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Abstract

Background: The human TTC4 protein is a TPR (tetratricopeptide repeat) motif-containing protein. The gene was
originally identified as being localized in a genomic region linked to breast cancer and subsequent studies on
melanoma cell lines revealed point mutations in the TTC4 protein that may be associated with the progression of malignant
melanoma.

Methodology/Principle Findings: Here we show that TTC4 is a nucleoplasmic protein which interacts with HSP90 and
HSP70, and also with the replication protein CDC6. It has significant structural and functional similarities with a previously
characterised Drosophila protein Dpit47. We show that TTC4 protein levels are raised in malignant melanoma cell lines
compared to melanocytes. We also see increased TTC4 expression in a variety of tumour lines derived from other tissues. In
addition we show that TTC4 proteins bearing some of the mutations previously identified from patient samples lose their
interaction with the CDC6 protein.

Conclusions/Significance: Based on these results and our previous work with the Drosophila Dpit47 protein we suggest
that TTC4 is an HSP90 co-chaperone protein which forms a link between HSP90 chaperone activity and DNA replication. We
further suggest that the loss of the interaction with CDC6 or with additional client proteins could provide one route through
which TTC4 could influence malignant development of cells.
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Introduction

HSP90 and HSP70 both play a part in the cellular response to

stress. However recently it has become apparent that they also co-

operate to chaperone a variety of proteins (clients) in multiple

cellular pathways in cells which are not stressed. They often play a

vital role in the cellular functioning of the client [1]. The precise

result of the chaperone interaction seems to vary with the

individual client proteins and examples of effects on structure,

modification, protein interactions and localisation have all been

reported ( reviewed in [2]). HSP90 has also recently gained some

prominence as a possible target for cancer therapy in several

different types of tumour [3] and a number of phase 1 and 2 trials

of anti-HSP90 drugs are currently under way.

The HSP90 co-chaperones are a group of diverse proteins

which help HSP90/70 in their action. This group includes other

heat shock proteins, TPR containing proteins, cyclophilins and

others. The TPR domain is a 34 amino acid protein motif thought

to be involved in protein:protein interactions. TPR motif

containing proteins are widely distributed across multiple classes

of proteins involved in a variety of cellular functions [4] [5] Those

interacting with HSP90/70 usually contain 2–3 copies of the motif

and the TPR motifs in such proteins are more closely related to

each other than to TPR domains from proteins with other cellular

functions [6]. It is thought that the TPR motifs are important for

direct interaction with the HSP90/70 proteins [7] and precise

mapping of the contact points has been achieved for at least one

TPR co-chaperone (Hop-[8]). Although the TPR domains provide

a way of interacting with the heat shock proteins they do not seem

to define a specific protein function. Therefore while some TPR

co-chaperones have quite general HSP90/70 related functions (eg

Hop-[6]), others have more specific roles associated with particular

HSP90 clients or groups of clients (eg Chip [9] Bag-[1] )

We have previously reported the identification of a protein from

Drosophila (Dpit47) which shows properties consistent with it

being a TPR co-chaperone [10] This protein shows a tight and

stoichiometric interaction with DmHsp90, it also shows a tight

interaction with DmHsp70, although this is at substoichiometric

levels. In addition to DmHsp90/70 interactions Dpit47 associates

with a number of proteins which are involved in DNA replication-

DNA polymerase alpha, DmCdc6 and DmOrc2/5 ( GC and SC

unpublished). All three of these proteins are thought to have a

catalytic role in the initiation of DNA replication. In addition cdc6

is also thought to be involved in controlling the co-ordination of

DNA synthesis with cell cycle traversal of the G1/S and G2/M

boundaries [11] [12] [13] [14] The interaction between Dpit47
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and DNA polymerase alpha causes inhibition of polymerase

activity. Based on these observations we have proposed that

Dpit47 provides a link between DmHsp90 activity and DNA

replication and therefore a possible role for DmHsp90 in some

aspect of DNA replication.

The TTC4 gene was originally identified through its localisation

in a genomic region linked to breast cancer [15])-although no

mutations could be detected in the gene in this study. It has also

been reported as a pseudogene with a breast cancer association

[16]. More recently the gene has been reported to show a variety

of mutations–both deletions and point mutations in tissue samples

from patients with melanoma [17]. In the Poetsch study related

mutations were also reported in three melanoma cell lines,

although in a different study of melanoma cell lines no mutations

were detectable [18].

In this paper we show that TTC4 is the human orthologue of

the Drosophila Dpit47 protein. The two proteins are highly

related in sequence, share a common cellular location, and show

analogous interactions with both heat shock and the replication

initiation protein CDC6. We show that loss of interaction with

CDC6 occurs when some of the point mutations identified in

melanoma samples are introduced into the TTC4 gene. This

suggests a possible route through which TTC4 could affect the

development of malignant melanoma. We also present evidence

which suggests that TTC4 has a general role in the progression of

cancers in addition to melanoma, since the levels of the protein are

raised in a variety of tumour cell lines.

Methods

Identification and cloning of the TTC4 gene
Identification of the TTC4 gene was carried out using the

Blastp programme at the NCBI. The full length gene in pCR2.1

(Invitrogen) vector was a kind gift of J. Cowell (Roswell Park

Cancer Institute). All subsequent cloning steps were carried out by

amplifying the TTC4 insert using a high fidelity polymerase

(Expand–Roche) to introduce appropriate restriction enzyme sites.

The gene sequence and cloning sites were subsequently checked

by DNA sequencing (Lark Technologies).

The phylogenetic tree was assembled by entering the sequences

of the relevant genes into the EMBNET clustal W /phylodendron

programmes on line (http://www.es.embnet.org/Doc/phyloden-

dron/clustal-form.html)

Two hybrid analyses
Human full length cDNA clones for HSP90 protein 1 beta

(HSPCB) and HSP70 protein 8 (HSPA8) were obtained form

Origene Technologies, Inc. HuCDC6 was obtained from A. Dutta

(Dept of Pathology Boston).

TTC4 was cloned in frame in the EcoR1 and Xho sites of the

pJG4.5 vector.Hu CDC6 was cloned in frame in the BamH1 and

Not1 sites of the pEG202 vector.

HuHSP90 was cloned in frame in the Not1 and Xho1 sites of

the pEG202 vector.

HuHSP70 was cloned in frame in the BamH1 and Xho1 sites of

the pEG202 vector.

The sequences of all clones were verified by sequencing (Lark

Technologies).

Yeast manipulations were carried out using standard two hybrid

protocols (Finley lab: Finley R.L.J et al (1997). (http://proteome.

wayne.edu/THPL.html)

Quantitative analyses were performed using liquid beta-

galactosidase assays as described (http://biochemistry.ucsf.edu/

%7Eherskowitz/bgal2.html)

Immunological reagents
Manufacture of TTC4 antibodies. Full length TTC4 was

subcloned in the pRSETa vector (Invitrogen). The 6Xhis tagged

protein was purified under denaturing conditions and the

resultant proteins sent to NeoMPS (Strasbourg) for antibody

manufacture. Two different rabbit antisera were obtained. The

specificity of the antibody was checked by affinity purification of

the antibody against 6XhisTTC4 blotted onto Nitrocellulose

membrane and competition with GST TTC4. For this GST

TTC4 was bound to glutathione sepharose. Undiluted anti TTC4

serum was incubated for 1 hour at room temperature and then

briefly spun down to pellet the beads associated with the specific

antibodies. The depleted serum was used at a 1/1000 dilution in

western blot. For all experiments both antibodies gave the same

result.

Other antibodies/ immunological reagents. Anti HSP90

(ab13495), anti HSP70 (ab6535) and anti HuCDC6 (ab3220) were

from Abcam. Alexa fluor 488 anti mouse and Alexa fluor 594 anti

rabbit and Toto3 iodide were from Molecular Probes. Anti alpha-

tubulin was from Sigma (clone DM 1A).

Immunoprecipitation
Extracts for immunoprecipitation were prepared from sub

confluent Hela cells. After treatment with trypsin, cells were

washed twice with PBS. They were lysed in one volume of PBS,

1% triton X100 and Complete EDTA free protease inhibitors

(Roche). After incubation for 10 minutes on ice the lysate was

cleared by centrifugation for 5 minutes in a microfuge at 10 000 g

at 4uC.

Coupling of antibodies to Protein A sepharose beads and

immunoprecipitation was carried out as described in [19]. 50 ml of

protein A beads were used for 150 ml of Hela cell extract. Proteins

were eluted from the protein A coupled antibody column in a final

volume of 40 ml.

GST pull down experiments
10 mg of GST-TTC4 (wild type or mutant) bound to

glutathione beads was incubated with 6 mg of HSP90 in 10 mM

Tris pH 7.5, 150 mM NaCl, 0.1% triton X100 and protease

inhibitors (complete EDTA free, Roche). After 1 hour at 4uC the

pellets were washed in the same buffer, resuspended in SDS PAGE

loading buffer and analysed on a 12% PAGE SDS.

Cell culture/tissue samples
Melanoma cell lines DX3 and LT5.1 were obtained from IR

Hart (Barts and the London School of Medicine, London, UK),

and grown in RPMI 1640 medium with antibiotics, glutamine,

10% foetal calf serum and 10% CO2. Normal human melanocytes

(Nohm1 melanocytes [20] and Hermes 3a, an immortalized

subline of Nohm1 (([21]?)) were grown in the same medium with

tetradecanoyl phorbol acetate (200 nM, cholera toxin (200 pM),

human stem cell factor (10 ng/ml) and endothelin 1 (10 nM).

Exponential cultures of all other cell types were provided by Yuen-

Li Chung (SGHMS).Placental samples (first trimester chorionic

villus) were provided by Guy Whitley (SGUL).Heart samples were

provided by Nigel Brand (Harefield Hospital).

Indirect immunofluorescence
Cells were trypsinised and then deposited on poly lysine treated

coverslips. Fixation was carried out using 4 % paraformaldehyde

diluted in cytoskeleton buffer (1.1 mM Na2HPO4, 0.4 mM

KH2PO4, 137 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM

EGTA, 5 mM Pipes, 5.5 mM glucose, pH 6.1). The cells were

TTC4 Protein Interactions
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then treated with permeabilisation buffer (PBS, 1% BSA and 0.1%

triton X100). The coverslips were incubated with primary

antibodies (mouse anti tubulin alpha and rabbit anti TTC4),

either for 2 h at room temperature or 4uC overnight. They were

washed with permeabilisation buffer and then incubated with

secondary antibodies as described above. The secondary antibod-

ies used were Alexa fluor 488 anti mouse and Alexa fluor 594 anti

rabbit. The DNA was counterstained with Toto3 iodide. Prior to

microscopy the coverslips were mounted in mounting medium

Vectashield (Vector).

Cellular fractionation
This was carried out basically as described [22] Cells were spun

down, washed in PBS and lysed by incubation for 30 minutes at

4uC in a hypotonic solution (10 mM tris pH 7.5, 10 mM NaCl,

1.5 mM MgCl2 and Complete EDTA free protease inhibitors

(Roche)). Homogenization was carried out in a Dounce homog-

eniser and cell disruption was checked by phase contrast

microscopy. The nuclear pellet was separated from the cytoplas-

mic fraction by centrifugation at 5,000 g in an Eppendorf bench

centrifuge at 4uC. The pellet was then washed twice and

resuspended in hypotonic buffer containing 0.75% Triton, and

centrifuged at 5,000 g. The supernatant after centrifugation is the

nucleoplasmic fraction, and the remaining pellet, was washed

twice and resuspended in SDS loading buffer and constituted the

chromatin fraction. In each case the final concentration was

equivalent to 10000 cells per ml. 5 ml was loaded in each lane.

Samples were analysed by SDS- PAGE followed by coomassie

staining and western blotting.

Preparation of extracts from cultured cells for
immunoblotting

Cell pellets were washed twice in PBS and then resuspended in

SDS-PAGE loading buffer at a concentration of 50,000 cells/ml.

The equivalent of 150,000 cells was loaded in each lane. Cell

debris was removed by centrifugation before separation by SDS –

PAGE.

Production of TTC4 mutants by site-directed
mutagenesis

Point mutations in TTC4 (pJG4.5) were introduced using the

Quickchange site directed mutagenesis kit (Stratagene) as

described in the manufacturers instructions.

Results

Identification of human homologue of Dpit47 as TTC4
The Drosophila Pit47 protein was used to query the NCBI

databases in order to find related proteins from other species. The

closest homologue from any species was identified as the human

TTC4 protein (29% identity). The degree of homology between

the two proteins is shown in Fig 1a. Also included in this figure is

the CNS1 protein [23] [24]) which is the closest homologue to the

Pit47(20% identity) and TTC4 (21% identity) proteins in

S.Cerevisiae. All 3 proteins have 3 TPR motifs and the highest

homology is concentrated in those regions. However the

Drosophila and Human proteins also show homology along the

length of the protein particularly in the N-terminal region. Fig1b

shows a comparison between TTC4 and a number of other TPR

containing proteins from humans and S. Cerevisiae which have

been shown to interact with HSP90 and/or HSP70. This further

confirms that TTC4 is the most related to the Drosophila Pit47

protein.

TTC4 interacts with human HSP90 and HSP70
Our previous studies had shown that the Drosophila Pit47

protein interacts with HSP90 and HSP70. These interactions are

very strong and easily detected using two-hybrid analysis. We

therefore used similar methodology to determine whether TTC4

showed analogous interactions. The TTC4, human HSP90 and

human HSP70 genes were cloned into two hybrid bait and/or

reporter plasmids as described in the Materials and Methods. Fig 2

shows that strong growth was seen on non-selective media when

the bait was introduced into yeast cells with both test and negative

control plasmids (the negative controls used were either the vector

alone or the vector containing the Human gene for DNA

polymerase alpha large subunit-see also later). However on

selective media only the HSP90 and 70 showed significant growth.

TTC4 also showed an interaction with Drosophila Hsp90 by two

hybrid analysis–although this was only 50% as strong as that

between TTC4 and huHSP90 (data not shown).

To confirm these interactions we performed immunoprecipita-

tion experiments using anti-TTC4 antibodies. Full length TTC4

protein was overexpressed and used to raise two rabbit antibodies

(see Materials and Methods). Both antibodies were seen to react

with a band of approximately 48 kDa (estimated molecular weight

from sequence data: 44.7 kDa) in extracts (fig 3a lane 1) and

behaved similarly in all subsequent analyses. To confirm the

specificity of the antibodies GST –TTC4 bound to glutathione

sepharose was used to remove specific anti TTC4 antibodies from

the serum. When this depleted serum was used on a Western blot

the intensity of the 48 kDa band (fig 3a lane 2) was greatly

reduced. The anti-TTC4 antibodies were cross-linked to sephar-

ose beads (see Materals and methods) and used to immunopre-

cipitate TTC4 from Hela cells extracts. TTC4 was efficiently

precipitated from the cell extract (fig 3b. compare wce, snt IP and

pellet IP). The pre immune serum from the same rabbit was used

as a control and was not able to precipitate TTC4 from the cell

extract (compare lane wce, snt pre immune and pellet pre

immune). The immunoprecipitation pellet was checked for the

presence of HSP90 and HSP70 using Hsp-specific antibodies.

Both HSP90 and HSP70 were detected in the anti-TTC4 pellet.

Staining of an SDS-PAGE of the immune pellet with colloidal

coomassie blue showed that HSP90 was present in near

stoichiometric amounts and HSP70 was present at a level of

approximately 20% (data not shown). This is similar to what we

previously observed for the Drosophila TTC4 homologue [10].

Neither HSP90 and HSP70 were detected in the pre-immune

pellet suggesting that the precipitation which we observed was

highly specific to the TTC4 antibodies.

TTC4 interacts with HSP90 via its TPR domain
A comparison of the TPR sequences of HSP90-binding TPR

co-chaperones has suggested that 2 basic residues (Lys-152 and

Arg-156 in TTC4) are highly conserved and are involved in the

interaction with HSP90 [25]. In order to test whether these

residues were also important for the interaction of TTC4 with

HSP90 we changed lysine 152 to glutamic acid (K152E) and

arginine 156 to glutamic acid (R156E) in GST tagged TTC4.

Purified wild type or mutant GST-TTC4 were bound to

glutathione sepharose beads and tested for their interaction with

purified HSP90. Fig 4 shows that the wild type TTC4 is able to

pull down HSP90 efficiently, while both single mutants (K152E

and R156E) and the double mutant show no interaction with

HSP90. This shows that the TTC4 TPR domain in involved in the

interaction with HSP90 and residues previously seen to be needed

for the HSP90 interaction of other co-chaperones are important

for the interaction.

TTC4 Protein Interactions
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Figure 1. a. Comparison of the protein sequence of humanTTC4 (Hs) with its Drosophila (Dm) and S. Cerevisiae (Sc) orthologues.
Areas of identity are shown in shading. The region of the protein containing the TPR domains is underlined. Point mutations of TTC4 which were
tested for their interaction with hCDC6 and Hsp90 and 70 (Fig 6) are coloured in red a-42 (V to D), b-67(I to M),c-77 (E to A), and d-217(N to K). b.
Phylogenetic tree showing a comparison between the TTC4 protein and a variety of other TPR containing proteins which interact with Hsp90 and/or
Hsp70. Each protein is tagged with a prefix to show which species the protein is from h-human, Dm–Drosophila melanogaster, Sc–S. cerevisiae.
doi:10.1371/journal.pone.0001737.g001

TTC4 Protein Interactions
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TTC4 interacts with HuCDC6
If TTC4 is a true orthologue of Pit47 we would expect that it

would show interactions with proteins involved in DNA

replication. The Drosophila protein was isolated through a two-

hybrid interaction with the large subunit of the DNA polymerase

alpha, however when we tried the analogous experiment with

TTC4 and the human DNA polymerase alpha we failed to detect

an interaction (Fig 2 and 5). We had also however detected

interactions (both by two hybrid analysis and immunoprecipita-

tion) of Dpit47 with several other replication proteins including the

initiation protein DmCdc6 (GC and SC unpublished). We

therefore used 2- hybrid analysis to determine whether TTC4

interacted with the human CDC6 protein. Fig 5 shows that on

selective media we detected a strong interaction between TTC4

and HuCDC6, while no interaction was seen when TTC4 was co-

transfected with the vector alone or the human DNA polymerase

alpha. We also detected an interaction between TTC4 and

Drosophila Cdc6 however this was only 50% as strong as that for

human CDC6 (data not shown).

This interaction was also confirmed by co-immunoprecipitation

(fig 3b) of CDC6 from extracts using TTC4 antibodies but not by

immune serum.

TTC4 is a nuclear protein
Dpit47 is a nucleoplasmic protein at all stages of the cell cycle.

We therefore analysed the subcellular location of TTC4 to

determine if it was comparable. The antibodies were used to check

the subcellular localisation of the TTC4 protein using indirect

immunofluoresence in the melanocyte lines Nohm 1 and Hermes

3a (Fig 6a/b). In both cases the protein was seen to be nuclear.

Nuclear staining was not uniform but had a speckled or clumped

appearance. This suggests that there may be some compartmen-

talisation of the TTC4 protein within the nucleus. No difference

was detected between either of these cell lines in terms of location.

We also checked the location of TTC4 in two malignant

melanoma lines, DX3 and LT5.1. For both of these lines the

location of the TTC4 was identical to that in the melanocyte lines

(data not shown).

To determine whether TTC4 was tightly bound to chromatin,

Hela cells were fractionated into cytoplasmic, nucleoplasmic and

pellet fractions (the latter consisting mostly of chromatin and

nuclear matrix) as described in Materials and Methods (Fig 6c).

The efficiency of the fractionation was checked by detecting the

presence of tubulin (western blotting) and histones (coomassie

staining) in the different fractions. Tubulin is mainly detected in

the cytoplasmic fraction with a small amount in the nucleoplasmic

fraction, while histones are only detected in the pellet fraction.

This confirms the authenticity of the fractionation. Fig 6c shows

that the nucleoplasmic fraction contains significantly more TTC4

than the cytoplasmic fraction or the chromatin-bound fraction.

This suggests that TTC4–like Drosophila Pit47- is a nucleoplasmic

protein. Similar results were obtained using melanocytes/melano-

ma cells (data not shown).

TTC4 is highly expressed in proliferating tissue and
tumour lines

Analysis of the expression of the Drosophila protein at various

stages in the life cycle of the fly suggested that the protein was

more abundant at those stages where proliferation was taking

place. A comparison of the levels of the TTC4 protein in first

trimester placental tissue (contains many dividing cells) vs heart

(non dividing) (fig 7a) showed that while reasonable levels of TTC4

were visible in two independent placental samples no TTC4 could

be detected in an equivalent amount of the heart sample, even at

long exposure times. In order to extend this analysis, the TTC4

antibodies were used to probe a human tissue blot (Insta-blot,

Imgenex) which contained samples of brain, heart, small intestine,

kidney, liver, lung, skeletal muscle, pancreas, spleen, ovary and

testis. However none of these tissues contained detectable levels of

the TTC4 protein even after extended exposures ( data not

shown).

A comparison was also made of the level of the TTC4 protein in

normal (MRC5 fibroblasts) versus tumour derived cell lines.

Figs 7b, c and d show that in every case there is a significantly

more TTC4 in tumour lines than in normal cells. An additional

five tumour lines not shown in this figure also showed TTC4

Figure 2. TTC4 shows interaction with human Hsp90 and 70 using the yeast 2-hybrid system. Pairs of bait and activation vectors as
indicated were co-transfected into S. cerevisiae and plated as described in Materials and Methods. The growth of each on selective and non-selective
media after 1 day is shown.
doi:10.1371/journal.pone.0001737.g002
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Figure 4. Mutations affecting the TPR domain of TTC4 disrupt binding to Hsp90. The wild type and mutant TTC4 proteins were mixed with
HSP90 and incubated as described in Methods. The left panel of this Coomassie stained PAGE shows the purified proteins used in the assay (Inputs)
and the right hand panel the glutathione beads resuspended in SDS PAGE loading buffer after co incubation of the proteins (pellets). Wt: wild type
GST-TTC4, K: K152E GST-TTC4 mutant, R1 and R2: R156E GST-TTC4 mutant and RK: K152E, R156E GST-TTC4 mutant. More sample was loaded into the
lanes with mutant proteins in an effort to detect faint interactions.
doi:10.1371/journal.pone.0001737.g004

Figure 3. TTC4 shows interaction with human HSP90, HSP70 and CDC6 by immunoprecipitation from Hela cells extract. a: TTC4
serum recognises a single band of 48 kDa in whole cell extracts (lane 1). The intensity of this band is greatly reduced upon competition with GST
TTC4 (lane 2). Molecular weight standards are indicated on the left in kDa. b: HSP90, HSP70 and CDC6 co immunoprecipitate with TTC4. The
immunoprecipitation was carried out as indicated in Materials and Methods. WCE: Whole cell extract, snt pre immune: supernatant after incubation
with the pre immune serum bound to protein A sepharose, snt IP: supernatant after incubation with the anti TTC4 immune serum bound to protein A
sepharose, pellet pre immune: eluate from the pre immune serum bound to protein A sepharose, pellet IP eluate from the anti TTC4 immune serum
bound to protein A sepharose. For WCE, snt pre immune and snt IP: 40 mg were loaded on the gel. For pellet, pre immune and pellet IP: 1/5 of each
eluate was loaded on the gel.
doi:10.1371/journal.pone.0001737.g003
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overexpression ( 2fTGH (fibrosarcoma), A549 (lung carcinoma),

MG63 (osteosarcoma), Hep2 (epithelial carcinoma), HEC-1b

(endometrial carcinoma)). The cells used for this analysis were

all from different tissue sources therefore in order to do a more

controlled comparison we analysed the levels of the TTC4 protein

in two melanoma lines (DX3 and LT5.1) and two melanocyte lines

(Nohm1 and Hermes 3a melanocytes). The results from this

analysis (fig 7d) also suggested a positive correlation between the

levels of TTC4 and the transformation of the cell line. TTC4

therefore shows altered expression in all tumour lines studied but

none of the normal cell lines (fibroblasts, Nohm1 and Hermes 3a

melanocytes) suggesting that alterations in TTC4 expression may

be related to a change in property of the cells.

The CDC6 interaction is lost in naturally occurring
mutants of TTC4

Previous studies have reported a number of abnormalities in the

TTC4 gene in melanoma tissues isolated from patients [17] In

some cases the changes involve point mutations in the coding

region of the gene. To begin an analysis of the functional effects of

these mutations, four such reported point mutations were tested to

determine whether they might disrupt any of the observed protein

Figure 5. TTC4 shows interaction with human cdc6 using the
yeast 2-hybrid system. Pairs of bait and activation vectors as
indicated were co-transfected into S. cerevisiae and plated as described
in materials and methods. The growth of each on selective and non-
selective media after 2 days is shown.
doi:10.1371/journal.pone.0001737.g005

Figure 6. TTC4 is predominantly a nuclear protein. a. Indirect immunofluorescence staining of Hermes 3a and Nohm1 cells was carried out as
described in Materials and Methods. In each case TTC4 is stained in red, tubulin in green and DNA in blue. b. Detail of the individual staining patterns
of tubulin and TTC4 in Nohm1 cells. c. Immunoblot to show the location of TTC4 after fractionation of Hela cells into cytoplasmic (cyt), nucleoplasm
(np) and chromatin associated (pellet) fractions as described in Materials and Methods. Alpha-tubulin (immunoblot) and Histones (Coomassie- blue
staining) are shown as controls for the fractionation. Note that the coomassie stained band in the cytoplasmic lane of the histone panel is not histone
related.
doi:10.1371/journal.pone.0001737.g006

TTC4 Protein Interactions
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interactions of TTC4 (see Fig 1). A two hybrid protocol was used

to test the interactions of TTC4 mutated at positions 125 (T to A:

codon 42 V to D), 201(T to G: codon 67 I to M), 230 (A to C:

codon 77 E to A), and 651(T to A: codon 217 N to K), with the

human CDC6, HSP90 and HSP70 proteins. The results from this

analysis are summarized in Table 1. None of these mutations had

any significant effect on the interactions of TTC4 with the HSP90

and 70 proteins. However two out of the four completely abolished

the interaction between TTC4 and CDC6. One of these codons

(77) is conserved between Human TTC4 and Drosophila pit47

and mutation of this residue in the Drosophila protein (257 A to C,

codon 86 E to A), the interaction with Drosophila cdc6 is also

abolished (data not shown).

Discussion

In this paper we have presented a number of lines of evidence

which suggest that TTC4 is the human orthologue of the

Drosophila pit47 protein: 1) The protein sequences of the 2

proteins show high levels of similarity, and this homology is not

confined to the region of the TPR motifs; 2) Both proteins are

contained in the nucleus and are most likely found mainly in the

nucleoplasmic compartment. In each case several putative

bipartite like NLS motifs [26] can be seen in the sequence. The

localisation for each protein is ‘speckly’ suggesting compartmen-

talization–although the nature of the compartment is unclear; 3)

Both proteins are more abundant in proliferating tissue; 4) Both

proteins show strong interactions with the HSP90 and HSP70

proteins. In addition the TTC4:HSP90 interaction needs the same

conserved residues that have been seen to be involved in the

HSP90 binding of other co chaperones: 5) Both proteins show

interaction with the replication initiation protein CDC6. The

above observations therefore lead us to suggest that, like Pit47 in

Drosophila, TTC4 serves a function linking HSP90 activity and

DNA replication in human cells. The role of heat shock proteins in

eukaryotes has not been previously investigated although impor-

tant roles for this class of proteins have been seen in both

eukaryotic viruses (eg [27] [28] and prokaryotes [29]. We have

seen two notable differences between the proteins. Firstly Dpit47 is

upregulated in ovaries [10] whereas TTC4 is not. The significance

of this observation remains unclear. In addition the Drosophila

protein interacts with the large subunit of the DNA polymerase

alpha, however the analogous interaction was not seen for the

Figure 7. TTC4 expression is higher in rapidly dividing tissue
and is also altered in tumour derived cell lines. a. Immunoblot
showing the expression of TTC4 in human placental (P1 and P2) and
heart (Ht) samples. b and c. Immunoblots showing the expression of
TTC4 in a number of tumour derived cell lines. N: normal (MRC5 human
lung fibroblast, A: A2780 (ovarian adenocarcinoma), M:MDA (breast),
L:Lovo (colon carcinoma), H: HT29 (colon adenocarcinoma), P;PC3
(prostate adenocarcinoma), J: Jurkat (acute t cell leukaemia), Mc: MCF7
( breast carcinoma) He:Hela (cervical carcinoma). Tubulin loading
controls are shown for both blots. d. Immunoblot showing a
comparison of the expression of TTC4 in melanocytes (No: Nohm 1
and Hr :Hermes 3a), and malignant melanoma lines (Dx:DX3 and Lt:
LT5.1). e. Immunblot comparing the relative levels of TTC4 in placenta
and transformed cells (Hela). N: normal (MRC5 human lung fibroblast),
H:hela and P1 placenta.

Table 1. Some TTC4 point mutations reported in late stage
melanomas lose interaction with CDC6 but still show
substantial interaction with Hsp90 and Hsp70.

CDC6/TTC4 100+/25

CDC6/vector ,5

HSP90/TTC4 100+/25

HSP70/TTC4 80+/210

HSP90/vector ,5

HSP70/vector ,5

HDPa/TTC4 ,5

CDC6/TTC4-125TA (42VD) 95+/25

CDC6/TTC4-201TG (67IM) 95+/25

CDC6/TTC4-230AC (77EA) ,5

CDC6/TTC4-651-TA (217NK) ,5

HSP90/TTC4-125TA (42VD) 80+/28

HSP90/TTC4-201TG (67IM) 90+/29

HSP90/TTC4-230AC (77EA) 75+/210

HSP90/TTC4-651-TA (217NK) 90+/25

HSP70/TTC4-125TA (42VD) 65+/212

HSP70/TTC4-201TG (67IM) 70+/25

HSP70/TTC4-230AC (77EA) 70+/28

HSP70/TTC4-651-TA (217NK) 70+/25

Summary of the reactions observed by two-hybrid analysis. All values are
expressed as a percentage of the cdc6/TTC4 interaction
doi:10.1371/journal.pone.0001737.t001
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human protein. This interaction may represent a difference

between the two species. However even in Drosophila the CDC6

interaction is significantly stronger than the polymerase interac-

tion, therefore we cannot rule out the possibility that the

interaction exists in human cells but cannot be detected because

of decreased affinity.

Data presented in this paper also suggests that TTC4 is involved

in the development or progression of cancer. A role for TTC4 in

melanoma had already been suggested, since mutations seen in the

gene in patient-derived samples and cell lines, seemed to correlate

with increased invasiveness). Our data suggests that in addition to

structural changes in the protein, melanoma lines contain more

TTC4 protein than melanocytes. Furthermore increases in TTC4

protein levels are also observed in a number of other tumour

derived cell lines compared to normal cells and tissues. It is

therefore possible to suggest that an increased level of TTC4

contributes to the development of a variety of different tumours.

An increased level of Dpit47 has also been reported in brain

tumours in flies [30] A caveat to this argument is that since TTC4

is related to cell stress proteins, it is possible that the increased

levels are a response to the abnormal state of the cells. Increases in

other stress related proteins have been reported in tumour cell

[31]. Although we cannot rule this out, we have seen that the levels

of Dpit47 do not increase significantly in response to heat shock

(GC and SC unpublished data). Despite the observed correlations

between altered TTC4 behaviour and cancer progression we

cannot yet define a precise role for the protein in this process. We

do not know if the TTC4 protein observed by Western blot

represents wild type protein, as TTC4 bearing point mutations

similar to those reported for melanomas would not be distinguish-

able from wild type proteins on polyacrylamide gel electrophoresis.

We do not know the function of TTC4 in normal cells. Nor do we

know at what stage during the development of the cell lines the

amplification has taken place. Such information is necessary in

order to propose a meaningful model for TTC4 action during

tumour development.

Although the precise role for TTC4 in tumour development is

not clear, it may be partly related to a loss of protein interactions.

Two of the naturally occurring TTC4 point mutations cause the

protein to lose its interaction with hCDC6. Only one of these

amino acids is fully conserved in the Drosophila protein but we

have observed (GC and SC unpublished results) that mutation of

this amino acid in Pit47 destroys its interaction with the

Drosophila CDC6. We cannot say that the loss of the interaction

with CDC6 is the precise cause of the defect, since the region into

which the mutations map is likely to be involved in interactions

with a number of proteins. (For instance the same region of pit47 is

needed for interaction with DNA polymerase (David Loebel and

SC unpublished observation)). In addition interaction of TTC4

with other cellular proteins has also been reported (e.g. TFIIIh

[32] and MSL/hampin [33]. However CDC6 is an attractive

candidate for this effect. It has a well defined role in the initiation

of DNA replication, where it is necessary for the formation of the

pre-replication complex. It also has a less well understood role in

stalling the progression of cells from the S to M phase of the cell

cycle if DNA replication is not complete [11] [12] [13] [14].

Therefore any disruption of its behaviour would be expected to

have serious implications for DNA synthesis and the ability of the

cell to prevent DNA damage, which could ultimately lead to

chromosome instability.
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