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A Statistical Method for Predicting
Classical HLA Alleles from SNP Data
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Genetic variation at classical HLA alleles is a crucial determinant of transplant success and susceptibility to a large number of infectious

and autoimmune diseases. However, large-scale studies involving classical type I and type II HLA alleles might be limited by the cost of

allele-typing technologies. Although recent studies have shown that some common HLA alleles can be tagged with small numbers of

markers,1,2 SNP-based tagging does not offer a complete solution to predicting HLA alleles. We have developed a new statistical meth-

odology to use SNP variation within the region to predict alleles at key class I (HLA-A, HLA-B, and HLA-C) and class II (HLA-DRB1, HLA-

DQA1, and HLA-DQB1) loci. Our results indicate that a single panel of ~100 SNPs typed across the region is sufficient for predicting both

rare and common HLA alleles with up to 95% accuracy in both African and non-African populations. Furthermore, we show that HLA

alleles can be successfully predicted by using previously genotyped SNPs that are within the MHC and that had not been chosen for their

ability to predict HLA alleles, such as those included on genome-wide products. These results indicate that our methodology, combined

with an extended database of reference haplotypes, will facilitate large-scale experiments, including disease-association studies and vac-

cine trials, in which detailed information about HLA type is valuable.
Introduction

The development of cheap and efficient methods for SNP

genotyping has led to a revolution in the nature and scale

of disease-association studies. However, in the MHC, in

which variation at classical HLA alleles has been implicated

in susceptibility to a wide range of infectious3 and autoim-

mune disease,4 interpretation of association can be prob-

lematic because of the complex relationship between

SNP variation and variation at classical HLA alleles1 and

structural variation. Direct typing of classical HLA alleles

is costly and currently prohibitive for many large-scale

studies for which such information would be valuable.

These include disease-association studies, vaccine trials,

and other epidemiological studies in which HLA type can

be a potential causal or confounding factor. Furthermore,

even when HLA typing is performed, this is often restricted

to a few class I and class II loci. Although it is difficult to be

exact about costs (because these depend on the required

level of allelic resolution, methodology, and sample size),

we estimate that, for a large study, HLA typing with inter-

mediate-resolution methods at major class I and class II

loci currently costs approximately the same as obtaining

over 500,000 genotypes across the genome with a standard

commercial array (Affymetrix GeneChip Mapping 500K

Array Set).

Recent large-scale surveys of genetic variation within the

extended human MHC have demonstrated that single-

nucleotide polymorphisms (SNPs) and other putatively

neutral markers within the region can show strong linkage

disequilibrium to particular HLA alleles.1,2 Because SNPs

are relatively inexpensive to genotype, SNP-based tagging

offers an attractive alternative to conventional HLA typing

when 100% accuracy in allele typing is not required
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(e.g., in testing for association or initial screening of a large

database of potential donors). However, although these

earlier studies indicated that some common HLA alleles

might be efficiently tagged with one or two SNP markers,

the conventional notion of tagging does not provide a

general solution to accurate prediction of classical HLA

variation. First, the majority of HLA alleles are rare, so

‘‘common’’ SNPs, or even combinations of two or three

such SNPs, typically cannot provide the resolution needed

to identify them. Second, many HLA alleles are found on

multiple haplotype backgrounds,1 so that no single SNP

or combination of SNPs can act as reliable proxies. Third,

the large number of HLA alleles requires a large number of

tags to be typed. Fourth, identification of tags in relatively

small samples can lead to problems of overfitting (i.e., the

tags will not transfer well to future studies).

However, the strong haplotype structure observed across

the MHC region does lend itself to an alternative approach

to predicting HLA types (see Figure 1A). Consider two chro-

mosomes that are identical by descent (IBD) at a particular

HLA locus through sharing a common ancestor 100 gener-

ations ago. We would expect identity by descent to extend

1cM either side of the HLA locus. In a region with an aver-

age recombination rate of 0.4 cM/Mb,1 we therefore would

expect identity over 5 Mb. Such a large region of identity

should be detectable through the use of SNPs genotyped

across the region and not even particularly close to the HLA

locus or chosen specifically for their ability to tag. Conse-

quently, if two chromosomes show extensive SNP identity

extending across an HLA locus, we would expect them to

share the same HLA allele. Comparison of SNP data from

individuals with unknown HLA types to a database of

haplotypes from individuals with known HLA types can

potentially provide an accurate approach for predicting
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Figure 1. SNP-Based Imputation of Classical HLA Alleles
(A) Schematic representation of IBD-based imputation. In the upper section, two chromosomes carrying the same allele (blue circle) share
extended similarity with a recent common ancestor (blue segments) and therefore also with one another. A second, but related, allele (pur-
ple circle—e.g., one that is identical at two-digit resolution) shares more limited and divergent, but nevertheless detectable, similarity. In
the lower section, the same allele (red circle) sits on two distinct haplotype backgrounds. A conventional tagging approach will both fail
to identify the more distant relatedness between alleles in the upper section and will fail to identify a single tag set in the lower section.
(B) SNP haplotypes for HLA-B alleles at four-digit resolution with five or more copies in the CEU training data at the 40 SNPs chosen for allele
prediction with the Affymetrix array data for the 1958 birth cohort; each row represents a unique chromosome and the alleles at the SNPs are
arbitrarily coded as black and white. Note that unlike a conventional tagging approach, there is typically no unique haplotype that defines
the presence of an allele. rsIDs are indicated above and the location of prediction SNPs relative to HLA-B within the ~4 Mb HLA region
(defined here as the region from SNPs rs7754054 to rs769051) is shown below.
the HLA types. Similar approaches have proved to be

highly accurate in predicting missing data at untyped

SNPs.5–8

The importance of using an IBD-based methodology, as

opposed to a conventional tagging approach, to predict

HLA alleles is demonstrated in Figure 1B, which shows

haplotypes for chromosomes carrying different HLA-B al-

leles in a sample of 180 chromosomes from a population

of European ancestry.1 In a tagging approach, we would

expect to see a ‘‘barcode’’ effect, with each allele being

associated with a single tagging haplotype. Although this

is predominantly the case for some alleles (e.g., HLA-

B*5701, HLA-B*4001, and HLA-B*0702), for others (e.g.,

HLA-B*1801 and HLA-B*1501) the allele lies on multiple

haplotype backgrounds (in HLA-allele nomenclature, the

first two digits indicate the serological group and the sec-

ond two indicate the unique protein within that group).

Conversely, very rarely do we observe different HLA alleles

on the same SNP haplotype. Consequently, each allele can

potentially be predicted from the combination of haplo-

type backgrounds on which it is found to occur. These hap-

lotype backgrounds are known, in some cases, to differ be-

tween populations.1 Below, we describe a novel statistical

methodology for predicting HLA alleles from a database of

SNP haplotypes carrying known HLA alleles. We describe

its performance on a set of previously published ‘‘training

data’’ (90 individuals of European ancestry from Utah and
Th
60 Yoruba from Ibadan in Nigeria) by using a cross-valida-

tion strategy to choose prediction SNPs and to estimate

performance. We then validate the methodology by pre-

dicting HLA alleles in a set of over 900 individuals of UK

origin and demonstrate accuracies approaching 95% at

two-digit resolution across even the most polymorphic

loci. Finally, we describe how to selectively enhance the

existing database so as to give substantial improvements

in prediction accuracy.

Method and Materials

DNA Samples and HLA Typing
Data used as the training set have been described previously.1 In

brief, the individuals sampled are those of the HapMap Project

(30 parent-offspring trios of Yoruba ancestry from Ibadan in Ni-

geria, YRI; 30 CEPH families of European ancestry from Utah,

CEU; 45 unrelated Han Chinese from Beijing, CHB; and 45 unre-

lated individuals from Tokyo in Japan, JPT) and are augmented

with 15 parent-offspring trios from the same population as the

CEU. Over 7500 SNPs and deletion-insertion polymorphisms

(DIPs) were typed across the extended human MHC (excluding

the classical HLA genes themselves), of which 5754 passed QC

in all populations surveyed. HLA typing was carried out with

PCR-SSOP protocols at three class I loci (HLA-A, HLA-B, and

HLA-C) and three class II loci (HLA-DRB1, HLA-DQA1, and HLA-

DQB1). Haplotype information was reconstructed from genotype

data with a combination of trio information and statistical
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methods.1 Missing data (at both SNPs and classical HLA alleles)

were imputed during the phasing step. Haplotypes containing im-

puted HLA alleles are used in the training set to aid prediction,

but we do not include them in measures of prediction accuracy.

All data used are publicly available (see Web Resources). Because

our approach relies on high-quality haplotype information in

the training data, we focus exclusively on YRI and CEU.

The methodology was validated with genotype and HLA-

allele information from the 1958 birth cohort study (see Web

Resources). HLA alleles at HLA-A, HLA-B, HLA-DRB1, and HLA-

DQB1 were obtained for ~930 individuals of UK origin (numbers

differ between loci) with DYNAL technologies from Invitrogen

(a mixture of SSOP and SSP protocols; see Web Resources for de-

tails). Of these, 911 individuals had been successfully HLA typed

at a minimum of two loci and also had genotype data available

from the Wellcome Trust Case Control Consortium (WTCCC)

project.6 Genotyping was performed with the Affymetrix 500K

SNP array set and the Illumina human NS-12 nonsynonymous

SNP genotyping beadchip augmented with ~1500 additional

SNPs specifically targeted to the MHC. Genotype calls from the

image-intensity files for the Affymetrix data were made with the

CHIAMO software developed within the WTCCC.6 Haplotypes

were reconstructed (and missing genotypes imputed) from geno-

type data with an adaptation of existing statistical methodology9

to include haplotypes reconstructed from the augmented Interna-

tional HapMap Project data (see below).1,10 Prediction SNPs were

selected in the training set from the overlap of the projects (578

SNPs for the Affymetrix array and 776 SNPs for the Illumina array

across the 8 Mb extended HLA region). Where ambiguous, the

strandedness of SNPs was estimated from a comparison of allele

frequency and LD information. In analyses of validation data, pre-

diction SNPs were only selected for four-digit prediction accuracy.

HLA-Allele Prediction
Our starting point is a training database consisting of SNP geno-

types across the extended MHC and classical HLA alleles for n

chromosomes. We assume that the haplotype phase for both

SNP data and classical HLA types is known or estimated (for exam-

ple, from a combination of pedigree data and statistical ap-

proaches). Furthermore, we assume that there is no missing SNP

data in the database (because this has been inferred through a com-

bination of pedigree information and statistical methods). We ex-

clude from the database any chromosome for which the allele at

a classical HLA locus of interest is missing. Uncertainty concerning

phase and missing data can be accommodated by averaging

predictions over multiple samples from the posterior distribution

of phased data-complete chromosomes given a suitable model.

However, here we consider the use of a single estimate.

We now observe SNP genotype data for an additional m individ-

uals typed across the same region. Let l be the number of SNPs for

which there is genotype information for both the training data-

base and additional individuals. Our prediction method has three

stages. In the first stage, we select, from among the l SNPs, a set of

size lp that are optimal (in a way defined below) for predicting HLA

alleles at a specified locus of interest within the training database

chromosomes, by using a cross-validation procedure. In the sec-

ond stage, haplotype phase and missing data are estimated for

the l SNPs in the additional individuals. In the third stage, we

made probabilistic statements about the allele carried by each of

the 2m additional chromosomes by comparing these, one at

a time, with the database chromosomes at the selected lp SNPs.
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The allele prediction algorithm for a single additional phased

chromosome with no missing SNP data is central to the first and

third stages. We therefore describe this part first. Considering a

particular HLA locus, we group chromosomes in the database

by the HLA allele they carry. This can be done at either the two-

digit or four-digit level (or coarser, such as superfamily, or finer,

such as six-digit). For each of the K alleles, we calculate an approx-

imation to the probability (under the coalescent) of observing the

SNP configuration at the prediction SNP set in the additional chro-

mosome if it also carried the same HLA allele. This approximation,

known informally as ‘‘Li and Stephens,’’ uses a hidden Markov

model (HMM) formulation that allows efficient computation.11

Informally, the method assumes that if the additional chromo-

some carries a given HLA allele, it will look like an imperfect mo-

saic of those chromosomes that carry the same allele (the hidden

state being which of those chromosomes in the database is the

‘‘parent’’ of the ‘‘daughter’’ additional chromosome at any given

position). The degree of mosaicism is determined by the recombi-

nation rate and the number of chromosomes that carry the allele

in the database. The degree of imperfection (mismatch in

SNP haplotype) is determined by the mutation rate. For complete-

ness, we include technical details of the algorithm in the next

section.

The Prediction Algorithm

Let A be the set of all alleles at a given locus in the database and

jAj ¼ K. Suppose that there are na copies of allele a in the database.

The training database consists of n known haplotypes in which

the jth haplotype has the SNP information at l SNPs,

cj ¼ fc j
1,c

j
2,.,c

j
l g, and the classical HLA allele aj. Each additional

chromosome, i, (with unknown HLA allele) has SNP information

hi ¼ fhi
1,hi

2,.,hi
lg. We require a fine-scale genetic map of the re-

gion (in Morgans), r ¼ fr0,r1,r2,.,rlg; we use that previously esti-

mated from genetic variation data1 and set r0 ¼ 0. We define the

recombination probability ps ¼ 1� expf�4Neðrsþ1 � rsÞ=nag and

then define transition probabilities from state j (indicating that

it is the jth haplotype in the training database that is parental)

at position s to state k at position sþ 1:

q
�
js,ksþ1

�
¼
�

1� ps þ ps=na j ¼ k
ps=na jsk

�
,

where Ne is the effective population size (here assumed to be

15,000, although we found results to be largely insensitive to

the value of this parameter within a factor of 2). We define the

emission probabilities in terms of the ‘‘population mutation

rate’’ for allele a

qa ¼
 Xna�1

z¼1

1=z

!�1

,

and the mismatch (or not) between the allele of the jth ‘‘parent’’

chromosome at SNP s, c
j
s, and the allele of the ith additional

‘‘daughter’’ chromosome, hi
s

e
�

hi
s,c

j
s

�
¼

8<
:

na

na þ qa

þ 1

2

qa

na þ qa

hi
s ¼ cj

s

1

2

qa

na þ qa

hi
ssc

j
s

9=
;:

To calculate the conditional probability of observing the addi-

tional haplotype, we sum over all possible paths through the

potential parental chromosomes by using the forward algorithm.

For each of the na database chromosomes, we initialize the forward

algorithm:
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f j
o ¼ 1=na:

The forward algorithm moves along the sequence such that at

each SNP,

f j
s ¼ e

�
hi

s,c
j
s

�Xna

k¼1

f k
s�1 3 q

�
ks�1,js

�
:

The probability of observing the SNP configuration of the addi-

tional chromosome is given by

p
�

hi j a
�
¼
Xna

j¼1

f
j

l :

A similar calculation is made for each of the K alleles. The poste-

rior probability that the additional chromosome carries allele a is

given by Bayes rule, as follows:

Pr
�

a jhi
�
¼

PrðaÞp
�

hi j a
�

P
b˛A

PrðbÞp
�

hi j b
�:

We set the prior probability of carrying an allele, Pr(a), to be 1/K,

although weighting by frequency was also considered and per-

formed similarly. The argument for weighting equally is that it

guards against predictions being strongly influenced by biases of

the allelic representation in the database. The allele prediction is

determined by the group with the highest posterior probability.

We also consider a scheme whereby we only make a prediction

if the maximum posterior probability for any group is greater

than or equal to some call threshold: 0%t % 1. This approach

guards against making predictions where there are much uncer-

tainty about HLA alleles. Where there are multiple chromosomes

with unknown alleles, predictions are made for each additional

chromosome separately. We also make predictions for each locus

separately. We now describe each of the steps of the algorithm

in detail.

Stage 1: Selecting a Set of Prediction SNPs

We wish to select a set of SNPs, from among the l typed in both the

database and additional chromosomes, with which to make pre-

dictions about alleles at untyped classical HLA loci. We use

a leave-one-out cross-validation scheme within the training data-

base combined with forward selection and backward elimination

to select a set of SNPs. The measure we aim to select on is a function

of the accuracy of predictions in the training set and the call rate

(the fraction of chromosomes for which we make a prediction). Let

t be the call threshold, let Icall be the indicator function

Icall

�
hi,t
�
¼
(

1 if max
a˛A

n
Pr
�

a jhi
�o

Rt

0 otherwise

9=
;,

and let Icorrect be another indicator function

Icorrect

�
hi,ai

�
¼
(

1 if arg max
a˛A

n
Pr
�

a jhi
�o
¼ ai

0 otherwise

9=
;,

where ai is the known allele carried by the ith chromosome in the

training set. Note that predictions are made excluding the chro-

mosome in question from the training data (hence the name

leave-one-out cross-validation). The quality of a prediction SNP

set, s ¼ fs1,s2,.,slpg, is defined in terms of the distance from opti-

mal performance (100% call rate and 100% accuracy). Here, we use

the l1 norm:
Th
QðsÞ ¼
 

1� 1

n

Xn

i¼1

Icall

�
hi,t
�!

þ

0
BB@1�

Pn
i¼1

h
Icall

�
hi,t
�

3 Icorrect

�
hi,ai

�i
Pn

i¼1 Icall

�
hi,t
�

1
CCA,

although other distances (e.g., Euclidean) were considered and per-

formed similarly. The selection algorithm has the following steps:

1. Initialize: Find the single SNP among the l genotyped with

the lowest Q(s) value, and set it to s.

2. Note the current prediction set s and its value, Q(s).

3. Forward selection: Identify the set s0 ¼ sþ si, where

i ¼ arg min
j

fQðsþ sjÞg, sj;s. Note that we only consider

SNPs within 500 kb of the HLA locus in question. If

jsj > 41 terminate.

4. Backward elimination: Identify the set s00 ¼ s0 � sj, in which

j ¼ arg min
k

fQðs0 � skÞg, sk˛s. If s00 ¼ s, return s0 to step 2.

Otherwise, return s00 to step 2.

By using this algorithm, we select 40 SNPs for each locus in each

population. The prediction SNP set chosen is the smallest that

achieves the best Q(s) score over the entire algorithm. Prediction

sets are selected independently for each locus in each population.

In the following, only a value of t ¼ 0 was used in selecting the

prediction set. Other values were considered, but the results did

not seem highly sensitive to this parameter.

The problem of identifying suitable prediction SNPs is related

to the well-studied issue of identifying tag SNPs (see, for exam-

ple,12–16). Although exact solutions to tag selection are possible

under restricted model assumptions,14 this is not possible for the

generalized prediction algorithm used here. However, it is also

important to note that because of the high LD across the MHC

region, it is possible to identify a second or third prediction set

of almost equal quality with little or no SNP overlap (data not

shown). Such redundancy is useful because (1) not all SNPs can be

typed on all platforms and (2) effective prediction SNP sets can be

identified from among SNPs that were already genotyped and that

were not specifically selected for predicting classical HLA alleles.

Stage 2: Phasing and Imputing Missing Data in the Additional

Chromosomes

To reconstruct haplotypes from genotype data and estimate miss-

ing data, we use a modified version of the algorithm employed in

the program PHASE17 in which the haplotypes present in the da-

tabase are treated as ‘‘known’’ haplotypes. Two modifications are

employed. First, additional data are treated on an individual-by-in-

dividual basis such that each additional individual is phased with

only the known haplotypes. Second, as a result of this approach,

we can use maximum likelihood (rather than MCMC) to estimate

haplotypes for each additional genotype.

Stage 3: HLA-Allele Predictions

Having estimated haplotype phase and missing data for each of the

additional 2m chromosomes, we made probabilistic predictions at

each HLA locus by using SNP information at the previously selected

prediction set for each locus and the reference database. Predictions

are made separately for each population: i.e., only the CEU haplo-

types are used to predict additional CEU chromosomes.

We use two measures of success in assessing predictions: Sensi-

tivity (or accuracy) is defined as the proportion of all predictions
e American Journal of Human Genetics 82, 48–56, January 2008 51



that are correct, and specificity is the proportion of times a given

allele, when present, is correctly predicted. For genotype data, be-

cause we do not know the phase of the classical HLA alleles, slight

modifications of these definitions are required. For each individ-

ual, i, we define hi ¼ fhi,1,hi,2g as the ordered pair of phased SNP

haplotypes, ai ¼ fai,1,ai,2g as the ordered pair of predicted alleles

(for which alleles are predicted with the maximum posterior prob-

ability), and ai ¼ fai,1,ai,2g as the unordered pair of known allelic

types (with arbitrarily assigned labels 1 and 2). We define the

following indicator functions:

Icall

�
hi,j,t

�
¼
(

1 if max
a˛A

n
Pr
�

a jhi,j
�o

Rt

0 otherwise ,

Icorrect

�
ai,j,ai

�
¼
�

1 if ai,j ˛ai

0 otherwise ,

Ipredict

�
ai,j,ai

�
¼

1 if
�

Icall

�
hi,1,t

�
¼ 1 AND ai,1 ¼ ai,j

�
OR

�
Icall

�
hi,2,t

�
¼ 1 AND ai,2 ¼ ai,j

�
0 otherwise :

8>><
>>:

We then define sensitivity and specificity as

sensitivityðaÞ ¼

P
i,j:ai,j¼a

h
Icorrectðai,j,aiÞ3 Icall

�
hi,j,t

�i
P

i,j:ai,j¼a

Icall

�
hi,j,t

� ,

specificityðaÞ ¼

P
i,j:ai,j¼a

Ipredictðai,j,aiÞ

na

:

Note that sensitivity can also be defined irrespective of the allele

being predicted.

Results

The statistical methodology we have developed utilizes a

database of haplotypes with known HLA alleles to predict

HLA alleles at additional haplotypes (or genotypes) with

unknown HLA type. For the purposes of the results pre-

sented here the database consists of 300 haplotypes from

individuals of European and Nigerian origin, though

greater accuracy would be obtained with a larger and

more widely sampled set of individuals. This methodology

has two key features (see Material and Methods). First, in

making predictions, we compare a set of SNPs typed on

a chromosome of unknown HLA type to those in the data-

base, by looking for extended similarity between a chromo-

some of unknown HLA type and one in the database and

modeling the breakdown in similarity around an allele

through meiotic crossing over by using a population

genetic model and current knowledge about the fine-scale

recombination-rate variation in the region.1,18 Chromo-

somes carrying a particular HLA allele are modeled as an

imperfect mosaic of only those haplotypes that carry the

same allele in the database, effectively stratifying haplo-

types into ‘‘subpopulations’’ defined by the presence of

a given HLA allele. Second, we attempt to maximize predic-
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tion accuracy by selecting a set of prediction SNPs from

those typed in both the database and additional individ-

uals that are maximally informative within the database

about HLA alleles (i.e., that optimize prediction accuracy).

This novel approach has five key advantages. First,

predictions can be made at either two-digit, four-digit, or

potentially even greater resolution. Second, predictions

come with associated probabilities that can be used to as-

sess confidence in calls. Third, the method does not rely

on identifying a single set of tag SNPs to be used in all ex-

periments. One example of why this can be beneficial is

that the method could be used to predict HLA alleles for in-

dividuals previously genotyped on a commercial genome-

wide SNP panel. In addition, some SNPs cannot be success-

fully genotyped on specific platforms; hence, flexibility in

SNP choice is a useful property. Fourth, by using the ap-

proach, we can identify a set of ~100 SNPs that can be

used for predicting HLA alleles at all loci and in any popu-

lation. Finally, the approach both accommodates expan-

sion of the existing database and suggests how to augment

the database in a maximally informative manner.

To assess the potential of this approach, we have used

data from a recent experiment1 aimed at characterizing

SNP and class I and class II HLA-allele variation in 150

unrelated individuals of Nigerian (YRI) and European

ancestry (CEU; see Material and Methods). To select SNPs

for HLA-allele prediction, we use a leave-one-out cross-

validation strategy in the training data (see Material and

Methods), considering SNPs up to 500 kb away from the

HLA locus in question (in either direction) as potentially

informative. Optimized prediction accuracies in the train-

ing set are shown in Table 1 for four-digit HLA-allele reso-

lution. By excluding HLA alleles that only occur once in

the training data (referred to as singletons), we obtain con-

sistently high accuracy in prediction with a typical accu-

racy of 90%–100%. Accuracy is typically higher in CEU

than YRI, particularly for HLA-B. Performance also differs

between loci and is predominantly driven by allelic diver-

sity. HLA-B and HLA-DRB1 typically show lower accuracy

(and have the highest number of alleles), whereas accuracy

at HLA-A, HLA-C, HLA-DQA1, and HLA-DQB1 is never

lower than 94%. Full details of sensitivity and specificity

by locus and allele are in Tables S1–S4 available online.

The main limitation of the database used here is that

many alleles are only represented once or a few times. For

example, at HLA-B, 42 different alleles distinct at four-

digit resolution are observed across the database of 300 hap-

lotypes, of which 14 are only observed once (across both

populations). More generally, alleles represented fewer

than five times in the database collectively account for

~15% of the sample. For such rare alleles, however, it might

be possible to predict HLA type to two-digit rather than

four-digit resolution. We therefore repeated the predictions

of HLA alleles to two-digit resolution (Table 1 and Tables S1–

S4). Across all loci, only three alleles are observed as single-

tons at two-digit resolution, and prediction accuracy is gen-

erally increased by a few percent over four-digit accuracy.
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Table 1. Accuracy in Predicting HLA Alleles in the Training Data

Locus

Accuracy at Four-Digit Resolutiona (%) (Call Rate %) Accuracy at Two-Digit Resolutiona (%) (Call Rate %)

CTb¼ 0.0 CT ¼ 0.9 CT¼ 0.0 CT ¼ 0.9 CT¼ 0.0 CT ¼ 0.9 CT¼ 0.0 CT ¼ 0.9

YRI YRI CEU CEU YRI YRI CEU CEU

HLA-A 96 98 (91) 98 99 (92) 96 95 (100) 96 99 (93)

HLA-C 97 97 (100) 98 96 (100) 98 97 (100) 99 96 (100)

HLA-B 91 100 (62) 96 95 (99) 88 100 (65) 97 96 (100)

HLA-DRB1 92 90 (100) 91 89 (99) 94 99 (88) 97 95 (100)

HLA-DQA1 94 94 (100) 99 99 (100) 96 96 (100) 99 98 (100)

HLA-DQB1 98 100 (98) 99 99 (100) 100 100 (100) 99 99 (100)

a Excluding singleton HLA alleles.
b Call threshold.
For a small fraction of chromosomes, there is some un-

certainty in the predicted allele. This arises when the

chromosome carries a SNP configuration that is similar to

two or more chromosomes carrying different HLA alleles

or when the SNP configuration is unlike any previously

seen. We therefore also considered accuracy when predic-

tions were only made if the maximum posterior probabil-

ity was more than 0.9 (Table 1). Setting such a threshold

has little effect on most loci except for HLA-B and HLA-

DRB1, in which call rates are reduced, but accuracy is in-

creased. This is particularly true for HLA-B in YRI, in which

accuracy is increased by 10%. These results indicate that it

is possible to provide useful measures of the quality of al-

lele predictions (see also below). One use for such measures

is to identify individuals for which there is ambiguity in

prediction (for example which fail to meet the 90% proba-

bility call threshold) and to use conventional HLA typing

technologies for such individuals.

Optimized accuracy in the training set is likely to be an

overestimate of true accuracy. To validate the methodol-

ogy, we obtained SNP information from 911 individuals

of UK origin from the 1958 birth cohort for which a subset

of class I and class II HLA types were also available. These

individuals had been genotyped as part of the Wellcome

Trust Case Control Consortium project.6 We predicted

HLA alleles at the typed loci by using the CEU data alone
Th
and SNPs selected for performance in the training data

from the overlap of the projects. Note that these SNPs rep-

resent only 10%–15% of those typed in the training data.

Results for the two SNP sets are shown in Table 2 and Fig-

ure 2. With a call threshold of 0.9, accuracy at the two-digit

level is consistently greater than 95% for the Illumina array

and greater than 94% for the Affymetrix array. Accuracy at

four-digit resolution varies across loci but is consistently

greater than 90%, except for HLA-DRB1 for the Affymetrix

data. However, call rates can be low for such a high call

threshold. With a call threshold of 0.5, call rates are greater

than 80% for all loci, two-digit accuracy is greater than

90% for all loci (apart from HLA-B with the Affymetrix

data), and four-digit accuracy is greater than 85% except

for HLA-DRB1. The method also appears to be well cali-

brated (Figure 3); for example, there is a 60%–70% chance

of a call being correct if the maximum posterior probability

for the call is in the range from 0.6–0.7. A full breakdown of

prediction sensitivity and specificity by allele at four-digit

and two-digit resolution for the validation data is available

in Tables S5–S8.

Discussion

Our results indicate that, for the two populations analyzed

here, a limited database of individuals typed at both
Table 2. Prediction Accuracy in 1958 Birth Cohort Data

Locus Data

Number of

SNPs Selected

Number of

Haplotypesa

Accuracy at Four-Digit Resolution (%)

and Call Rate (%)

Accuracy at Two-Digit Resolution (%)

and Call Rate (%)

CT ¼ 0 CT ¼ 0.5 CT ¼ 0.9 CT ¼ 0 CT ¼ 0.5 CT ¼ 0.9

HLA-A Illumina 19 876/1792 91 93 (97) 94 (87) 95 96 (98) 96 (91)

Affymetrix 10 89 91 (93) 97 (58) 93 94 (94) 95 (29)

HLA-B Illumina 17 1630/1708 81 87 (81) 94 (49) 85 90 (81) 95 (49)

Affymetrix 40 82 85 (88) 93 (66) 84 87 (89) 94 (65)

HLA-DRB1 Illumina 18 834/1798 73 77 (87) 92 (27) 88 90 (88) 97 (33)

Affymetrix 34 72 76 (88) 83 (51) 86 90 (88) 95 (55)

HLA-DQB1 Illumina 18 1088/1774 87 88 (95) 92 (71) 93 94 (96) 96 (75)

Affymetrix 22 77 80 (88) 93 (29) 90 91 (89) 97 (31)

a Accuracy is assessed only at those individuals in which both alleles are typed to the required resolution (four digit/two digit).
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Figure 2. The Relationship between the
Number of Times an Allele Appears in the
Database and the Sensitivity and Specificity
of Predictions
The relationship between the numbers of
times an allele appears in the database and
the sensitivity and specificity of predictions.
Results are shown for (A) four-digit and (B)
two-digit resolution for the Illumina data pre-
dictions only. Sensitivity is the proportion of
cases in which a predicted allele is present
in an individual. Specificity is the proportion
of cases in which an allele present in an in-
dividual has been correctly predicted. Each
allele is represented, and colors indicate the
locus (HLA-A, blue; HLA-B, red; HLA-DRB1, pur-
ple; and HLA-DQB1, orange). Note that two
four-digit alleles stand out as having many
copies in the database and low sensitivity. It
appears these alleles have only been typed
to two-digit resolution in the 1958 birth
cohort data, and so accuracy cannot be accu-
rately determined.
classical HLA loci and SNPs across the MHC region, com-

bined with the novel statistical method presented here,

can be used to predict allelic status to two- and four-digit

resolution at class I and class II HLA genes with up to

and greater than 95% accuracy. For some applications,

such as the choice of transplant donors, higher levels of

accuracy in HLA-allele prediction are required. However,

for many applications, such as testing for disease associa-

tion, screening large databases for potential transplant

donors, or obtaining HLA alleles as covariates in vaccine

trials, a small decrease in accuracy is more than compen-

sated for by the resulting potential for reduced costs and

hence increased sample sizes. Such accuracy is perhaps un-

Figure 3. Calibration of Call Probabilities in the 58 Birth
Cohort Data at Four-Digit Resolution
Accuracy estimates (52 SE) are shown for the predictions made
with the Affymetrix array (gray) and the Illumina (black) array.
The slightly higher accuracy of the Illumina data is primarily due
to the higher density of SNPs from which to choose accurate pre-
diction sets, particularly within the vicinity of HLA-DQB1.
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expected given the very substantial diversity and age of

HLA alleles. However, although haplotype diversity is

likely to lead to difficulties with a conventional tagging

approach, the diversity lends itself directly to the IBD-

based approach described here.

We envisage two major uses for this approach. First, we

can predict HLA alleles from already-collected SNP geno-

type data within the MHC, such as that obtained from

commercial genome-wide association study SNP panels.

Second, we can identify prediction sets of 100–200 SNPs

that can be used on either population (CEU or YRI and

potentially additional populations too) that give four-

digit-resolution accuracy in the training data of greater

than 90% at each locus. Although the choice of exactly

which SNPs will most probably depend on technical de-

tails of the genotyping platform, we list a minimal predic-

tion set of 106 SNPs in Table S9. Note, however, that we

would not advocate use of a minimal SNP set for practical

use (redundancy is important to guard against SNP-assay

failures).

There are, however, clear limitations in using a database

of only 150 individuals to predict HLA alleles for any pop-

ulation. It is therefore important to determine how large

a database and how broad a geographical representation

is needed to enable high accuracy prediction (>95%) for

any individual from any population of interest. Our results

indicate that having ten copies of an allele in the database

is generally sufficient to provide high accuracy (Figure 2).

Currently, there are 2169 unique class I and class II HLA al-

leles identified at the protein level (four-digit resolution),19

indicating that a database of 22,000 individuals would be

sufficient to include at least ten copies of each. However,

many fewer individuals need be sampled to reach high

coverage because each individual genotyped carries multi-

ple alleles, and many alleles are at extremely low frequency
8



(much less than 1%). In practice, we estimate that a data-

base of fewer than 2000 carefully chosen individuals

would be sufficient to represent the majority of HLA diver-

sity worldwide. We have also found that information on

haplotype phase from trio data is extremely valuable for re-

constructing the haplotype backgrounds on which HLA al-

leles lie. However, it is also known that using a database of

known haplotypes (such as we have already) greatly aids

statistical approaches to haplotype estimation.17 Conse-

quently, although future sampling would benefit from

pedigree-based collections, it should also be possible to in-

corporate data from unrelated individuals.

Finally, it is important to acknowledge the limitations of

SNP-based methods. Two important features stand out.

First, although very rarely, we do observe chromosomes

that have nearly identical SNP patterns, yet carry different

HLA alleles, perhaps because of recurrent mutation or gene

conversion (although it also is impossible to rule out errors

in HLA typing). Second, as discussed above, rare alleles

might be absent from the database. Consequently, SNP-

based prediction is likely to lead to an underestimation

of heterozygosity, which is important for donor match-

ing and perhaps also for studies of selection. However,

although SNP-based methods will never attain the ac-

curacy of sequence-based typing, they can provide a high-

throughput, low-cost HLA-typing approach that is useful

in many experimental and clinical settings.

Supplemental Data

Nine tables are available at http://www.ajhg.org/cgi/content/full/

82/1/48/DC1/.
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InflammGen, http://www.inflammgen.org

Human Chromosome 6 Project Overview, http://www.sanger.ac.

uk/HGP/Chr6
The
Genetic information from the British 1958 birth cohort, http://

www.b58cgene.sgul.ac.uk

HLA typing protocols for the 1958 birth cohort data, http://

www-gene.cimr.cam.ac.uk/todd/public_data/HLA/HLA.shtml
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