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Abstract
Global transcriptomic and proteomic profiling platforms have yielded important insights into the
complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which
small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach
using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass
spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to
IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose-
and time-dependent clustering of the irradiated cells and identified certain constituents of the
water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass
spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are
associated with oxidative stress and DNA repair pathways. Included are reduced glutathione,
adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar
measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a
subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI
(Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was
used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It
revealed dose-dependent clustering of ions sharing the same trends in concentration change across
radiation doses. “Radiation metabolomics,” the application of metabolomic analysis to the field of
radiobiology, promises to increase our understanding of cellular responses to stressors such as
radiation.

High-throughput studies of the molecular and cellular effects of ionizing radiation (IR) have
depended on “omic”1 profiling technologies, particularly genomic, transcriptomic, and
proteomic platforms.2–6 Such efforts have discovered IR-induced perturbations of DNA,
RNA, and protein molecules and have been successful in developing markers that provide
information about IR-induced phenomena such as the threshold dose.4,7,8 Furthermore,
integrating data from combinations of such platforms, in the spirit of emerging systems
biology, has given investigators the ability to reconstruct and analyze IR-responsive
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pathways.9 However, pathways generated from such analyses remain incomplete without
similar global measurements of metabolite concentrations. Despite recent advances in
metabolic profiling technologies, changes in small-molecule concentration remain
underexplored and underexploited. That is particularly unfortunate because, as the end-
products of transcriptional and/or proteomic signaling events, metabolites may represent the
most incisive and accurate indicators of the state of cellular physiology.10

Metabolomics is a rapidly advancing field that aims to characterize the concentration
changes of all small molecules existing in a biofluid.11 Application of metabolomic
technologies to the understanding of physiology, toxicology, and disease progression has led
to appreciable advances by defining novel drug and carcinogen metabolites,12–15 as well as
biomarkers of disease.16,17 At the same time, the metabolomic technologies have
contributed to a general understanding of how metabolites and their concentrations change
under defined conditions.18 However, in contrast to transcriptomics and proteomics, broad-
based metabolomic studies have not been used to analyze the cellular effects of IR. Small-
scale, directed approaches using high-sensitivity nuclear magnetic resonance spectroscopy
(NMR)19–23 have been applied to estimate the relative concentration changes of a small
subset of metabolites (e.g., reduced glutathione) following IR, but a global metabolomic
approach has not yet been reported. The effects of IR include activation of stress responses
to reduce reactive oxygen species (ROS), an increase in nucleotide pools for unscheduled
DNA repair, and increases in cellular energy intermediates. All of those effects call for
concerted metabolomic investigation. Also, given the growing body of evidence suggesting
that IR-responsive targets, such as the tumor suppressor p53, can have profound effects on
metabolic pathways,24,25 a comprehensive overview of the “radiation metabolome” would
give investigators another vantage point from which to understand the effects of IR
exposure.

For assessment of the potential application of metabolomics to radiobiology, a UPLC-ESI-
TOFMS metabolomic assay was established to evaluate the changes in small-molecule
concentration that occur after γ-irradiation of cells in culture. The high-resolution of
ultraperformance liquid chromatography (UPLC) and the accurate mass measurement of
electrospray ionization time-of-flight mass spectrometry (ESI-TOFMS) were combined to
generate protonated molecular ion matrices consisting of peak areas identified by specific m/
z values and retention times. The hydrophilic metabolomes of the lymphoid TK6 cell line
and the hTERT-transformed fibroblast BJ cell line were analyzed following different doses
of IR over a period of 16 h. The overall aim was to evaluate the utility of metabolomics as a
tool for interrogating the cellular physiology and pharmacology of cultured cells and,
specifically, to generate a clearer understanding of the metabolite concentration changes that
take place after IR. Standard multivariate statistical analyses were complemented by the first
application in metabolomics of the GEDI (Gene Expression Dynamics Inspector) algorithm,
which used self-organizing maps to generate a global visualization of the responses to IR.

EXPERIMENTAL SECTION
Chemicals

Adenosine monophosphate, debrisoquine hemisulfate, glutathione (reduced), nicotinamide,
5-oxoproline, proline, calcium phosphorylcholine chloride, guanosine 5′-monophosphate,
uridine 5′-monophosphate, β-nicotinamide adenine dinucleotide, and spermine were
purchased from Sigma-Aldrich (St. Louis, MO). All other reagents and solvents were HPLC
grade.
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Cell Culture
TK6 cells (a lymphoblastic cell line derived from a patient with hereditary spherocytosis)
were cultured in RPMI 1640 growth medium supplemented with 10% heat-inactivated fetal
bovine serum (Invitrogen, Carlsbad, CA) and maintained in a humidified 37 °C incubator
with 5% CO2. hTERT-transformed BJ cells were cultured in Knockout DMEM (Invitrogen)
supplemented with 199 medium (Invitrogen), 15% fetal bovine serum, Pen/Strep, and L-
glutamine. From a stock flask of exponentially growing cells, 2 × 105 TK6 cells/mL were
seeded into T75 flasks and cultured for 16 h before exposure to 0.5, 1.0, 4.0, or 8.0 Gy γ-
radiation from a 137Cs source. BJ cells were seeded into 100 cm2 plates and cultured for 48
h before exposure to 1.0 and 4.0 Gy γ-irradiation. Control cells were sham-irradiated by
placing them in the irradiator without exposure to the 137Cs source. Dose rates were as
follows: 0.5 Gy = 0.37 Gy/min, 1.0 Gy = 0.85 Gy/min, 4.0 Gy = 1.76 Gy/min, and 8.0 Gy =
2.84 Gy/min. After irradiation, TK6 cells were divided into six T25 flasks for each dose.
The irradiated TK6 cells were returned to the incubator for 1, 4, 8, or 16 h, at which point
they were spun down, washed twice with ice-cold PBS, and frozen as pellets at −70 °C. For
the BJ cells, after irradiation they were returned to the incubator for 1, 4, or 16 h, at which
point they were washed twice with ice-cold PBS, scraped, and frozen as pellets at −70 °C.

Sample Preparation
Cell pellets were resuspended in 150 μL of water and briefly sonicated to liberate the water-
soluble fraction of metabolites. A 20 μL aliquot was removed to determine total protein
concentration by the BCA assay (Pierce, Madison, WI). Each cell extract was mixed with an
equal volume of 50% acetonitrile acid containing 1 μM debrisoquine hemisulfate as internal
standard and spun at 16 000g for 20 min at 4 °C. The supernatant was dried down in an
evaporating centrifuge and resuspended in 300 μL of HPLC grade water. Last, the
supernatant was passed over an Ultrafree-MC column (Millipore Corporation, Bedford,
MA) to remove particulates larger than 0.2 μm. The eluent was frozen at −70 °C until
analysis.

Western Blotting
TK6 cells were harvested 2 h following IR and analyzed by Western blotting to assess
cellular levels of phospho-p53 at serine residue 15 and phosphohistone γH2AX at serine
residue 139 (Cell Signaling Technology, Beverly, MA). Total extracellular signal-related
kinase (ERK, p42) was used for the loading control (Cell Signaling Technology).

UPLC-ESI-TOFMS Analysis
An aliquot of each cell pellet supernatant was deposited in an autosampler vial, and 5 μL
was separated on a 50 mm × 2.1 mm Acquity 1.7 μm C18 column (Waters Corp, Milford,
MA) using an Acquity UPLC system (Waters). The gradient mobile phase consisted of 0.1%
formic acid (A) and acetonitrile containing 0.1% formic acid (B). A typical 10 min sample
run consisted of 0.5 min of 100% solvent A followed by an incremental increase of solvent
B up to 100% for the remaining 9.5 min. The flow rate was set to 0.6 mL/min. The eluent
was introduced by electrospray ionization into the mass spectrometer (Waters QTOF
Premier) operating in positive ionization mode. The capillary and sampling cone voltages
were set to 3000 and 30 V, respectively. Source and desolvation temperatures were set to
120 and 350 °C, respectively, and the cone and desolvation gas flows were set to 50.0 and
650.0 L/h, respectively. To maintain mass accuracy, sulfadimethoxine ([M + H]+ =
311.0814) at a concentration of 500 pg/μL in 50% acetonitrile was used as a lock mass and
injected at a rate of 0.08 μL/min. For MS scanning, data were acquired in centroid mode
from 50 to 850 m/z, and for MS/MS, the collision energy was ramped from 5 to 35 V.
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Multivariate Data Analysis (MDA)
The mass chromatographic data were first analyzed by MarkerLynx (Waters) to generate a
multivariate data matrix for analysis by SIMCA-P+ 11 software (Umetrics, Kinnelon, NJ).
The matrices were purged of known instrument artifacts, normalized by the debrisoquine
internal standard peak area, and trimmed to contain only the 1000 most abundant molecular
ions. Principal components analysis (PCA) and partial least-squares discriminant analysis
(PLS-DA) were performed on Pareto-scaled26 MarkerLynx matrices to identify candidate
metabolites that could distinguish irradiated cells from the shams. For that purpose, loadings
scatter plots were used to identify ion peak areas whose intensities significantly differed
between sham and irradiated samples. Models were validated for fit (R2) and predictability
(Q2) by randomly permuting the samples 200 times and recalculating R2 and Q2. Models
were considered acceptable if R2 and Q2 degraded with permutation of the samples.

Molecular Ion Identification
Metabolites identified as being altered in intensity between sham and irradiated cells were
subjected to further scrutiny to determine their elemental compositions. MassLynx software
and Seven Golden Rules27 were used to determine putative elemental compositions, and
metabolites were verified using tandem MS by comparison with authentic compounds.

Protonated Molecular Ion Quantitation
Peak areas obtained from the MarkerLynx matrices were used to calculate relative
concentrations by first normalizing all samples by the peak area from the debrisoquine
internal standard (C10H14N3

+ = 176.1188) and then dividing by the total protein
concentration. Finally, relative concentrations were determined by dividing the peak areas
from each irradiated sample by that from the respective sham-irradiated control.

Statistical Analysis and GEDI Self-Organizing Maps
The significance of the relative concentration for each metabolite was assessed by ANOVA
with Bonferroni correction. Gene Expression Dynamics Inspector (GEDI)28 was used for
analysis and visualization of patterns in the MarkerLynx data matrices. The software
package was developed for, and applied in the past to, the interpretation of gene expression
data. This is its first use in metabolomics. GEDI creates intuitive visualizations of each
sample based on the self-organizing map (SOM) algorithm. However, it improves the
interpretability of typical SOMs by rendering the output for each experimental sample as a
two-dimensional heat-map-like mosaic of colored tiles. GEDI starts by training a
conventional SOM to assign each ion to a mosaic tile in such a way that ions with similar
patterns across the samples are placed in the same or nearby tiles. After that training, GEDI,
unlike the conventional SOM algorithm, creates a series of coherent mosaic heat maps
representing each sample’s overall ion profile. The GEDI analysis here used Pearson’s
correlation as the similarity metric in training of the SOM. In addition, to identify the
common expression patterns within each dose group, GEDI was used to compute average
mosaics. The complete GEDI program package and details of the algorithm can be found at
http://www.childrenshospital.org/research/ingber/GEDI/gedihome.htm.

RESULTS AND DISCUSSION
Monitoring IR Dose by Traditional Techniques

TK6 cells are widely used as a model system to study the effects of IR at the cellular level.
For demonstration that TK6 cells used in the metabolomic studies had been dosed as
indicated and that they displayed dose-dependent responses, the phosphorylation of p53-
(Ser15) and γH2AX(Ser139) was monitored 2 h after IR exposure by Western blot. These
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two phosphorylations are representative protein level indicators of IR response. As seen in
Figure 1, dose-dependent increases in phosphorylation were observed consistent with
published results for both p53(Ser15)29 and γH2AX(Ser139).30

Multivariate Data Analysis of Irradiated Cells Demonstrates Dose-Dependent Effects on the
Metabolome

Cell extracts containing hydrophilic metabolites from the irradiated TK6 cells were analyzed
by UPLC-ESI-TOFMS operating in positive ionization mode. The resulting MS peak areas
were then profiled using MDA to identify metabolites whose concentrations were
significantly altered by IR. With the use of SIMCA-P+, principal components analyses (not
shown), and supervised PLSDA two-component models were generated from the
MarkerLynx data matrices. At 1 h after IR, there was already class separation between the
sham and the four IR doses (Figure 2A). The most pronounced differences were those
among three prominent clusters consisting of sham-irradiated cells, 0.5 and 1.0 Gyirradiated
cells, and 4.0 and 8.0 Gy-irradiated cells. To provide an internal validation measure, the data
were randomized 200 times and, after each randomization, R2 (a measure of model fit) and
Q2 (a measure of model predictive capacity) values were recalculated. The data were then
plotted to indicate metabolomic responses, using the sham-irradiated samples as baseline
(not shown). Validation analysis for the 0.5, 1.0, and 4.0 Gy doses suggested that the model
fit was modest, but the predictive function, as measured by Q2, remained acceptable for
those doses. The 8.0 Gy dose model fit was acceptable, as both R2 and Q2 values degraded
with permutation of the data. Similar observations were recorded for the 4, 8, and 16 h time
points; 16 h, class separation, particularly at doses below 4.0 Gy, was less apparent (Figure
2B–D). One of the 16 h samples irradiated with 8.0 Gy was considered an outlier as it fell
beyond the confidence limits defined by the Hotelling ellipse and was excluded from all
further analyses (Figure 2D). The protein concentration of this sample was found to be
significantly lower compared to other samples suggesting inefficient isolation and extraction
of metabolites. Overall, from the first hour after irradiation a clear dose-related perturbation
of the cell metabolome was observed over the entire range from 0.5 to 8.0 Gy.

A similar UPLC-ESI-TOFMS approach as described above was used to profile cell extracts
containing hydrophilic metabolites from a BJ fibroblast cell line. This cell line was chosen
for its normal diploid karyotype. As observed with the TK6 cells, the two-component PLS-
DA models successfully discriminated the sham-, 1.0 Gy-, and 4.0 Gy-irradiated cells over
16 h (Figure 3A–C). One sham-irradiated sample (low protein concentration) was excluded
from this and all other analyses as it fell beyond the confidence limits defined by the
Hotelling ellipse. Inclusion of BJ cell metabolomics data demonstrated the general
applicability of UPLC-ESI-TOFMS and MDA toward understanding the effects of IR on the
metabolome.

Identification of Biochemical Constituents of the TK6 Cell Metabolome Down-Regulated by
γ-Irradiation

Loadings plots from the TK6 cells were analyzed to identify ions with the highest
confidence (i.e., those with the smallest confidence intervals) and greatest contribution to
separation. The most significant ions contributing to class separation 1 h after irradiation
were those down-regulated after IR (Figure 4, upper-right quadrant). Protonated molecular
ions 308.0908 and 348.0694 ranked as the first and second most important variables from
the loadings plots, respectively (Table 1). Chemical formula calculations on those ions
showed that they correspond to reduced glutathione (GSH) and adenosine monophosphate
(AMP), respectively. Among the other highest-contributing ions were in-source fragment
ions of GSH (ions 5, 11, and 13, plus the Na+ adduct, ion 20) and AMP (ion 3). Other
biochemical constituents of the TK6 cellular metabolome that were attenuated by irradiation
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included nicotinamide and nicotinamide adenine dinucleotide (NAD+), proline and 5-
oxoproline, phosphocholine, uridine monophosphate (UMP), and spermine. Thus, UPLC-
ESI-TOFMS afforded ready chromatographic resolution of the cellular metabolome and
determination of accurate masses that permitted preliminary assignment of the constituents
(with m/z errors ranging from 0.9 to 9.8 ppm; mean 3.8). Comparison of the MS/MS
fragmentation patterns obtained from authentic compounds and from the cell supernatants
then unequivocally verified the identities of those protonated molecular ions and also
confirmed the identity of any in-source fragment ions (Figure 5). Molecular ions whose
identities remained unknown were not evaluated further.

It should be stated that, despite the power of UPLC-ESITOFMS in analyzing a complex
biological matrix, it is not without limitations. Of particular note is the relative inability of
the UPLC system to retain and resolve very small highly polar metabolites, for example,
isomers, such as citrate and isocitrate. In circumstances where resolution of such isomeric
metabolites was required, it would be necessary to utilize a platform such as GCTOF with
chemical derivatization of cell extracts.

Identification of Biochemical Constituents of the TK6 Cell Metabolome Up-Regulated by γ-
Irradiation

The lower-left quadrant of Figure 4 displays ions that are more abundant in irradiated than in
sham-irradiated cells at 1 h. None of those ions made a statistically significant contribution
to the class separation at the 1 h time point, so they were not investigated further. However,
other subsets of the metabolome (e.g., the lipidome) may have potential as biomarkers that
increase in response to IR. Additionally, other detection methods (e.g., gas chromatography)
may be useful in identifying other metabolites not readily observed by UPLC-ESI-TOFMS.

Dose-Dependent IR-Induced Changes in the Metabolome
Although much is known about the effects of IR at the transcriptomic and proteomic levels,
much less information is available about IR effects on the metabolome, particularly at
biologically relevant doses (less than 10 Gy). For assessment of possible metabolomic
changes at those doses, UPLC-ESI-TOFMS analyses were performed to quantitate the dose-
dependent changes in specific metabolite concentration as well as to validate the
significance of those ions found to be important in the MDA loadings plot. Protonated
molecular ion intensities were normalized to the internal standard debrisoquine and then to
total protein in order to assess whether a dose-dependent relationship existed with any
identified metabolites. At 1 h following IR, subtle but statistically significant decreases in
some of the metabolome constituents, including AMP, glutathione, NAD+, and spermine,
were observed (Figure 6). At 4 h after IR, the effects observed at 1 h had been partially lost,
and at 8 h after IR, no significant differences between sham and irradiated metabolomes
could be detected. However, at 16 h after IR, the decreases in concentration of glutathione,
NAD+, and spermine at doses of 4.0 and 8.0 Gy remained significantly different from those
in the sham-irradiated cells. Particularly at 16 h after IR, changes in these metabolites may
be early signs of cell death as lymphoid cells such as TK6 readily undergo apoptosis after 24
h with doses as low as 1.0 Gy.31

Analysis of the BJ metabolome constituents similarly revealed GSH, NAD+, and spermine
to be important indicators of IR exposure (AMP levels fell below the limit of detection for
this cell line and were not recorded in the chromatographic data). At 1 h following 1.0 Gy, a
significant increase was observed in GSH concentration (Figure 7). However, like the TK6
cells, both GSH and NAD+ concentrations were depleted at 4 h after 4.0 Gy. Unlike the TK6
cells at 16 h after IR, BJ cell NAD+ and spermine concentrations remained unchanged for all
doses at this time point, while GSH concentration was elevated with 4.0 Gy of IR. These
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observations may reflect the cell type specific IR-induced programmatic response.
Importantly, along with the TK6 data, those observations highlight the potential importance
of GSH and NAD+ in the IR metabolomic response.

Visualization of the Global Metabolomic Response to Irradiation
Significant bottlenecks in any LC/MS-based metabolomic investigation are the lack of
metabolome annotation and the paucity of methods for visualization of the metabolomic
data set as a whole. Because of those limitations, the SOM algorithm in the GEDI software
package was used to construct visualizations reflecting the relationships among positive ions
on the basis of abundance patterns across the entire TK6 data set. When presented in that
fashion, the hydrophilic metabolome could be viewed in its entirety by clustering related
metabolites in the same or closely neighboring tiles (Figure 8A). The 16 h postirradiation
data were used since, at the level of individual molecular ions, a trend suggestive of a dose–
response relationship was apparent at that time point. Protonated molecular ions derived
from GSH (308.0908), AMP (348.0694), and spermine (203.2227) clustered in the same
general location on the map (Figure 8A, lower black rectangle), despite being ions ranked
number 1, 2, and 70 in their contribution to group separation between irradiated and sham-
irradiated cells. That is so because they covaried across the entire set of samples, and,
therefore, GEDI’s SOM algorithm placed them in closely neighboring tiles. A clear dose-
dependent effect on specific subsets of the hydrophilic metabolome was apparent, as
represented graphically for the down-regulated (Figure 8B) and up-regulated (Figure 8C)
pools of 188 and 219 metabolites, respectively.

Published studies support the view that cellular metabolites are altered after irradiation of
cells. Those previous studies focused on concentration changes of specific metabolites20 or,
in some cases, defined metabolic effects at high doses of radiation (20–40 Gy).20,21,23
Those limitations precluded identification of the metabolites most significantly affected or
biologically relevant to an in vivo or in vitro IR response. However, with the advent of high-
throughput, high-sensitivity technologies that permit global and unbiased analysis of the
metabolome, such determinations are now possible. Particularly when coupled with
contemporary data analysis approaches such as MDA and SOMs, those approaches can
become powerful tools for both studying and visualizing the metabolome response to IR at
doses less than 10 Gy. As shown in Figures 2 and 3, discrete clustering of cell samples after
exposure to lower doses (0.5 and 1.0 Gy) and higher doses (4.0 and 8.0 Gy) was apparent in
the TK6 and BJ cell data sets analyzed here.

The biological relevance of metabolites such as glutathione,32 spermine,33–36 and their
precursors is well documented in the radiation literature. Glutathione, a tripeptide (L-γ-
glutamyl-L-cysteinylglycine), is highly abundant in the cell and is a major antioxidant. It
protects the cell from the deleterious effects of ROS during normal metabolic processes
(e.g., respiration) or following exposure to IR. Furthermore, the glutathione concentration in
the cell is strongly associated with cellular radioresistance (i.e., the higher the glutathione
concentration, the more radioresistant the cell), and many therapies, such as buthionine
sulfoximine, that target the synthesis of glutathione, are useful for increasing the cell-killing
effect of IR.23 The differences observed between TK6 and BJ cells with GSH likely reflect
a cell-specific response to IR and may be due to differences existing between normal and
transformed phenotype of cells. Spermine is a polyamine that associates primarily with the
DNA helix and protects against DNA damage through chromatin compaction.35 In TK6
cells, the decline in cellular 5-oxoproline, a metabolite and a precursor of glutathione, may
also be related to the quenching of cellular glutathione by γ-radiation. Therefore, it is not
surprising to find that glutathione and spermine were identified as major contributors in the
MDA analysis of irradiated cells (Figures 2 and 3).
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In TK6 cells, the reasons for the decrease in AMP concentration after IR are less apparent.
Possibilities include the generation of ATP to supply the cell with energy to repair IR-
induced damage (2ADP = ATP + AMP by adenylate kinase), assistance in the repair of
DNA double-strand breaks,37 antioxidant activity (adenosine is a known radical
scavenger38), or anabolic function as a dATP precursor. Interestingly, when supplied with
exogenous adenosine in the form of AMP, hematogenous cells are protected by reduction of
the deleterious effects of IR.37–42 Similarly, the quenching of cellular GMP (as indicated
from the guanine fragment ion) and UMP, both nucleic acid building blocks, may simply
reflect increased DNA repair and synthesis 1 h postirradiation.

For both cell types, the fall in cellular NAD+ concentration at 4 h may simply indicate the
use of NAD+ by poly(ADP–ribose)-polymerase, which is activated in response to DNA
double- or single-strand breaks.43 Indeed, it has been reported that NAD+ levels fall 5-fold
in Chinese hamster ovary cells irradiated with 56 Gy.43 At least for TK6 cells, the cellular
depletion of nicotinamide, a metabolite of NAD+, presumably reflects the fall in NAD+. The
decrease in free phosphocholine is a probable indicator of membrane damage (i.e., lipid
peroxidation), which is typical of IR.44

In summary, this report shows that the soluble fraction derived from TK6 and BJ cells that
were subjected to γ-irradiation from 0.5 to 8.0 Gy can be analyzed successfully by UPLC-
ESI-TOFMS and MDA. PLS-DA analysis revealed dose- and time-dependent clustering and
identified a set of ions that had been attenuated by irradiation. Among the constituents
depleted were antioxidants and related molecules (GSH and 5-oxoproline) as well as
probable markers of DNA synthesis and repair (AMP, nicotinamide, guanine, UMP, NAD+,
and spermine). Interestingly, those two sets of metabolites were organized into the same
general location in the GEDI display, which provided a global view of changes in the
metabolome and demonstrated dose–response relationships for the set of 188 down-
regulated cellular metabolites. In the present study, the higher, but still physiologically
pertinent, IR doses also up-regulated 219 as yet unidentified cellular metabolites. Future
analysis and identification of those metabolites will undoubtedly prove instructive. Overall,
the combination of UPLCESI-TOFMS, MDA, and GEDI SOMs offers great promise for the
study of metabolic stress responses to IR (and also to drugs, toxic molecules, and
physiological factors) at both the cellular and whole-body levels.
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Figure 1.
Western blots showing a dose-dependent increase in phosphorylation of γH2AX(Ser139)
and p53(Ser15) after γ-irradiation of TK6 cells. Exponentially growing TK6 cells were
irradiated with 0.5, 1.0, 4.0, or 8.0 Gy, and total protein was harvested 2 h later to assess the
effects on p53(Ser15) and γH2AX(Ser139). A Western blot of ERK (p42) is included as a
loading control.
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Figure 2.
PLS-DA scores plots demonstrating dose-dependent clustering of irradiated TK6 cells. TK6
cell supernatants were prepared 1 h (A), 4 h (B), 8 h (C), and 16 h (D) after γ-irradiation
with 0.5, 1.0, 4.0, or 8.0 Gy and with sham irradiation. One 8.0 Gy-irradiated sample from
the 16 h time point (D) located to the extreme left in the scores plot was excluded from all
further analyses as it fell beyond the confidence limits defined by the Hotelling ellipse. [t1]
and [t2] correspond to principal components 1 and 2, respectively.
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Figure 3.
PLS-DA scores plots demonstrating dose-dependent clustering of irradiated BJ cells. BJ cell
supernatants were prepared 1 h (A), 4 h (B), and 16 h (C) after γ-irradiation with 1.0 or 4.0
Gy and with sham irradiation. One sham-irradiated sample at 1 h (A) was excluded from this
and all other analyses as it fell beyond the confidence limits defined by the ellipse. [t1] and
[t2] correspond to principal components 1 and 2, respectively.
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Figure 4.
PLS-DA loadings S-plot comparing supernatants from sham vs 1.0 Gy-irradiated TK6 cells
at 1 h after IR showing molecular ions important in the clustering of samples. Positive ions
located in the upper right quadrant are quenched when comparing 1.0 Gy- and sham-
irradiated cell supernatants. Labeling of ions is the same as in Table 1: 1, GSH; 2, AMP; 3,
AMP in-source fragment; 5, GSH in-source fragment; 11, GSH in-source fragment; 12,
nicotinamide; 13, GSH in-source fragment; 17, 5-oxoproline; 18, guanine; 19, NAD+ in-
source fragment; 20, GSH Na+ adduct; 26, phosphocholine; 35, UMP Na+ adduct; 37,
proline; 38, NAD+; 41, NAD+ in-source fragment; 70, spermine.
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Figure 5.
Tandem MS of molecular ions from cell supernatants and authentic compounds. (A)
adenosine monophosphate (AMP), (B) glutathione (GSH), (C) spermine, and (D)
nicotinamide adenine dinucleotide (NAD+).
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Figure 6.
TK6 cell selected protonated molecular ion peak areas 1, 4, 8, and 16 h after γ-irradiation.
Data are plotted as the average of six replicates (16 h 8.0 Gy, n = 5) per dose. Error bars
represent SEM. The p-values were calculated by ANOVA with Bonferroni correction. * p <
0.05, ** p < 0.01, *** p < 0.001.
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Figure 7.
BJ cell selected protonated molecular ion peak areas 1, 4, and 16 h after γ-irradiation. Data
are plotted as the average of six replicates (1 h sham, n = 5) per dose. Error bars represent
SEM. The p-values were calculated by ANOVA with Bonferroni correction. * p < 0.05, ** p
< 0.01.
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Figure 8.
GEDI analysis using self-organizing maps (SOMs) revealing a dose-dependent effect on the
TK6 water-soluble metabolome. (A) SOMs were constructed from MarkerLynx data
matrices using Pearson’s correlation as the similarity metric, and the average of all replicates
(sham (0), 0.5, 1.0, 4.0 Gy, n = 6; 8.0 Gy, n = 5) was calculated for each dose. Tiles
containing the highest-abundance ions are shaded deep red, and the tiles containing the
lowest-abundance ions are shaded deep blue. Colors between those extremes reflect a scale
of colors typically used in heat maps of gene expression (ref 45). The centroid values were
summed for each replicate, averaged, and plotted for (B) the down-regulated metabolite 5 ×
6 grid consisting of 188 positive ions (lower black rectangle in panel A) and (C) the up-
regulated metabolite 5 × 4 grid consisting of 219 positive ions (upper black rectangle in
panel A). Error bars represent SEM. The p-values were calculated by ANOVA with
Bonferroni correction. *** p < 0.001.
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