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Abstract
Background: The true dose effect in flexible-dose clinical trials may be obscured and even
reversed because dose and outcome are related.

Methods: To evaluate dose effect in response on primary efficacy scales from 2 randomized,
double-blind, flexible-dose trials of patients with bipolar mania who received olanzapine (N = 234,
5–20 mg/day), or patients with schizophrenia who received olanzapine (N = 172, 10–20 mg/day),
we used marginal structural models, inverse probability of treatment weighting (MSM, IPTW)
methodology. Dose profiles for mean changes from baseline were evaluated using weighted MSM
with a repeated measures model. To adjust for selection bias due to non-random dose assignment
and dropouts, patient-specific time-dependent weights were determined as products of (i) stable
weights based on inverse probability of receiving the sequence of dose assignments that was
actually received by a patient up to given time multiplied by (ii) stable weights based on inverse
probability of patient remaining on treatment by that time. Results were compared with those by
unweighted analyses.

Results: While the observed difference in efficacy scores for dose groups for the unweighted
analysis strongly favored lower doses, the weighted analyses showed no strong dose effects and, in
some cases, reversed the apparent "negative dose effect."

Conclusion: While naïve comparison of groups by last or modal dose in a flexible-dose trial may
result in severely biased efficacy analyses, the MSM with IPTW estimators approach may be a
valuable method of removing these biases and evaluating potential dose effect, which may prove
useful for planning confirmatory trials.

Background
Knowledge of the relationship between drug dose and
clinical response contributes to the safe and effective use
of medications. Clinical drug trials using double-blind,
parallel, randomized assignment to fixed-dose groups are
considered the gold standard for evaluating dose response

for clinical outcomes both in exploratory and confirma-
tory phases of drug development. In fixed dose trials,
interpretation of statistical inference can be done in terms
of causal relationship between treatment and an outcome,
based on the principle of randomization.
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In examining dose response for long-term outcomes, fixed
dose trials have several limitations including maintaining
a patient on a possibly suboptimal dose or a dose with
intolerable side-effects, poor comparability to actual clin-
ical practice, and restrictive inclusion/exclusion criteria.
This is exacerbated by the wide variation between individ-
ual patients in pharmacokinetic and pharmacodynamic
profiles found with many medications. Not surprisingly,
fixed-dose trials, especially in neuroscience, suffer from
high discontinuation rates. High discontinuation rates
may result in biased or inefficient inference and subse-
quent conclusions, especially if different dose groups
exhibit different discontinuation patterns. Likelihood-
based approaches allow adjustment for dropouts explic-
itly (multiple imputation – MI) or implicitly (mixed-
effects model, repeated measures – MMRM) and typically
result in less biased estimates of treatment effects than the
popular last observation carried forward (LOCF)
approach [1].

Flexible dose trials are better at mimicking actual clinical
practice and better reflect risk/benefit considerations since
dose may be changed in accordance with individual
patient response. It would be of great scientific and clini-
cal value if dose response relationships could be evaluated
from flexible dose trials. When employing a flexible regi-
men, dose is typically assigned based on previously
observed outcomes (efficacy/tolerability) and direct com-
parison of dose groups at any time or overall is subject to
selection bias (e.g. the patients who received the highest
dose at the last scheduled visit may show less improve-
ment than patients who end up on the lowest dose, since
the former are typically assigned to the less responsive
patients). This is similar to the selection bias in compari-
son of treatment (dose) groups using only data from
patients who remained on treatment by specific endpoint.
In a sense, switching treatment, adjusting dose, and dis-
continuing a patient involve decisions that may cause
selection bias.

Robins and colleagues [2,3] and Hernán and colleagues
[4-6] proposed and implemented, in the context of obser-
vational clinical trials, a methodology of adjusting for
selection bias caused by non-random treatment switching
very similar to inverse-probability-of-censoring weighting
used to adjust for bias caused by missing values due to
dropout when estimating treatment effect from longitudi-
nal data [7]. In their approach [2-6], based on inverse-
probability-of-treatment weighting (IPTW), treatment
comparisons are conducted on the pseudo-population,
re-weighted inversely to the estimated probability of
patients receiving the treatment sequence they actually
received by any given time point. Because this approach
leads to the evaluation of marginal (unconditional on past
outcome) means of potential outcome for any given treat-
ment sequence, thus revealing the causal mechanism (or
the "structure") behind the observed data, it was termed
by the authors "marginal structural models" (MSMs).

In the present study, we used the MSM approach to evalu-
ate dose response relationship in flexible dose trials, con-
sidering dose adjustment a special case of treatment
switching. The goal was to adjust for selection bias in dose
effect caused by non-random mechanism of dose assign-
ment by (1) assessing this mechanism using a statistical
model for probability of dose assignment, and (2) relating
outcome to a recent and past dose using standard statisti-
cal procedures adjusted for selection bias with weights,
based on inverse probability of the dose sequence that
was actually observed (estimated at Step 1). As a result, it
was possible to evaluate the potential efficacy of higher
dose versus lower dose by evaluating difference in poten-
tial (or counterfactual, [8]) outcomes predicted by the
MSM for a hypothetical patient who would have been
assigned to a higher versus a lower dose throughout the
entire trial. Using this approach, we analyzed dose rela-
tionships from 2 flexible-dose trials of antipsychotics in
the treatment of schizophrenia and bipolar disorder.

Table 1: Study characteristics

Study A
N* = 234

Study B
N* = 172

Disease state Bipolar I mania Schizophrenia
Duration of study 12 weeks 28 weeks
Visit intervals 2 weeks 2–4 weeks
Dosages, mg/day Olanzapine (5, 10, 15, 20) Olanzapine (10, 15, 20)
Starting dose, mg/day Olanzapine (15) Olanzapine (15)
Gender, % female 60.2 35.1
Age in years, mean (SD) 39.9 (13.2) 36.2 (10.7)
Symptom severity, mean (SD) YMRS total, 30.7 (7.5) PANSS total, 96 (16.6)

*Olanzapine-treatment arm only
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Methods
Clinical trial designs
To investigate dose relationships in flexible dose trials, we
analyzed data from olanzapine-treated patients from 2
randomized, double-blind clinical trials with flexible dos-
ing. The baseline characteristics of patients included in
these trials are summarized in Table 1. Study A [9] was a
12-week study of acutely-ill, bipolar I patients with an
index manic episode (N = 452) who received olanzapine
(5, 10, 15, 20 mg/day, n = 234) or haloperidol. Study B
[10] was a 28-week study in acutely ill patients with schiz-
ophrenia, schizophreniform disorder, or schizoaffective
disorder (N = 339) who received olanzapine (10, 15, 20
mg/day, n = 172) or risperidone. In both studies, investi-
gators made dose increases or decreases as clinically indi-
cated; while they were blinded with respect to the actual
treatment, they were aware of the dose level as expressed
by the number of capsules prescribed. Placebo capsules
were used so that an equivalent number of capsules were
given regardless of the assigned drug. The dose could be
adjusted upward one increment at a time, or could be
reduced by one or more decrements at a time. Concomi-
tant use of anticholinergics or benzodiazepines was
allowed for treatment-emergent symptoms of extrapyram-
idal symptoms (EPS) or agitation. For each of the clinical
trials, the protocol was approved by ethical review boards
responsible for study sites and all patients gave written,
informed consent prior to entering the study.

Variables and measures
Since, in both studies, dose of medication could change at
or sometimes between evaluation visits, for this analysis,
dose was summarized with a single value per visit interval
calculated as the most frequent (modal) dose received by
a patient after an evaluating visit up to and including the
next evaluation visit (interval modal dose). To facilitate
comparisons for high versus low dose and avoid groups
with a small number of subjects, these values were further
grouped as follows: for the bipolar I study, 5–10 mg,

11–15 mg, and 16–20 mg olanzapine dose groups, and
for the schizophrenia study, 10–15 mg and 16–20 mg
olanzapine dose groups.

Therapeutic efficacy in the bipolar I study was evaluated
using the Young Mania Rating Scale (YMRS) [11]. In the
schizophrenia study, efficacy was measured with the Pos-
itive and Negative Syndrome Scale (PANSS) [12].

Statistical methodology
Unweighted analyses
Two unweighted analyses were performed: (i) "naïve anal-
ysis" using separate analysis of covariance (ANCOVA)
models (at every visit interval) for reduction in symptoms
from baseline as the dependent variable with terms for
modal dose during previous visit interval and baseline
efficacy score, and (ii) likelihood-based MMRM fitted to
reduction in symptoms at every evaluation visit with
terms for time-varying dose (during the previous interval),
the current visit interval, visit by dose interaction, baseline
score, and baseline score by visit interaction. The depend-
ency in repeated observations was modeled using an
unstructured covariance fitted to within-patient errors.

Weighted analysis (marginal structural models)
To evaluate differences between different dose levels, we
implemented a 2-step IPTW MSM scheme.

(1) Construction of weights
We applied an ordinal logistic regression model (proc
GENMOD in SAS 8.02) to data pooled from all the
patients records (i.e. considering each patient-visit as an
"independent" observation) within each trial to estimate
probabilities of receiving a dose that was actually received
by each patient during each visit interval, given the recent
history of dosage and past treatment outcome (see Table
2). The dependent variable was the dose received during
the current visit interval, and the predictors were dose dur-
ing the previous visit, changes in disease severity (efficacy)

Table 2: Modeling probability of having a higher dose, given previous treatment, outcome history, and baseline score

Predictors of dose level during visit interval (adjusted for 
previous dose level)

Study A Study B

odds ratio* (95% CI) p-value odds ratio* (95% CI) p-value

YMRS** (Study A) or PANSS** (Study B) reduction from baseline to the 
end of previous visit interval

0.88 (0.86, 090) < .0001 0.97 (0.96–0.99) <.0001

Adverse event (AE) indicator (max severity score during previous visit 
interval)

0.87 (0.74–1.01) .075 1.02 (.78–1.33) ns

Baseline YMRS** (Study A) or PANSS** (Study B) total score 1.14 (1.10, 1.18) < .0001 1.04 (1.02–1.05) <.0001

*Estimated by applying the ordinal logistic regression model with the dependent variable as dose received during the current visit interval and the 
listed predictors. Previous dose was fit into the model as a categorical variable, with associated coefficients capturing effects of specific dose level 
versus "reference" dose (results were highly significant as to be expected and are not shown here for the sake of the space).
** YMRS total scores range from 0–60. PANSS total scores range from 30 to 210.
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score from baseline to the end of previous visit interval,
maximal severity of any adverse event (AE) that occurred
during the previous visit interval, and efficacy score at
baseline. Then, probability of dose sequence received up
to a given visit interval was computed as a product of con-
ditional probabilities for all the previously assigned dos-
ages starting from the first post-baseline visit interval.
Subject-specific weights at every time point can be com-
puted simply as inverse of this "cumulative" probability.
However, since such weights typically exhibit high varia-
bility and may lead to an unduly large impact on the esti-
mates by only a few observations, Robins et al.[3]
proposed and Hernán, et al.[4] implemented a modified
version of weights called "stabilized weights." In our anal-
yses, we closely followed their methodology and therefore
interested readers should refer to these publications for
details. Stabilized weights were constructed as the ratio of
two estimates for probability of the dose sequence received
up to a given time: the estimate in the denominator was
based on the model with previous dose, baseline disease
severity scores, and potential time-dependent confound-
ers: previous efficacy scores and AE severity indicator; the
estimate in the numerator was based on a similar model,
except all potential time-dependent confounders were
excluded.

In addition to stabilized weights accounting for dose
switching as described above, weights accounting for
selection bias due to dropouts were constructed in a simi-
lar fashion, based on the inverse probability of a patient
remaining in the study (remaining uncensored) by a given
time. The latter was estimated by multiplying the condi-
tional probabilities of patient remaining uncensored by
every time point up to a given time. The conditional prob-
abilities were estimated by pooled (repeated) logistic
regressions with an indicator for patient presence/absence
in the study at every time interval following evaluation
visit (up to discontinuation or study completion) as a
dependent variable and current dose, severity of AE, and
efficacy scores during current and previous visit intervals
as independent variables. The final weights accounting for
selection biases, both due to dose switching and drop-
ping-out, were computed as the product of these two
weights.

(2) Fitting weighted MSM models
We used estimated weights in causal inference of dose
effect on subsequent efficacy outcome conducted with a
pooled (repeated measures) linear MSM model. The
essence of MSM is that by using IPTW a simple association
model that connects the observed outcome at any time
point with observed dose history at previous time points
can be turned into a causal model that connects potential
outcome at that time point with a pre-specified dose his-
tory (see Hernán et al.[6], Section 5). More specifically,

our model for potential outcome expected under dose his-
tory to time t, Ht-1(D), was:

where the dependent variable ΔYt = Y0-Yt, was the amount
of reduction in severity score from baseline to the end of
visit interval t, (starting from the 3rd post-baseline visit).
The effects of time, baseline disease severity, and dose on
the outcome were captured as follows:

• "time" effect was modeled via visit-specific intercept
α(t);

• effect of baseline score (Y0) modeled via time-fixed coef-
ficient γ5; a more general model was actually evaluated by
incorporating visit-specific coefficients γ5(t) allowing the
effect of baseline score to vary over time;

• effect of current dose and recent dose history on the out-
come measured at end of each visit interval was modeled
by estimating effects for the current dose (dt-1), two previ-

ous doses (dt-2, dt-3) and average dose during all visits ear-

lier than t-3, ( ), rounded to the category

corresponding to the closest dose interval. For all dose
variables, we used "grouped dose" as explained in the
Methods section. The model does not constrain effects of
specific dose levels to be linear or of any parametric form,
but (like the effect of visit interval) is left unspecified
assuming a unique possible effect of every dose level, cap-
tured by separate terms as shown in equation (1). For
example, let us assume that doses are grouped into 3 lev-
els, low, medium, and high, designated as indices {1,2,3}.
Then the effects of current dose are captured by model

terms γ1(1), γ1(2), and γ1(3). As always for identifiability

one of these effects should be set to 0 (as done internally
in PROC GENMOD). For example, if the lower dose effect

γ1(1) = 0, then the terms, γ1(2) and γ1(3) capture the

effects of medium and high doses respectively, relative to
the lower dose (as the reference category).

• additional interaction terms were included in model (1)
to capture possible difference in dose effect across time,
whenever found significant. Also as was already
explained, interaction between baseline value and visit,
allowing for time varying effect of baseline severity, was
included in the model as it was significant in most of the
cases.

The parameters of the model were estimated using
weighted generalized estimating equations with normal

E Y H D Y t d d d dt t t t t t( | ( ), ) ( ) ( ) ( ) ( ) ( )Δ − − − − −= + + + +1 0 1 1 2 2 3 3 4 4α γ γ γ γ ++ +γ 5Y eractionso int ,

(1)

dt−4
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errors, identity link, independent working correlation
structure, and robust sandwich estimator of standard
errors (Proc GENMOD in SAS 8.02).

Assuming that (i) all relevant time-dependent confound-
ers were correctly accounted for in estimating probabili-
ties for dose assignments and for patient discontinuation,
and that (ii) the MSM model was correctly specified, the
evaluation of dose-response relationship from MSM
allows for causal interpretation [3]. Using expression (1)
we can estimate the potential outcomes over time (dose
profiles) for any given pre-specified dose sequence and
baseline severity (Y0). For example, if we are interested in
estimating causal effect (by time t) of continuously receiv-
ing high versus low dose by an average patient all we need
to do is to (i) evaluate the expected outcomes under high
dose by plugging dose = 3 (the code for high level) in all
terms involving dose in equation (1), including the inter-
action terms if present; (ii) then do the same for dose = 1
(low), and subtract one outcome from the other. Assum-
ing (for simplicity) that there are no interaction terms, the
causal dose effect would be constant over time and simply
equal to the sum of estimated coefficients γ1(3) + γ2(3) +
γ3(3) + γ4(3), as all other terms not involving dose will
cancel out. If any dose by time interaction terms are present,
dose effect would change over time. The significance of
any such causal effect can then be easily evaluated by test-
ing a hypothesis that the sum of the parameters as shown
above is different from zero. The expected potential out-
comes for a hypothetical patient at specific level of base-

line severity who would have been continuously assigned
the same dose (d) throughout the study can be estimated
(and associated 95% confidence intervals and p-values
can be obtained) from the output of proc GENMOD by
performing inference on linear predictors at specific val-
ues of predictor variables (e.g. by creating a data set with
such hypothetical records of subjects whose baseline cov-
ariates are fixed at their mean levels and the current and
all previous doses fixed at level d and passing it to GEN-
MOD for evaluation). To account for the correlation in
repeated measures and the fact that the subject weights
depend on previous data points we used robust conserva-
tive estimates of standard errors. Examples of such esti-
mated potential outcomes are given in Figure 1.

As a part of sensitivity analysis we fitted various other
baseline covariates in both equation (1), and models for
evaluating weights, as such covariates could potentially be
considered by clinicians in dose assignment, and also
could have an effect on outcome. However, only baseline
severity proved a significant covariate.

An MSM very similar to the one described in equation (1)
was tested on simulated data mimicking flexible dose tri-
als for various realistic scenarios (including some proba-
bilities close to 0 to model abrupt changes of dose
between 2 visit intervals), involving both positive dose
effect and no dose effect in presence of time-dependent
confounding. The results indicated a good ability of the
model to recover the true dose effect [13]. Also a concep-

Marginal structural model with IPTWFigure 1
Marginal structural model with IPTW. A. Cumulative potential dose effect profiles by dose groups for Study A (each 
dose profile is estimated from MSM model for a hypothetical patient of average baseline severity who would have continuously 
received the same dose throughout the study); estimated from marginal structural model with IPTW for reduction in the 
Young Mania Rating Scale (YMRS) total score in patients with bipolar disorder. Olanzapine (Olz): For 20 vs. 5–10 mg, overall 
dose effect NS; significant negative dose effect (p < .05) at Weeks 4, 7, 8, 10. B. Cumulative potential dose effect profiles by 
dose groups for Study B (each dose profile is estimated from MSM model for a hypothetical patient of average baseline severity 
who would have continuously received the same dose throughout the study); estimated by marginal structural model with 
IPTW for reduction in the Positive and Negative Syndrome Scale (PANSS) total score in patients with schizophrenia. Olanzap-
ine (Olz): no significant overall dose effect; significant negative dose effect (p < .05) at Weeks 20, 24.
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tually similar MSM with lagged predictors was considered
by Diggle et al.[14].

Results
Study A
Naïve, observed case ANCOVA showed an apparent nega-
tive dose effect, that is, less response at higher doses for
olanzapine (p < .01) in patients with bipolar disorder
(Figure 2A). The magnitude of the negative dose effect
observed with MMRM analysis with dose as a time-vary-
ing covariate was less than in the observed case model, but
was still significant for olanzapine (negative dose effect, p
< .001) (Figure 2B). Using MSM IPTW methodology, in
Figure 1 we presented dose profiles for every sequence of
doses fixed at one of the levels for a patient with "average"
disease severity at baseline. No significant overall (i.e.
effect estimated over entire study) dose effect on response
was estimated for olanzapine. However, there was a sig-
nificant negative effect (20 vs. 5–10 mg) remaining at
Weeks 4, 7, 8, 10 which attenuated by the end of the study
(Figure 1A).

Study B
In the study of patients with schizophrenia, ANCOVA
showed an apparent negative dose effect for olanzapine (p
< .05), with less response at higher doses, similar to the
observed case analysis in Study A. MMRM analysis with
dose as a time-varying covariate did not reveal an overall
significant dose effect. Using IPTW methodology, there
was no significant overall dose effect for olanzapine, but a
significant negative dose effect at Weeks 20 and 24
remained (Figure 1B).

In order to compare our findings from MSM analyses of
flexible dose trials with fixed dose trials of the same antip-
sychotic medications (the gold standard), a summary of
fixed dose studies of olanzapine in schizophrenia and
bipolar disorder is presented in Table 3.

Discussion
IPTW may provide a methodology to estimate a dose
response relationship from flexible-dose clinical trials.
IPTW analysis of 2 flexible-dose trials of antipsychotics
suggested that within the dose ranges examined, there was
no strong negative or overall positive dose effect of the
examined antipsychotic medications.

The International Conference on Harmonization of Tech-
nical Requirements for Registration of Pharmaceuticals
for Human Use (ICH) guidelines for drug development
state that, in addition to seeking dose-response informa-
tion from studies specifically designed to provide it, the
entire database should be examined intensively for possi-
ble dose-response effects [15]. MSM with IPTW estimators
[3,4] may be a method by which additional dose response
information can be obtained. By this approach, the prob-
ability of having been assigned the dose sequence (plan)
that was actually received is estimated for every patient at
each time point based on previously observed outcomes
and dosage history. Patients who had larger estimated
probabilities of being treated with the dose plan they actu-
ally received are considered over-represented (compared
to a population from a hypothetical trial where patients
would have been sequentially re-assigned at every evalua-
tion visit to a dose group by chance) and are penalized by

Unweighted analysisFigure 2
Unweighted analysis. A. Least-squares means in groups by modal dose received during the most recent visit interval; esti-
mated from unweighted analysis of covariance for reduction in the Young Mania Rating Scale (YMRS) total score in patients 
with bipolar disorder. Olanzapine (Olz): negative dose effect (20 vs.5–10 mg) at Weeks 3–12, p < .01. B. Least-squares means 
in groups by modal dose received during the most recent visit interval; estimated from unweighted mixed-effects model, 
repeated measures (MMRM) analysis of reduction in the Young Mania Rating Scale (YMRS) total score in patients with bipolar 
disorder. Olanzapine (Olz): overall dose effect (20 vs. 5–10 mg) for Weeks 3–12 is negative, p < .001; individual dose contrasts 
significant (p < .05) at Weeks 3,7,8,10.
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assigning smaller weights, whereas those with smaller
probabilities of being assigned to the dose plan they
received are considered under-represented and are
rewarded accordingly by assigning higher weights. Thus,
the weights are inversely proportional to the probability
of dose received. The estimated cumulative effect of dose
A vs. B from such re-weighted data can be obtained by fit-
ting a model that links potential outcome with a pre-spec-
ified dose regimen by simply adopting a variant of an
"association model" that connects observed outcomes
with observed dose history. Then estimated causal effect
can be evaluated by comparing potential outcomes for the
"hypothetical" population of patients who would be con-
tinuously exposed to dose A vs. B up to a given time point,
even if contrary to the fact. The information gained from
MSM analysis of flexible dose trials may not be adequate
for conclusive demonstration of the dose relationship for
a medication, but may be useful to assess the need for
definitive fixed dose trials of a medication and to deter-
mine the best design of confirmatory fixed-dose studies.

Applying IPTW to flexible dose trials of antipsychotics
suggested that there was no strong dose relationship for
olanzapine. In contrast, unweighted analysis of dose rela-
tionships in these trials suggested negative dose
responses, presumably because of the strong relationship
between outcome and subsequent dose. Thus, IPTW
appears to remove this bias from the estimated dose effect.
The results of fixed dose studies of olanzapine are mixed
in regards to dose relationship but not inconsistent with
our findings. For olanzapine in the treatment of schizo-
phrenia disorders, some studies have suggested a positive
dose response [16,17], whereas other studies have not
found a significant dose relationship [18,19]. There are no
published fixed dose studies of olanzapine in patients
with bipolar disorder that allow examination of dose rela-
tions.

This was an exploratory analysis with limited data. As any
attempt to extract a causal relationship from observa-

tional data, MSM requires certain untestable assumptions:
in addition to standard assumptions that the data analytic
models (for selection bias and for the causal effect) were
correctly specified, we have to assume that the model for
selection bias accounts for all potential confounders
(there are no unmeasured confounders). Additional sen-
sitivity analyses (not reported here) suggested that the
results remained stable under varying model specifica-
tions both for modeling probability of dose assignment
and drop-out in construction of weights at the first step
and for modeling causal effect on weighted data in Step 2.
Briefly, for Step 1 only baseline severity (among pre-treat-
ment covariates) and changes in outcome and to some
extent occurrence of AEs (among post-treatment out-
comes) affected dose assignments. This was consistent
with our previous analysis of the same and other data sets
[20]. Actually, AEs were a rather weak predictor that
would have been eliminated had we used aggressive
search algorithms with cross-validation or other model
selection tools that target prediction error (as suggested in
[21,22]). However, we left it in the model as we would
rather overfit than underfit the model. In contrast to a less
controlled observational study with many potential con-
founders [21], overall model selection for dose assign-
ment was not the biggest issue in this study. Because we
are considering longitudinal data with time-dependent
confounders and the model naturally incorporated previ-
ous dose which is a strong predictor of subsequent dose,
it acts as a natural model selection device, cutting off all
weak predictors and leaving only strong predictors that
can explain dose beyond previous dose. We also consid-
ered logistic regression models with time-varying inter-
cept which proved unnecessary for our data, again
probably because previous dose and other variables had
absorbed any possible time trend in doses. Other varia-
tions on modeling the dose selection mechanism were
using different dose intervals. For example, in the second
study we first grouped doses in 3 intervals according to 10,
15, 20 mg and then into 2 intervals (10–15, 20). Although
larger intervals would avoid the trouble of having zero

Table 3: Dose response findings from fixed-dose randomized trials of olanzapine reported in the literature

Disease state Study design Duration Dose N* Dose response for efficacy outcome

Yes

Chronic schizophrenia [16] Double-blind, randomized 6 weeks 5, 10, or 15 mg/d 198 Positive linear trend
Chronic schizophrenia [17] Double-blind, randomized 6 weeks 5, 10, or 15 mg/d 350 Positive linear trend

No

Chronic schizophrenia or 
schizoaffective disorder [18]

Double-blind, randomized, 24 weeks 10, 15, or 20 mg/d 202 No significant trend

Schizophrenia or schizoaffective 
disorder [19]

Double-blind, randomized 8 weeks 10, 20, or 40 mg/d 599 No significant dose response
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probability associated with certain potential dose config-
uration, finer intervals may achieve better control over
selection bias by modeling finer details of the dose selec-
tion process. This issue is related to the experimental treat-
ment assignment (ETA) assumption that was emphasized
and discussed by Mortimer et al.[21] and Petersen et
al.[22]. In our analysis, the ETA assumption may have
been partially violated in that some dose profiles (e.g.
abruptly changing dose from 5 to 20 mg) would not be
attainable in a flexible dose trial where protocols allow
only one increment increase at a time. However, in the
sensitivity analysis, the different dose groupings resulted
in very similar analyses. In addition, we performed a sep-
arate simulation study using dose process as estimated
from the data [13]. In this simulation study, we also had
some probabilities close to 0 for abrupt changes of dose
between two visit intervals. We obtained reasonably good
results with almost unbiased estimates of overall causal
effect.

Another difficulty in implementing IPTW methodology is
that estimated weights (even when using their "stabilized"
version) may be highly skewed by a few individuals with
extreme values, requiring additional sensitivity analyses
[4]. In our analyses of the bipolar trial, a few weights of
very high magnitude (> 100) had unduly large impact on
the estimates and we adopted models with such values
removed or truncated (with very similar results). Further
we tried to impose some truncation limit for stabilized
weights requiring them not to exceed levels of 10, 20, and
50 also with very similar results. In the schizophrenia trial
the weights were all within 0 to 5.

There are other challenges in evaluating causal effect from
longitudinal data. The impact of IPTW and effectiveness
of weight-adjusted analyses may vary across the duration
of the clinical trial. Time-dependent IPTW may be more
appropriate for bias reduction in the early phase when
most dose titration due to efficacy/tolerability occurs,
while more traditional analyses by stratified propensity
score may be appropriate for later stages of treatment
maintenance when dose adjustments are minimal. Evalu-
ating potential dose effect may be difficult for the mainte-
nance phase when most patients may be already receiving
their "optimal" doses. Weighting requires that both
under- and over-represented patients exist in the observed
data; however, in clinical trials having a built-in determin-
istic dose escalation, some groups of patients may receive
their actual dose with probability close to 1, while proba-
bilities of certain pre-specified dose regimen of interest
may be estimated as zero in these groups. In this situation,
eliminating selection bias using IPTW may not be possible
since the assumption of ETA is violated and other models
are needed [3,23]. For a description of methods based on
structural nested mean models see Brumback et al.[23].

Importantly, for the flexible dose trials investigated in the
present paper, the protocols did not contain any deter-
ministic or probabilistic rules except allowing dose reduc-
tion for AEs, at physician's discretion. This is consistent
with the observation that intolerable AEs are rarely seen
with atypical antipsychotics. Therefore, our strategy was to
use IPTW MSM methodology to mimic potential out-
comes that one would expect had patients been rand-
omized to fixed dose groups. Although this estimation
target may be considered as "gold standard" for evaluating
efficacy of specific dose ranges for labeling purposes by
the regulatory agencies, it may be somewhat questionable
from the public health perspective. It may be more rele-
vant from a public health perspective to evaluate potential
outcomes associated with certain flexible dynamic regi-
mens such as described in Murphy et al.[24]. Though one
can argue that flexible dose trials, by their very nature, are
implementing dynamic treatment regimes, in absence of
clearly defined rules in the protocol, it appears that elici-
tation of such rules and estimating associated potential
outcomes from flexible dose trials of relatively small size
may pose difficulties. For a thorough discussion of esti-
mating effects of dynamic treatment regimes see Murphy
et al.[24].

Additionally, optimal dose for response measured by
symptom reduction may not necessarily be the same as
the optimal dose for relapse prevention and the applica-
bility of this methodology to clinical trials involving other
disorders such as depression or anxiety may be limited.
Furthermore, the lack of a dose response relationship may
be due to a variety of clinical factors that increase variation
among individuals in drug response not routinely
assessed in clinical trials such as differences in drug
metabolism or neuro-receptor activities and possibly not
adequately randomized in a relatively small group of
study subjects. Finally, even though statistically signifi-
cant dose-response effects were not found, this does not
mean that significant effects are not present. It is possible
that the unweighted approaches have more power than
the IPTW approach, as the use of weights confers added
variability to the analysis.

Conclusion
IPTW may provide a methodology to estimate a probabi-
listic dose response relationship from flexible-dose clini-
cal trials. This information could then be used in order to
better design definitive fixed-dose studies. Simulations
with a variety of datasets are needed to better assess the
IPTW methodology for assessing dose response relation-
ships.
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