and is duplicated to generate a

new node (A9), having the same interacting pattern as node A. (2)

Each of the links to node A9 is removed with a probability a
(completely asymmetric divergence [44]). (3) A link between node

A and node A9 is created with a probability b. If node A9 does not

have any links after these processes (all links to node A9 were

removed and no links were created), node A9 is not added to the

network. These processes were repeated until the number of nodes

became 3,891, which is the number of nodes contained in the

yeast PIN. In the NHD model, the probability that a new link is

added between two duplicated nodes (A9 and A) is defined to be

bnN (when bnN#1), where nN is the number of common neighbors

shared by these two nodes (Figure 1C). The probability is defined

to be one when bnN.1. (However, there were no such cases in the

simulations.) We performed simulations using various values of a
and b. For a given a and b, we conducted simulations 100 times

and computed the average of ,k. and the average of ,C. from

the 100 networks. The values of a and b that could reproduce

,k. (3.74) and ,C. (0.066) in the yeast PIN were used (Table 1).

In the NHD+E model, the following process was added after the

addition of new links at each step of the NHD model. A node in a

network is randomly selected, and the selected node is eliminated

from the network with a probability d together with all interactions

connecting to the selected node. If the selected node is connected

to one-degree nodes, all of these one-degree nodes are also

removed. We changed the value d from 0.001 to 0.1 (see Table

S1). The values of a and b were determined in the same way as in

the NHD model.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0001667.s001 (0.04 MB

DOC)

Figure S1 Properties in the yeast PIN with and without self-

interactions. Red triangles and black squares show the values for

the yeast PINs with and without self-interactions, respectively. (A)

Degree distribution P(k). (B) Distribution of the average cluster

coefficient ,C(k).. (C) Distribution of ,Knn(k).. (D) Distribution

of PT(nT).

Found at: doi:10.1371/journal.pone.0001667.s002 (0.78 MB TIF)

Figure S2 Properties in the networks by the NHD and NHD+E

models. Black squares, red diamonds, and blue crosses show the

values for the yeast PIN, the network generated by the NHD

model, and the network by the NHD+E model with d= 0.1,

respectively. The results for the NHD and NHD+E models were

obtained by taking the average among 100 networks generated by

simulations. (A) Degree distribution P(k). The dashed line

represents (k0+k)2ce2k/kc with c= 2.7, k0 = 3.4, and kc = 50. (B)

Distribution of the average cluster coefficient ,C(k).. Dashed line

in red indicates k20.68. (C) Distribution of ,Knn(k).. Dashed lines

in black and red represent k20.47 and k20.18, respectively. (D)

Distribution of PT(nT).

Found at: doi:10.1371/journal.pone.0001667.s003 (0.82 MB TIF)
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